3,858 research outputs found

    Modular and composable extensions to smalltalk using composition filters

    Get PDF
    Current and future trends in computer science require extensions to Smalltalk. Rather than arguing for particular language mechanisms to deal with specific requirements, in this position paper we want to make a case for two requirements that Smalltalk extensions should fulfill. The first is that the extensions must be integrated with Smalltalk without violating its basic object model. The second requirement is that extensions should allow for defining objects that are still adaptable, extensible and reusable, and in particular do not cause inheritance anomalies. We propose the composition filters model as a framework for language extensions that fulfills these criteria. Its applicability to solving various modeling problems is briefly illustrated

    Strategic Directions in Object-Oriented Programming

    Get PDF
    This paper has provided an overview of the field of object-oriented programming. After presenting a historical perspective and some major achievements in the field, four research directions were introduced: technologies integration, software components, distributed programming, and new paradigms. In general there is a need to continue research in traditional areas:\ud (1) as computer systems become more and more complex, there is a need to further develop the work on architecture and design; \ud (2) to support the development of complex systems, there is a need for better languages, environments, and tools; \ud (3) foundations in the form of the conceptual framework and other theories must be extended to enhance the means for modeling and formal analysis, as well as for understanding future computer systems

    Data Abstraction Mechanisms in Sina/st

    Get PDF
    This paper describes a new data abstraction mechanism in an object-oriented model of computing. The data abstraction mechanism described here has been devised in the context of the design of Sina/st language. In Sina/st no language constructs have been adopted for specifying inheritance or delegation, but rather, we introduce simpler mechanisms that can support a wide range of code sharing strategies without selecting one among them as a language feature. Sina/st also provides a stronger data encapsulation than most of the existing object-oriented languages. This language has been implemented on the SUN 3 workstation using Smalltalk

    Out-Of-Place debugging: a debugging architecture to reduce debugging interference

    Get PDF
    Context. Recent studies show that developers spend most of their programming time testing, verifying and debugging software. As applications become more and more complex, developers demand more advanced debugging support to ease the software development process. Inquiry. Since the 70's many debugging solutions were introduced. Amongst them, online debuggers provide a good insight on the conditions that led to a bug, allowing inspection and interaction with the variables of the program. However, most of the online debugging solutions introduce \textit{debugging interference} to the execution of the program, i.e. pauses, latency, and evaluation of code containing side-effects. Approach. This paper investigates a novel debugging technique called \outofplace debugging. The goal is to minimize the debugging interference characteristic of online debugging while allowing online remote capabilities. An \outofplace debugger transfers the program execution and application state from the debugged application to the debugger application, both running in different processes. Knowledge. On the one hand, \outofplace debugging allows developers to debug applications remotely, overcoming the need of physical access to the machine where the debugged application is running. On the other hand, debugging happens locally on the remote machine avoiding latency. That makes it suitable to be deployed on a distributed system and handle the debugging of several processes running in parallel. Grounding. We implemented a concrete out-of-place debugger for the Pharo Smalltalk programming language. We show that our approach is practical by performing several benchmarks, comparing our approach with a classic remote online debugger. We show that our prototype debugger outperforms by a 1000 times a traditional remote debugger in several scenarios. Moreover, we show that the presence of our debugger does not impact the overall performance of an application. Importance. This work combines remote debugging with the debugging experience of a local online debugger. Out-of-place debugging is the first online debugging technique that can minimize debugging interference while debugging a remote application. Yet, it still keeps the benefits of online debugging ( e.g. step-by-step execution). This makes the technique suitable for modern applications which are increasingly parallel, distributed and reactive to streams of data from various sources like sensors, UI, network, etc

    Mission and Safety Critical (MASC): An EVACS simulation with nested transactions

    Get PDF
    The Extra-Vehicular Activity Control System (EVACS) Simulation with Nested Transactions, a recent effort of the MISSION Kernel Team, is documented. The EVACS simulation is a simulation of some aspects of the Extra-Vehicular Activity Control System, in particular, just the selection of communication frequencies. The simulation is a tool to explore mission and safety critical (MASC) applications. For the purpose of this effort, its current definition is quite narrow serving only as a starting point for prototyping purposes. (Note that EVACS itself has been supplanted in a larger scenario of a lunar outpost with astronauts and a lunar rover). The frequency selection scenario was modified to embed its processing in nested transactions. Again as a first step, only two aspects of transaction support were implemented in this prototype: architecture and state recovery. Issues of concurrency and distribution are yet to be addressed

    An EVACS simulation with nested transactions

    Get PDF
    Documented here is the recent effort of the MISSION Kernel Team on an Extra-Vehicular Activity Control System (EVACS) simulation with nested transactions. The team has implemented the EVACS simulation along with a design for nested transactions. The EVACS simulation is a project wide aid to exploring Mission and Safety Critical (MASC) applications and their support software. For this effort it served as a trial scenario for demonstrating nested transactions and exercising the transaction support design. The EVACS simulation is a simulation of some aspects of the Extra-Vehicular Activity Control System, in particular, just the selection of communication frequencies. Its current definition is quite narrow, serving only as a starting point for prototyping purposes. (EVACS itself may be supplanted in a larger scenario of a lunar outpost with astronauts and a lunar rover.) Initially the simulation of frequency selection was written without consideration of nested transactions. This scenario was then modified to embed its processing in nested transactions. To simplify the prototyping effort, only two aspects of the general design for transaction support have been implemented: the basic architecture and state recovery. The simulation has been implemented in the programming language Smalltalk. It consists of three components: (1) a simulation support code which provides the framework for initiating, interacting and tracing the system; (2) the EVACS application code itself, including its calls upon nested transaction support; and (3) a transaction support code which implements the logic necessary for nested transactions. Each of these components deserves further description, but for now only the transaction support is discussed

    Aspect-Oriented Programming

    Get PDF
    Aspect-oriented programming is a promising idea that can improve the quality of software by reduce the problem of code tangling and improving the separation of concerns. At ECOOP'97, the first AOP workshop brought together a number of researchers interested in aspect-orientation. At ECOOP'98, during the second AOP workshop the participants reported on progress in some research topics and raised more issues that were further discussed. \ud \ud This year, the ideas and concepts of AOP have been spread and adopted more widely, and, accordingly, the workshop received many submissions covering areas from design and application of aspects to design and implementation of aspect languages

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Actors that Unify Threads and Events

    Get PDF
    There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurrent applications in an event-driven style which obscures control flow, and increases the burden on the programmer. In this paper we show how thread-based and event-based programming can be unified under a single actor abstraction. Using advanced abstraction mechanisms of the Scala programming language, we implemented our approach on unmodified JVMs. Our programming model integrates well with the threading model of the underlying VM
    corecore