130,324 research outputs found

    Spectral Solution with a Subtraction Method to Improve Accuracy

    Get PDF
    This work addresses the solution to a Dirichlet boundary value problem for the Poisson equation in 1-D, d2u/dx2 = f using a numerical Fourier collocation approach. The order of accuracy of this approach can be increased by modifying f so the periodic extension of the right hand side is suffciently smooth. A proof for the order is given by Sköllermo. This work introduces a subtraction technique to modify the function\u27s right hand side to reduce the discontinuities or improve the smoothness of its periodic extension. This subtraction technique consists of cosine polynomials found by using boundary derivatives. We subtract cosine polynomials to match boundary values and derivatives of f. The derivatives need only be calculated numerically and approximately represent derivatives at the boundaries. Increasing the number of cosine polynomials in the subtraction technique increases the order of accuracy of the solution. The use of cosine polynomials matches well with the Fourier transform approach and is computationally efficient. Implementation of this technique results in a solution with variable accuracy depending on the number of collocation points and approximated boundary derivatives. Results show that the technique can be up to 14th order accurate

    Nodally exact Ritz discretizations of 1D diffusion–absorption and Helmholtz equations by variational FIC and modified equation methods

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-005-0011-zThis article presents the first application of the Finite Calculus (FIC) in a Ritz-FEM variational framework. FIC provides a steplength parametrization of mesh dimensions, which is used to modify the shape functions. This approach is applied to the FEM discretization of the steady-state, one-dimensional, diffusion–absorption and Helmholtz equations. Parametrized linear shape functions are directly inserted into a FIC functional. The resulting Ritz-FIC equations are symmetric and carry a element-level free parameter coming from the function modification process. Both constant- and variable-coefficient cases are studied. It is shown that the parameter can be used to produce nodally exact solutions for the constant coefficient case. The optimal value is found by matching the finite-order modified differential equation (FOMoDE) of the Ritz-FIC equations with the original field equation. The inclusion of the Ritz-FIC models in the context of templates is examined. This inclusion shows that there is an infinite number of nodally exact models for the constant coefficient case. The ingredients of these methods (FIC, Ritz, MoDE and templates) can be extended to multiple dimensions.Peer ReviewedPostprint (author's final draft
    • …
    corecore