
Santa Clara University
Scholar Commons

Mechanical Engineering Master's Theses Engineering Master's Theses

12-19-2011

Spectral Solution with a Subtraction Method to
Improve Accuracy
Matthew Green
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/mech_mstr

This Thesis is brought to you for free and open access by the Engineering Master's Theses at Scholar Commons. It has been accepted for inclusion in
Mechanical Engineering Master's Theses by an authorized administrator of Scholar Commons. For more information, please contact
rscroggin@scu.edu.

Recommended Citation
Green, Matthew, "Spectral Solution with a Subtraction Method to Improve Accuracy" (2011). Mechanical Engineering Master's Theses.
25.
https://scholarcommons.scu.edu/mech_mstr/25

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_master_theses?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr/25?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

SANTA CLARA UNIVERSITY
DEPARTMENT OF MECHANICAL ENGINEERING

Date: December 19, 2011

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY

Matthew Green

ENTITLED

Spectral Solution with a Subtraction Method to
Improve Accuracy

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Thesis Advisor

Thesis Reader

Thesis Reader

Department Chair

Spectral Solution with a Subtraction Method to
Improve Accuracy

by

Matthew Green

Submitted in partial fulfillment of the requirements
for the degree of

Master of Science in Mechanical Engineering
School of Engineering
Santa Clara University

Santa Clara, California
December 19, 2011

Spectral Solution with a Subtraction Method to
Improve Accuracy

Matthew Green

Department of Mechanical Engineering
Santa Clara University

December 19, 2011

ABSTRACT

This work addresses the solution to a Dirichlet boundary value problem for the
Poisson equation in 1-D, d

2u
dx2

= f using a numerical Fourier collocation approach. The
order of accuracy of this approach can be increased by modifying f so the periodic
extension of the right hand side is sufficiently smooth. A proof for the order is
given by Sköllermo. This work introduces a subtraction technique to modify the
function’s right hand side to reduce the discontinuities or improve the smoothness of
its periodic extension. This subtraction technique consists of cosine polynomials found
by using boundary derivatives. We subtract cosine polynomials to match boundary
values and derivatives of f . The derivatives need only be calculated numerically
and approximately represent derivatives at the boundaries. Increasing the number
of cosine polynomials in the subtraction technique increases the order of accuracy of
the solution. The use of cosine polynomials matches well with the Fourier transform
approach and is computationally efficient. Implementation of this technique results
in a solution with variable accuracy depending on the number of collocation points
and approximated boundary derivatives. Results show that the technique can be up
to 14th order accurate.

Acknowledgments

I would like to thank Drazen Fabris, Stephan Chiappari, and Sergio Zarantonello for
their guidance, insight, and support throughout this thesis.

iv

Table of Contents

1 Introduction 1

2 Spectral Solution of the Poisson equation 3
2.1 Fourier Transforms . 4
2.2 Solving the Poisson Equation in Fourier Space 5
2.3 Gibbs Phenomenon . 6
2.4 Applying the Subtraction Function 7
2.5 Numerical Approximation of Derivatives 8
2.6 Cosine Series Generation . 10

2.6.1 Example: Generating Cosine Coefficients for Six Data Points . 10
2.6.2 Inclusion of Boundary Conditions 11
2.6.3 Iterative Refinement for Matrices with Poor Condition Numbers 12

3 Computational Load 13

4 Theoretical Accuracy 15

5 Numerical Accuracy Results 17

6 Conclusion 23

A Matlab Code 27

B Case Figures 31

v

List of Figures

5.1 Case 7. Function f(x) and the numerical solution to the Poisson equa-
tion u(x) . 18

5.2 Case 7. Error between analytical and numerical solutions to f(x) when
using 4th order accurate derivatives at 30 collocation points 19

5.3 Case 7. L2 norm between analytical and numerical solutions using up
to tenth order accurate derivatives. 21

5.4 Case 7. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 22

5.5 Case 9. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 22

B.1 Case 1. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 32

B.2 Case 2. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 32

B.3 Case 3. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 33

B.4 Case 4. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 33

B.5 Case 5. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 34

B.6 Case 6. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 34

B.7 Case 8. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 35

B.8 Case 10. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives. 35

vi

Chapter 1

Introduction

The Poisson equation can be solved numerically using a collocation approach. If the

right hand side is represented discretely by a set of evenly-spaced collocation points,

then its discrete Fourier series can be calculated. Using this information a Fourier

series for the numerical solution to the Poisson equation can be calculated. This is a

spectral solution. If the problem is periodic, the order of accuracy is the order of the

series which is determined by the collocation points.

In reality one would like to calculate the solution of general non-periodic problems.

Sköllermo’s theorem shows that the solution to the Poisson is second order accurate

when the right hand side of the function has non zero and non equal boundary val-

ues [19]. Despite the use of a Fourier expansion to represent the functions being a

spectral method, a direct Fourier solution will yield only a second order accurate solu-

tion. The poor accuracy is directly related to the Gibbs phenomenon, specifically the

discontinuous nature of the periodic extension of the function and its representation

with a smooth set of functions [10]. Our method involves the modification of the

right hand side, using cosine polynomials, into a function with a smoother periodic

extension. This method increases the order of accuracy without a large increase in

computational load. The solution shown here in 1-D is a proof of concept and can be

extended for higher dimensions.

The use of a subtraction function to smooth the periodic extension has been used

1

by Sköllermo [19] and Averbuch et al. [1, 2, 3]. Sköllermo considers the cases where

the boundary values of the right hand side match, a smooth periodic extension, and

the change in order of accuracy of the solution. The proof to the order of accuracy is

given for Sköllermo’s method [19]. In Averbuch et al.’s work the subtraction functions

are known exactly and are algebraic polynomials [1, 2, 3]. In our case the subtraction

functions used are calculated numerically and are approximate. In addition, we use

cosine polynomials to represent the subtraction function. Cosine polynomials allow

use of the Fast Fourier technique to be a computationally efficient calculation of the

correction function. In the subtraction technique the cosine polynomial coefficients

are calculated numerically from values at the endpoints. The overall accuracy of the

technique is adjusted by selecting the order of the cosine polynomial expansion.

This procedure is applicable to numerical elliptic problems where a Laplacian is

present. Motivation for this work comes from the Navier-Stokes equations. One

step in numerically solving the Navier-Stokes equations involves solving the Poisson

equation for viscous boundary conditions. The Poisson equation is the most com-

putationally expensive piece in the solution. The technique outlined in this thesis

allows for a highly accurate solution with lower computational load and would be ap-

plicable in numerically solving problems in the following fields: heat transfer, image

processing, elasticity, and electro magnetism.

2

Chapter 2

Spectral Solution of the Poisson
equation

The Poisson equation can be solved numerically using Fourier Transforms. The order

of accuracy of this method depends on the smoothness of the periodic extension of

the right-hand side as proved by Sköllermo [19]. If the periodic extension is discon-

tinuous at the endpoints, the solution’s accuracy is limited. However, as shown by

Averbuch et al. [1, 2, 3], a subtraction technique can be applied to correct for these

discontinuities. The current work proposes using cosine polynomials, as correction

functions, to match a specified number of even-order derivatives at the end points.

By using finite differences to calculate the even-order derivatives, and subtracting the

correcting cosine polynomial from the right-hand side, the proposed methodology pro-

duces highly accurate solutions at a very low computational expense. To illustrate

our methodology, we consider a Dirichlet boundary value problem for the Poisson

equation in 1-D

d2u(x)

dx2
= f(x), u(0) = a, u(1) = b, (2.1)

where f(x) is a continuous real-valued function in the interval [0, 1]. In a numerical

approach f(x) is represented by its values f(xk) at evenly spaced collocation points

xk = k∆x. We assume ∆x = 1
K

and k = 0, 1, 2, ..., K. We let f̃(x) be the interpolating

3

sine polynomial of f(x) at the collocation points, and consider the associated problem

d2ũ(x)

dx2
= f̃(x), ũ(0) = a, ũ(1) = b, (2.2)

where ũ is the numerical solution based on the interpolation polynomial, f̃ . The L2

norm of the error between the exact solution and the numerical solution ||u− ũ||2 is of

order O(∆xp) where p depends on the degree of smoothness of the periodic extension

of f(x). Sköllermo showed, for the case u(0) = 0, u(1) = 0, that p = 4 provided

f ′(x) exists and is of bounded variation and showed that p = 2 for the case in which

u(0) and u(1) are unequal and nonzero (Theorem 1, [19]). Our goal, to improve the

continuity of f(x), is achieved by constructing appropriate correction functions.

2.1 Fourier Transforms

The Fourier Transform is the process of transforming a function in physical space

into Fourier space. For a function f(x), defined on the interval [0, 1] the Fourier sine

coefficients are defined by

Fk = 2
∫ 1

0
f(x) sin(k πx) dx, (2.3)

and f(x) can be represented as the sum of its Fourier series

f(x) =
∞∑
k=1

Fk sin(k πx) (2.4)

if f(x) is sufficiently smooth. If the data are discrete then there is a discrete Fourier

sine transform that is analogous, where the sine coefficients are given by

Sk = 2
K−1∑
m=1

f(xm) sin (k πxm) xm =
m

K
. (2.5)

4

This yields a finite set of Fourier coefficients. That finite set of coefficients represents

the interpolating polynomial

f̃(x) =
K−1∑
k=1

Sk sin

(
k πx

K

)
(2.6)

which is equal to f(x) at the interpolating points, where K is the number of collo-

cation points and Sk represents the amplitude of the kth sine coefficient. The Fast

Fourier Transform can be used to calculate Sk and reduce computational load. Now

representing f̃(x) in sine terms, the computation of the solution ũ(x) is straightfor-

ward as shown in the next section.

2.2 Solving the Poisson Equation in Fourier Space

Finding the solution of equation (2.2) involves scaling the sine coefficients. The

discrete Fourier sine representation of ũ(x) is denoted by the coefficients Rk. Inserting

the discrete Fourier sine series ũ(x) and f̃(x) from equation (2.6) into equation (2.1),

we obtain

d2

dx2

K−1∑
k=1

Rk sin

(
k πx

K

)
=

K−1∑
k=1

Sk sin

(
k πx

K

)
. (2.7)

Because the functions sin
(
k πx
K

)
in the Fourier sine series are orthogonal to each other

on [0, 1] we equate coefficients of the same wave number. Note that

d2

dx2
Rk sin

(
k πx

K

)
=
−π2 k2

K2
Rk sin

(
k πx

K

)
,

thus from (2.7)

Rk
−k2π2

K2
sin

(
k πx

K

)
= Sk sin

(
k πx

K

)
.

Then algebraically we can solve for the coefficients in ũ(x)

Rk =
−K2

π2 k2
Sk; (2.8)

5

thus,

ũ(x) =
K−1∑
k=1

−K2

π2 k2
Sk sin

(
k πx

K

)
. (2.9)

This constant −K
2

π2 k2
relates the Fourier sine series representation of f(x) to the Fourier

sine series representation of u(x). This allows us to scale the coefficients Sk to solve

the Poisson equation.

2.3 Gibbs Phenomenon

When f(0) is not equal to f(1) the periodic extension of f is discontinuous. When the

Poisson problem is solved with a spectral technique there is an error in the solution

for a right hand side that has a discontinuous periodic extension. This error is related

to the Gibbs phenomenon. This error will also exist if the derivatives of the periodic

extension are discontinuous.

To review, the Gibbs phenomenon occurs when a discontinuous function is rep-

resented by a sine or cosine series expansion. The Fourier series does not converge

pointwise at the points of discontinuity. Where the discontinuities occur in f , in this

case at non-periodic boundaries, an overshoot or undershoot will occur near the dis-

continuity. The error is only be mitigated by increasing the terms in the expansion,

thus isolating the overshoot to only a location near the discontinuity. This overshoot

or undershoot will never disappear int he vicinity of discontinuity. This allows the

overall solution to converge reasonably well except at those regions.

Previous work has shown that minimizing the Gibbs phenomenon requires the

addition of a filter in either Fourier space or in physical space [10]. Fourier space

filters or spectral filters modify the data in Fourier space. These filters successfully

remove most of the Gibbs phenomenon, the high frequency portions. However this

compromises the function’s representation, which is detrimental to the accuracy of the

solution. Minimal computational cost is introduced in the application of Fourier space

filters. Physical space filters involve modifying the original data to smooth or remove

6

the discontinuities. The application of the filter leads to increased computational

cost.

In our alternate approach, a physical space subtraction method is used in this

paper to reduce the effect of the Gibbs phenomenon. This method does not introduce

the loss of accuracy associated with Fourier space filters. Thus our work is a method

in which boundaries and derivatives are subtracted in physical space, via a cosine

series representation.

2.4 Applying the Subtraction Function

If f(x) does not have a periodic extension we apply a subtraction method [1, 2, 3].

Subtracting a function E(x) from f(x) results in a function g(x). This function, g(x),

can be made more smooth by subtracting a function E(x) that cancels discontinuities

in the extension of f(x) so that g(0) = 0 and g(1) = 0 and its derivatives, g(p)(0) = 0

and g(p)(1) = 0, where p is an even integer. We can achieve this by using a cosine series

as the subtraction function. The use of a cosine polynomial is convenient because the

same Fourier procedure can be used to determine the contribution to the solution as

is used to solve equation (2.1). With g̃(x) being the interpolating polynomial without

discontinuities in the periodic extension we can solve the Poisson equation

d2ṽ(x)

dx2
= g̃(x). (2.10)

The coefficients of the cosine interpolation polynomial are represented as Ck and the

contribution to the solution involves scaling by the same scalar −K
2

π2 k2
. The solution to

d2w̃(x)
dx2

= E(x) is w̃(x), which is given by

w̃(x) =
D∑
k=1

−K2

π2 k2
Ck cos

(
k πx

K

)
. (2.11)

The number of cosine terms is represented by D which is different than the number

of terms in the sine series representation. The physical space solutions w̃(x) and ṽ(x)

7

are now summed to represent the solution to equation (2.1). The solution is given by

û(x) = ṽ(x) + w̃(x), (2.12)

where û(x) is the better approximation of u(x). Based on Sköllermo’s Theorem 1

[19], we need to find E(x) that will subtract the non-zero boundaries of f(x) so that

the extension g̃(x) is periodic. And representing E(x) as a cosine polynomial is easier

because it can be computed simultaneously with the sine component in use of the

FFT. So we need to know f(0), f(1), f (2)(0), and f (2)(1) to set E(x) = f(x) and

E(2)(x) = f (2)(x) for x = 0 and x = 1.

2.5 Numerical Approximation of Derivatives

Since the original data is given discretely, we approximate the various derivatives

that we need by a Taylor approximation. (Other methods based on the Taylor series

can be used to increase accuracy and computational efficiency, but would have only

a small impact.) We first look at the Taylor representation of a suitably smooth

function f(x) near a point x0, given by

f(x) =
M−1∑
n=0

f (n)(x0)

n!
(x− x0)n +

1

M !
f (M)(ζ)(x− x0)M . (2.13)

This equation holds for all x sufficiently close to x0, with ζ depending on x and lying

between x and x0. This Taylor approximation can be used to generate a collection

of linear equations by varying the number of collocation points K. Each new col-

location point adds another equation, so for K collocation points, derivatives up to

the Kth are approximated. This set of equations essentially forms a linear system

for the derivatives. The example below shows the process for finding the numerical

8

approximation up to the fourth derivative at a boundary.

f(xk)−f(x0) ≈ f (1)(x0)k∆x+
1

2
f (2)(x0)(k∆x)2+

1

6
f (3)(x0)(k∆x)3+

1

24
f (4)(x0)(k∆x)4,

(2.14)

where k is incremented (k = 1, 2, 3, 4) to generate a set of four equations. These

equations can be written as a linear system and solved as shown below:

b̂ = Ad̂, d̂ = A−1b̂,

b̂ =



f(x1)− f(x0)

f(x2)− f(x0)

f(x3)− f(x0)

f(x4)− f(x0)



, d̂ =



f (1)(x0)

f (2)(x0)

f (3)(x0)

f (4)(x0)



, A =



1 1
2

1
6

1
24

2 4
2

8
6

16
24

3 9
2

27
6

81
24

4 16
2

64
6

256
24



.

Arbitrary order approximate derivatives can be generated by including additional

terms. The matrix coefficients can be generated using the following expression

Amn =
mn

n!
. (2.15)

The accuracy of the approximated derivatives depends on the number of col-

location points used. The derivative approximation method eventually experiences

numerical round-off error and is limited in total accuracy. In fact matrix A has a large

condition number thus inverting and solving the linear system is slightly more diffi-

cult. The accuracy of the approximation can possibly limit the accuracy of solution

via v(x).

The total number of calculated derivatives cannot exceed the number of collocation

of points when using this method.

9

2.6 Cosine Series Generation

A cosine polynomial, as shown in section 2.4 can be generated, by using the approx-

imate derivatives calculated in section 2.5 that represents E(x). The cosine series

when matched with a FFT can be computationally efficient. When the cosine series

is subtracted from f(x) the remaining g(x) can be represented as a more quickly

converging series of sine polynomials. For each boundary pair, f (2p)(x0) and f (2p)(x1)

for p = 1, 2, ..., D, a pair of cosine terms is required to represent those conditions.

Choose an even positive integer D, the number of cosine terms to be used. The order

of the highest order derivatives approximated at the boundary points 0 and 1 is then

2D − 2. Thus the following cosine series is generated,

E(x) =
D∑
k=1

Cn cos(kπx), (2.16)

where Ck is the approximate cosine interpolating polynomial coefficient for E(x).

Note C0, the constant function, is not used since this would require an additional

algebraic polynomial to the Poisson equation.

2.6.1 Example: Generating Cosine Coefficients for Six Data
Points

The following example is the calculation based on six cosine terms and approximated

derivatives of order 0, 2, and 4. We apply equation (2.16) to obtain the six equations

f(0) =
6∑
j=1

Cj,

f(1) =
6∑
j=1

Cj(−1)j,

f (2)(0) = −
6∑
j=1

j2π2Cj,

f (2)(1) =
6∑
j=1

j2π2Cj(−1)j+1,

10

f (4)(0) =
6∑
j=1

j4π4Cj,

f (4)(1) =
6∑
j=1

j4π4Cj(−1)j,

b̂ =



f (0)(0)

f (0)(1)

f (2)(0)
π2

f (2)(1)
π2

f (4)(0)
π4

f (4)(1)
π4



, d̂ =



C1

C2

C3

C4

C5

C6



, A =



1 1 1 1 1 1

−1 1 −1 1 −1 1

−12 −22 −32 −42 −52 −62

12 −22 32 −42 52 −62

14 24 34 44 54 64

−14 24 −34 44 −54 64



.

Solving for d̂ results in the coefficients of the cosine series. With the cosine series

constructed an Inverse Discrete Cosine Transform can be performed to extract the

subtraction function for modifying f(x).

2.6.2 Inclusion of Boundary Conditions

Boundary values required for the solution u(x) can also be matched with the cosine

series. Typically, the boundary value conditions could be added as a linear function

and a constant to the solution u(x); however, producing a solution numerically via our

method can be done by adding f (−2)(0) and f (−2)(1) to the cosine series generation

procedure. We look back at the cosine series calculation method. Instead of starting

at f(0) and f(1), the system of equations would introduce two new equations for the

boundary value conditions at u(0) and u(1). This increases the number of equations

11

by two while properly introducing the boundary value conditions.

2.6.3 Iterative Refinement for Matrices with Poor Condition
Numbers

The matrix used to solve the cosine coefficients has a poor condition number. The

condition number of the matrix increases as the number of derivatives increases.

To compensate for this high condition number, the numerical method of iterative

refinement is used to solve for the correct coefficients [20](pages 454 to 461). We

describe the method for improving the accuracy of the solution to a system with a

poor condition number. We first obtain d̂1, as an approximate solution of

Ad̂ = b̂.

Putting

∆b̂1 = b̂− Ad̂1,

we obtain ∆d̂1, as an approximate solution of

Ad̂ = ∆b̂1.

Then put

d̂2 = ∆d1 + d̂1.

If d̂2− d̂1 is small enough in norm, we stop and declare d̂2 as a good enough solution;

otherwise we put

∆b̂2 = b̂− Ad̂2

and perform another iteration. Eventually either d̂k+1 − d̂k is small enough in norm,

or we reach the maximum number of iterations that we care to perform.

12

Chapter 3

Computational Load

The Fast Fourier Transform with a cosine polynomial subtraction has significantly

lighter computational load than inverting a large full matrix. Analyzing the com-

putational load requires the breakdown of each component based on the number of

divisions and multiplications in that piece. Looking first at the Fast Fourier Trans-

form the computational load is much smaller. While numerous papers have been

published on the accuracy of the Fast Fourier Transform, we use the conservative

computational load 5K log2(K)Averbuch et al. [1]. This is for a single transform

of f(x) where K is the number of collocation points. To recover the solution takes

two transforms. Finding the derivatives and generation of the cosine series improves

the computational load. Denote by D − 4 the number of derivatives that need to

be calculated to produce a subtraction function where D is the number of terms in

the cosine polynomials in the subtraction function. The basic method for solving a

system of equations, Gaussian Elimination, requires computational load K3. In this

case for n collocation points the initial point has to be considered and thus for each

boundary the computational load for finding the desired derivatives is (D− 1)3, also

through Gaussian Elimination While using (D − 1)3 is conservative, the amount of

computational load added to the overall process is minimal when compared to the

Fast Fourier Transform.

Again looking at the number of derivatives, D− 4, we see that the computational

13

load for creating the cosine polynomials using the final boundary conditions is roughly

D3. Other sources of computational load are present. These sources of load are small

and as such do not affect the load much. The total computational load for the Fast

Fourier Transform with cosine polynomial subtraction is roughly

5K log2(K) + 2(D − 1)3 +D3. (3.1)

With the subtraction method the accuracy of the problem is variable and can be set

to maximize computational efficiency. These computational calculations only hold

true when K is a positive integer power of 2.

14

Chapter 4

Theoretical Accuracy

Determining the order of accuracy of our method requires examining the Fast Fourier

Transform, and the accuracy of the calculated derivatives. According to Sköllermo [19],

the order of accuracy of an unmodified zero endpoint Discrete Sine Transform was

found to be O(∆x2), where ∆x is the difference between discrete points in f(x). With

the base order of accuracy established, Averbuch [1] improved upon Sköllermo’s sub-

traction method to increase the order of accuracy of the overall scheme. Subtracting

a second order accurate function from f(x) yields accuracy of O(∆x4).

If we know f (j)(0) and f (j)(1) exactly for j = 0, 2, 4..., p the resulting limiting

accuracy would be O(∆x4+p). Finding the exact derivatives may not be possible when

only discrete data is available. In our case numerical approximations of the derivatives

at the boundaries are substituted. Thus O(∆x4) is the order of accuracy if f(0) =

f(1) = 0 (we can use a shift and a subtractive corrective function to ensure that

these conditions are satisfied for a modification of the original function f). When we

use a subtraction function we only approximate the solution. Hence, g(0) = O(∆xq)

and g(1) = O(∆xq) where q is the appropriate number of terms in the Taylor series

subtraction. Thus, we only need the boundary values approximately satisfied; i.e.,

g(0) = O(∆x4) by Sköllermo [19]. The base order of accuracy is O(∆x4+p) plus the

error in the boundary value O(∆xq) multiplied by the lower order accuracy from the

Sköllermo theorem for non-zero boundary values, O(∆x2). Therefore the order is

15

O(∆x4+p) +O(∆x2+q).

For this example the solution is as accurate as if we know the boundary values

exactly. Subsequently, we can extend this technique to higher order accuracy as long

as the derivatives are calculated to the needed order of accuracy, q = 2. For 6th

order of accuracy we use q = 4 and p = 2 when second order accurate derivatives are

calculated. The calculation for the order of accuracy would be O(∆x6) ≈ O(∆x4+p)+

O(∆x2+q). Use of the Taylor series should provide the appropriate order of accuracy

for the chosen higher order derivatives.

16

Chapter 5

Numerical Accuracy Results

To determine the accuracy a Matlab code is written to test the cosine series subtrac-

tion method. Some sample cases for a variety of functions are tested. These functions

are provided in the middle column of the table below.

The initial two cases are designed to test the accuracy of the spectral solver and

Case f(x) u(x)
1 −4π2 sin (2πx) sin (2πx)
2 −4π2 cos (2πx) cos (2πx)
3 −4π2 sin (2πx)− 4π2 cos (2πx) sin (2πx) + cos (2πx)

4 6x2−2
x6+3x4+3x2+1

1
1+x2

5 2 sec2 (x) tan (x) tan (x)
6 exp (x) exp (x)
7 (4x2 + 2) exp (x2) exp (x2)
8 (25x8 + 20x3) exp (x5) exp (x5)
9 (100x18 + 90x8) exp (x10) exp (x10)
10 (2500x98 + 2450x48) exp (x50) exp (x50)

Table 5.1: Cases 1 through 10 with analytical solutions

the subtraction method: the cosine subtraction polynomials and the Fourier sine in-

tegration. Case 3 tests the combination of these two pieces; this would be the ideal

case and shows that the predicted order indeed occurs. Cases 4 through 10 involve

functions, non-periodic on [0, 1] with nonzero derivatives. Cases 6 through 10 and are

similar, but increase in stiffness.

All the cases have simple analytical solutions for easy comparisons with numerical

17

Figure 5.1: Case 7. Function f(x) and the numerical solution to the Poisson equation
u(x)

results. Here u satisfies the equation d2

dx2
u(x) = f(x) exactly for all x in the interval

[0, 1]. Examining the order of accuracy numerically involves plotting the total error

based on evaluation of the numerical solution at discrete values, Figure 5.3. A set of

cases to test the method are run by varying the number of cosine polynomials used

and the number of collocation points. In each case the slope of the curve corresponds

to the order of accuracy of the method. Notice that the curve’s slope increases as the

number of cosine terms increases. Trying to match more derivatives, we see that the

round off error generated by the Taylor polynomial approximation becomes evident.

The error for 10−14 is equivalent to machine precision. This round-off error for higher-

order derivatives is the limiting factor to the overall scheme. Figures for all the test

cases are available in appendix B.

Tables 5.2, 5.3, 5.4, and 5.5 show the calculated order of accuracy for several cases.

Each additional pair of derivatives, of even order, at the boundary regions adds two

cosine terms to the cosine polynomial subtraction function. Observing cases 1, 2, and

3 we see that the order of the cosine polynomial subtraction governs the accuracy of

the combined solution.

18

Figure 5.2: Case 7. Error between analytical and numerical solutions to f(x) when
using 4th order accurate derivatives at 30 collocation points

Cases 4 through 6 show improved order of accuracy for matching of higher deriva-

tives. These functions are not periodic and have derivatives of every even order;

however, the ability to capture the derivatives is more challenging. This can cause

numerical values that hinder or help the accuracy of the solution. In these particular

cases the magnitude of the function’s derivatives increases the order of accuracy.

Observing cases 6 through 10, as the stiffness increases the order of accuracy

decreases with higher order cosine polynomials. This decrease in accuracy is expected:

as the function becomes increasingly stiff the Taylor series is directly affected. As

shown here the Taylor series has trouble resolving the discrete function after case

8. As we increase the number of collocation points, the Taylor series representation

becomes more accurate. This further demonstrates that the total accuracy is governed

by the Taylor polynomial accuracy.

19

Highest-Order Derivative Cases Theoretical Order
for Matching 1 2 3 4 5 of Accuracy

2 6.653 5.624 5.635 5.677 5.723 6
4 8.629 7.507 7.563 7.793 7.537 8
6 10.63 9.367 9.532 10.00 8.990 10
8 12.57 11.26 11.38 12.74 10.87 12

10 14.61 12.66 13.38 15.52 12.51 14
12 15.92 15.46 15.45 18.50 15.20 16
14 15.54 16.66 15.74 20.57 18.12 18

Table 5.2: Results for Cases 1 through 5 at 32 collocation points

Highest-Order Derivative Cases Theoretical Order
for Matching 6 7 8 9 10 of Accuracy

2 5.145 5.678 4.892 4.729 3.126 6
4 7.239 7.794 6.847 5.958 3.426 8
6 9.409 10.03 8.208 7.028 3.678 10
8 12.51 12.68 9.739 8.044 3.902 12

10 15.40 15.55 11.09 8.985 4.100 14
12 18.02 18.29 12.59 9.885 4.280 16
14 22.34 22.65 14.62 10.81 4.446 18

Table 5.3: Results for Cases 6 through 10 at 32 collocation points

Highest-Order Derivative Cases Theoretical Order
for Matching 1 2 3 4 5 of Accuracy

2 6.595 5.573 5.584 5.592 5.626 6
4 8.601 7.559 7.576 7.647 7.445 8
6 10.66 9.557 9.547 9.722 8.646 10
8 0 0 0 12.74 11.78 12

10 0 0 0 0 0 14
12 0 0 0 0 0 16
14 0 0 0 0 0 18

Table 5.4: Results for Cases 1 through 5 at 64 collocation points

20

Figure 5.3: Case 7. L2 norm between analytical and numerical solutions using up to
tenth order accurate derivatives.

Highest-Order Derivative Cases Theoretical Order
for Matching 6 7 8 9 10 of Accuracy

2 5.091 5.602 5.148 5.006 3.669 6
4 7.146 7.663 7.033 6.459 4.147 8
6 9.218 9.684 8.639 7.802 4.559 10
8 14.74 0 10.26 9.076 4.922 12

10 0 0 11.75 10.28 5.246 14
12 0 0 13.08 11.49 5.547 16
14 0 0 0 13.05 5.839 18

Table 5.5: Results for Cases 6 through 10 at 64 collocation points

21

Figure 5.4: Case 7. L2 norm between analytical and numerical solutions using up to
fourteenth order accurate derivatives.

Figure 5.5: Case 9. L2 norm between analytical and numerical solutions using up to
fourteenth order accurate derivatives.

22

Chapter 6

Conclusion

In this work a subtraction function is used to precondition a Poisson boundary value

problem’s right hand side, f . Sköllermo’s theorem shows the order of accuracy of the

solution to the Poisson problem is based on the smoothness of the periodic exten-

sion [19]. The resulting modified periodic extension, g, is smoother than f . Thus the

order of accuracy obtained by means of the Fourier collocation approach using g is of

higher order than using f . Derivatives at the boundaries need to be used to generate

a subtraction function to smooth the right hand side. We do not know the derivatives

at the boundaries exactly, but these derivatives can be calculated numerically. Co-

sine polynomials are constructed from these derivatives, to generate the subtraction

function. The use of cosine polynomials matches well with the Fourier collocation

approach. In particular, their construction is much simpler than that of algebraic

polynomials to subtract discontinuities.

As shown, the order of accuracy of the solution can be modified based on the accu-

racy of even order derivatives calculated at the boundaries. In certain conditions the

numerical accuracy is limited due to round off error at large numbers of computations.

Furthermore in computing derivatives, the matrix is poorly conditioned and iterative

refinement is used to improve accuracy. Thus the number of collocation points can

be coupled with the order of accuracy of the cosine polynomials. In essence we could

use the best ratio of solution accuracy to computational load for the solution to the

23

Poisson equation. The resulting outcome would be low computational load for a high

accuracy solution using minimal collocation points.

This work builds the ground for future research. The expansion of this technique

into higher dimensions is relatively straightforward and can be used in multidimen-

sional problems. Also due to the nature of the Fourier collocation solution, multi

dimensions problems can be solved implicitly without the need of iteration between

dimensions. Transitioning solutions between grids with different resolutions could eas-

ily be extended with the numerical derivative approach outlined here. This technique

can also be incorporated into a numerical solution of a partial differential equation,

such as the Navier-Stokes, vorticity, and elasticity equations.

24

Bibliography

[1] A. Averbuch, M. Israeli, and L. Vozovoi, On a fast direct elliptic solver by
a modified Fourier method, Numerical Algorithms 15, no. 3–4 (1997), 287–313.

[2] A. Averbuch, M. Israeli, and L. Vozovoi, A fast Poisson solver of ar-
bitrary order accuracy in rectangular regions, SIAM J. Sci. Comput. 19 (1998),
933–952.

[3] E. Braverman, B. Epstein, M. Israeli, and A. Averbuch, A fast spectral
subtractional solver for elliptic equations, SIAM J. Sci. Comput. 21, no. 1 (Aug.
2004), 91–128.

[4] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral
methods in fluid dynamics, Springer-Verlag, Berlin, 1988.

[5] H. S. Carslaw, Introduction to the Theory of Fourier’s Series and Integrals,
third ed., Dover, New York, 1950.

[6] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, second ed.,
Clarendon Press, Oxford, 1986.

[7] Paul DuChateau and David Zachmann, Applied Partial Differential Equa-
tions, Dover, New York, 2002.

[8] Knut S. Eckhoff, On a high order numerical method for functions with sin-
gularities, Math. Comput. 67, no. 223 (July 1998), 1063–1087.

[9] D. Gottlieb, Issues in the application of high order schemes, Algorithmic
trends in computational fluid dynamics, ICASE/NASA Series, Springer, New
York (1993), 195–218.

[10] David Gottlieb and Chi-Wang Shu, On the Gibbs Phenomenon and Its
Resolution, SIAM Rev. 39, no. 4 (Dec. 1997), 644–668.

[11] L. Greengard and J.-Y. Lee, A direct adaptive Poisson solver of arbitrary
order accuracy, J. Comput. Phys. 125 (1996), 415–424.

[12] R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier
analysis, J. Assoc. Comput. Mach. 12, no. 1 (Jan. 1965), 95–113.

25

[13] L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher
Analysis, trans. C. D. Benster, Noordhoff, Groningen, 1964.

[14] C. Lanczos, Discourse on Fourier Series, Oliver and Boyd, Edinburgh and
London, 1966.

[15] Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, Brooks/Cole,
Pacific Grove, CA, 2002.

[16] P. J. Roache, A pseudo-spectral FFT technique for nonperiodic problems, J.
Comput. Phys. 21 (1978), 204–220.

[17] J. B. Rosser, Fourier series in the computer age, Mathematics Research Cen-
ter, Technical Summary Report #1401, U. Wisc., Madison, WI, 1974.

[18] Z. Shi and B. Hassard, Precise solution of Laplace’s equation, Math. Comput.
64 (1995), 515–536.

[19] Gunilla Sköllermo, A Fourier method for the numerical solution of Poisson’s
equation, Math. Comput. 29, no. 131 (July 1975), 697–711.

[20] R. L. Burden and J. D. Faires, Numerical analysis, Brooks/Cole, Belmont,
CA, 2005.

26

Appendix A

Matlab Code

%1-D solution to the Poisson equation

%Matthew Green (2011) Drazen Fabris (2007)

clc;

clear all;

n=32; %number of points

N=6; %order of derivatives calculated

u0=1; %d^2u/dx^2 boundary at zero

u1=1;%d^2u/dx^2 boundary at one

x=0:(1/(n-1)):1;

f=sin(2*pi*x)+cos(2*pi*x); %function f

u=IDposSolver(f,n,N,u0,u1); %solution to d^2u/dx^2=f

%---

%1-D Poisson solver using FFT and cosine subtraction

%Drazen Fabris (2007) Matthew Green (2011)

function [u]=IDposSolver(f,n,N,u0,u1)

%Calculate derivatives at endpoints

[d0,d1]=IDdervcalc(f,n,N);

%produce cosine subtraction polynomial based on derivatives

[cosRM]=IDcosCreate_IR(d0,d1,N,f(1),f(n),u0,u1);

%construct subtraction polynomial

cosIM=zeros(1,n);

cosIM(2:N+5)=cosRM’/(1/(n-1));

cosRMF=idctcopy(cosIM’);

coscoef=cosIM;

%modifty f and take FFT

f2=f(2:end-1)-cosRMF(2:end-1)’;

sincoef = dstcopy(f2’)’;

%Modify coefficients to produce solution to Poisson equation

for i=1:size(sincoef,2)

27

iisc(i)=-1*sincoef(i)/(pi*i)^2;

end

iicc(1) = 0;

for i=2:size(coscoef,2)

iicc(i)=-1*coscoef(i)/(pi*(i-1))^2;

end

u=idctcopy(iicc’)’+[0 idstcopy(iisc’)’ 0];

return

%---

%Derivatives at function f endpoints based on Taylor series 1-D

%Drazen Fabris (2007) Matthew Green (2011)

function [d0,d1]=IDdervcalc(f,n,N)

d0 = zeros(1,N);

d1 = zeros(1,N);

%set up matrix for solving derivatives at boundaries

for i=1:N+1

for j=1:N+1

A(i,j) = i^(j)/prod(1:j);

end

end

%setting end conditions removing false negatives

E = inv(A);

for i=1:2:N+1

D(i,:) = -1*E(i,:);

end

for i=2:2:N+1

D(i,:) = E(i,:);

end

%solve for the end derivatives

for j=2:2:N

d0(j) = E(j,:)*(f(2:N+2)-f(1))’/(1/(n-1))^j;

d1(j) = D(j,:)*(f(n-1:-1:n-N-1)-f(n))’/(1/(n-1))^j;

end

return

%---

%Construction of cosine series to modify function f for Fourier processing.

%Drazen Fabris (2007) Matthew Green (2011)

function [cosRM]=IDcosCreate_IR(d0,d1,N,f1,fn,u0,u1)

%creating matrix of cosine derivatives

for i=1:N/2+2

for j=1:N+4

28

A(i*2-1,j) = j^(2*(i-2))*(-1)^(i); %first boundary coefficients

A(i*2,j) = A(i*2-1,j)*(-1)^j; %second boundary coefficients

end

end

D=inv(A);

%Add final boundary conditions and derivatives

R(1)=u0*pi^2;R(2)=u1*pi^2;

R(3)=f1;R(4)=fn;

for i=4:2:N+2

R(i+1)=d0(i-2)/(pi)^(i-2);

R(i+2)=d1(i-2)/(pi)^(i-2);

end

%final cosine coefficients that are going to be subtracted from f

L=D*R’;

%Iterative Refinement for poor condition numbers Matthew Green (2011)

for i=1:6 %more itterations are needed for stiff problems

db=R’-A*L;

Rem=D*db;

L=L+Rem;

end

cosRM=L;

return

%---

% inverse sine transform, assume that size(z)=[nx,ny]=[2^k-1,ny]

% C. T. Kelley, May 1994

% D. Fabris, July 2007 scaled appropriately

% This code comes with no guarantee or warranty of any kind.

function u=isintv(z)

[nx,ny]=size(z);

ww=2*ifft([zeros(ny,1), z’]’,2*nx+2);

u=imag(ww(2:nx+1,:));

%--

% sine transform, assume that size(z)=[nx,ny]=[2^k-1,ny]

% C. T. Kelley, May 1994

% D. Fabris, July 2007 (scaled appropriately)

% result = sine transform

function u=sintv(z)

[nx,ny]=size(z);

ww=-2*fft([zeros(ny,1), z’]’,2*nx+2);

u=imag(ww(2:nx+1,:));

29

%---

% inverse cosine transform, assume that size(z)=[nx,ny]=[2^k-1,ny]

% based on inverse sine transform of C. T. Kelley, May 1994

% D. Fabris, Sept. 2004

% This code comes with no guarantee or warranty of any kind.

function u=icostv(z)

[nx,ny]=size(z);

q = [z’,z(end-1:-1:2,:)’];

ww=ifft(q’,2*nx-2);

u=real(ww(1:nx,:));

30

Appendix B

Case Figures

31

Figure B.1: Case 1. L2 norm between analytical and numerical solutions using up to
fourteenth order accurate derivatives.

Figure B.2: Case 2. L2 norm between analytical and numerical solutions using up to
fourteenth order accurate derivatives.

32

Figure B.3: Case 3. L2 norm between analytical and numerical solutions using up to
fourteenth order accurate derivatives.

Figure B.4: Case 4. L2 norm between analytical and numerical solutions using up to
fourteenth order accurate derivatives.

33

Figure B.5: Case 5. L2 norm between analytical and numerical solutions using up to
fourteenth order accurate derivatives.

Figure B.6: Case 6. L2 norm between analytical and numerical solutions using up to
fourteenth order accurate derivatives.

34

Figure B.7: Case 8. L2 norm between analytical and numerical solutions using up to
fourteenth order accurate derivatives.

Figure B.8: Case 10. L2 norm between analytical and numerical solutions using up
to fourteenth order accurate derivatives.

35

	Santa Clara University
	Scholar Commons
	12-19-2011

	Spectral Solution with a Subtraction Method to Improve Accuracy
	Matthew Green
	Recommended Citation

	tmp.1546973692.pdf.IKbqb

