232 research outputs found

    A Low Noise Sub-Sampling PLL in Which Divider Noise Is Eliminated and PD-CP Noise Is not multiplied by N^2

    Get PDF
    This paper presents a 2.2-GHz low jitter sub-sampling based PLL. It uses a phase-detector/charge-pump (PD/CP)that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL, resulting in a low noise contribution from the PD/CP. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. An added frequency locked loop guarantees correct frequency locking without degenerating jitter performance when in lock. The PLL is implemented in a standard 0.18- m CMOS process. It consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 X 0.45 m

    Implementing neural architectures using analog VLSI circuits

    Get PDF
    Analog very large-scale integrated (VLSI) technology can be used not only to study and simulate biological systems, but also to emulate them in designing artificial sensory systems. A methodology for building these systems in CMOS VLSI technology has been developed using analog micropower circuit elements that can be hierarchically combined. Using this methodology, experimental VLSI chips of visual and motor subsystems have been designed and fabricated. These chips exhibit behavior similar to that of biological systems, and perform computations useful for artificial sensory systems

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Variation Resilient Adaptive Controller for Subthreshold Circuits

    No full text
    Subthreshold logic is showing good promise as a viable ultra-low-power circuit design technique for power-limited applications. For this design technique to gain widespread adoption, one of the most pressing concerns is how to improve the robustness of subthreshold logic to process and temperature variations. We propose a variation resilient adaptive controller for subthreshold circuits with the following novel features: new sensor based on time-to-digital converter for capturing the variations accurately as digital signatures, and an all-digital DC-DC converter incorporating the sensor capable of generating an operating operating Vdd from 0V to 1.2V with a resolution of 18.75mV, suitable for subthreshold circuit operation. The benefits of the proposed controller is reflected with energy improvement of up to 55% compared to when no controller is employed. The detailed implementation and validation of the proposed controller is discussed

    Integrated chaos generators

    Get PDF
    This paper surveys the different design issues, from mathematical model to silicon, involved on the design of integrated circuits for the generation of chaotic behavior.Comisión Interministerial de Ciencia y Tecnología 1FD97-1611(TIC)European Commission ESPRIT 3110

    Design of a 25 Mhz delay-locked loop

    Get PDF
    corecore