3,563 research outputs found

    深層学習に基づく感情会話分析に関する研究

    Get PDF
    Owning the capability to express specific emotions by a chatbot during a conversation is one of the key parts of artificial intelligence, which has an intuitive and quantifiable impact on the improvement of chatbot’s usability and user satisfaction. Enabling machines to emotion recognition in conversation is challenging, mainly because the information in human dialogue innately conveys emotions by long-term experience, abundant knowledge, context, and the intricate patterns between the affective states. Recently, many studies on neural emotional conversational models have been conducted. However, enabling the chatbot to control what kind of emotion to respond to upon its own characters in conversation is still underexplored. At this stage, people are no longer satisfied with using a dialogue system to solve specific tasks, and are more eager to achieve spiritual communication. In the chat process, if the robot can perceive the user's emotions and can accurately process them, it can greatly enrich the content of the dialogue and make the user empathize. In the process of emotional dialogue, our ultimate goal is to make the machine understand human emotions and give matching responses. Based on these two points, this thesis explores and in-depth emotion recognition in conversation task and emotional dialogue generation task. In the past few years, although considerable progress has been made in emotional research in dialogue, there are still some difficulties and challenges due to the complex nature of human emotions. The key contributions in this thesis are summarized as below: (1) Researchers have paid more attention to enhancing natural language models with knowledge graphs these days, since knowledge graph has gained a lot of systematic knowledge. A large number of studies had shown that the introduction of external commonsense knowledge is very helpful to improve the characteristic information. We address the task of emotion recognition in conversations using external knowledge to enhance semantics. In this work, we employ an external knowledge graph ATOMIC to extract the knowledge sources. We proposed KES model, a new framework that incorporates different elements of external knowledge and conversational semantic role labeling, where build upon them to learn interactions between interlocutors participating in a conversation. The conversation is a sequence of coherent and orderly discourses. For neural networks, the capture of long-range context information is a weakness. We adopt Transformer a structure composed of self-attention and feed forward neural network, instead of the traditional RNN model, aiming at capturing remote context information. We design a self-attention layer specialized for enhanced semantic text features with external commonsense knowledge. Then, two different networks composed of LSTM are responsible for tracking individual internal state and context external state. In addition, the proposed model has experimented on three datasets in emotion detection in conversation. The experimental results show that our model outperforms the state-of-the-art approaches on most of the tested datasets. (2) We proposed an emotional dialogue model based on Seq2Seq, which is improved from three aspects: model input, encoder structure, and decoder structure, so that the model can generate responses with rich emotions, diversity, and context. In terms of model input, emotional information and location information are added based on word vectors. In terms of the encoder, the proposed model first encodes the current input and sentence sentiment to generate a semantic vector, and additionally encodes the context and sentence sentiment to generate a context vector, adding contextual information while ensuring the independence of the current input. On the decoder side, attention is used to calculate the weights of the two semantic vectors separately and then decode, to fully integrate the local emotional semantic information and the global emotional semantic information. We used seven objective evaluation indicators to evaluate the model's generation results, context similarity, response diversity, and emotional response. Experimental results show that the model can generate diverse responses with rich sentiment, contextual associations

    Distributed Representations for Compositional Semantics

    Full text link
    The mathematical representation of semantics is a key issue for Natural Language Processing (NLP). A lot of research has been devoted to finding ways of representing the semantics of individual words in vector spaces. Distributional approaches --- meaning distributed representations that exploit co-occurrence statistics of large corpora --- have proved popular and successful across a number of tasks. However, natural language usually comes in structures beyond the word level, with meaning arising not only from the individual words but also the structure they are contained in at the phrasal or sentential level. Modelling the compositional process by which the meaning of an utterance arises from the meaning of its parts is an equally fundamental task of NLP. This dissertation explores methods for learning distributed semantic representations and models for composing these into representations for larger linguistic units. Our underlying hypothesis is that neural models are a suitable vehicle for learning semantically rich representations and that such representations in turn are suitable vehicles for solving important tasks in natural language processing. The contribution of this thesis is a thorough evaluation of our hypothesis, as part of which we introduce several new approaches to representation learning and compositional semantics, as well as multiple state-of-the-art models which apply distributed semantic representations to various tasks in NLP.Comment: DPhil Thesis, University of Oxford, Submitted and accepted in 201

    Sentiment Analysis: An Overview from Linguistics

    Get PDF
    Sentiment analysis is a growing field at the intersection of linguistics and computer science, which attempts to automatically determine the sentiment, or positive/negative opinion, contained in text. Sentiment can be characterized as positive or negative evaluation expressed through language. Common applications of sentiment analysis include the automatic determination of whether a review posted online (of a movie, a book, or a consumer product) is positive or negative towards the item being reviewed. Sentiment analysis is now a common tool in the repertoire of social media analysis carried out by companies, marketers and political analysts. Research on sentiment analysis extracts information from positive and negative words in text, from the context of those words, and the linguistic structure of the text. This brief survey examines in particular the contributions that linguistic knowledge can make to the problem of automatically determining sentiment

    RESEARCH OF APPROACHES TO THE RECOGNITION OF SEMANTIC IMAGES OF SCIENTIFIC PUBLICATIONS BASED ON NEURAL NETWORKS

    Get PDF
    The paper is devoted to the problems of orientation and navigation in the world of verbal presentation of scientific knowledge. The solution of these problems is currently hampered by the lack of intelligent information retrieval systems that allow comparing descriptions of various scientific works at the level of coincidence of semantic situations, rather than keywords. The article discusses methods for the formation and recognition of semantic images of scientific publications belonging to specific subject areas. The method for constructing a semantic image of a scientific text developed by Iuliia Bruttan allows to form an image of the text of a scientific publication, which can be used as input data for a neural network. Training of this neural network will automate the processes of pattern recognition and classification of scientific publications according to specified criteria. The approaches to the recognition of semantic images of scientific publications based on neural networks considered in the paper can be used to organize the semantic search for scientific publications, as well as in the design of intelligent information retrieval systems

    Use of Text Data in Identifying and Prioritizing Potential Drug Repositioning Candidates

    Get PDF
    New drug development costs between 500 million and 2 billion dollars and takes 10-15 years, with a success rate of less than 10%. Drug repurposing (defined as discovering new indications for existing drugs) could play a significant role in drug development, especially considering the declining success rates of developing novel drugs. In the period 2007-2009, drug repurposing led to the launching of 30-40% of new drugs. Typically, new indications for existing medications are identified by accident. However, new technologies and a large number of available resources enable the development of systematic approaches to identify and validate drug-repurposing candidates with significantly lower cost. A variety of resources have been utilized to identify novel drug repurposing candidates such as biomedical literature, clinical notes, and genetic data. In this dissertation, we focused on using text data in identifying and prioritizing drug repositioning candidates and conducted five studies. In the first study, we aimed to assess the feasibility of using patient reviews from social media to identify potential candidates for drug repurposing. We retrieved patient reviews of 180 medications from an online forum, WebMD. Using dictionary-based and machine learning approaches, we identified disease names in the reviews. Several publicly available resources were used to exclude comments containing known indications and adverse drug effects. After manually reviewing some of the remaining comments, we implemented a rule-based system to identify beneficial effects. The dictionary-based system and machine learning system identified 2178 and 6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common patterns that patients used to report any beneficial effects or uses of medication. After manually reviewing the comments tagged by our rule-based system, we identified five potential drug repurposing candidates. To our knowledge, this was the first study to consider using social media data to identify drug-repurposing candidates. We found that even a rule-based system, with a limited number of rules, could identify beneficial effect mentions in the comments of patients. Our preliminary study shows that social media has the potential to be used in drug repurposing. In the second study, we investigated the significance of extracting information from multiple sentences specifically in the context of drug-disease relation discovery. We used multiple resources such as Semantic Medline, a literature-based resource, and Medline search (for filtering spurious results) and inferred 8,772 potential drug-disease pairs. Our analysis revealed that 6,450 (73.5%) of the 8,772 potential drug-disease relations did not occur in a single sentence. Moreover, only 537 of the drug-disease pairs matched the curated gold standard in the Comparative Toxicogenomics Database (CTD), a trusted resource for drug-disease relations. Among the 537, nearly 75% (407) of the drug-disease pairs occur in multiple sentences. Our analysis revealed that the drug-disease pairs inferred from Semantic Medline or retrieved from CTD could be extracted from multiple sentences in the literature. This highlights the significance of the need for discourse-level analysis in extracting the relations from biomedical literature. In the third and fourth study, we focused on prioritizing drug repositioning candidates extracted from biomedical literature which we refer to as Literature-Based Discovery (LBD). In the third study, we used drug-gene and gene-disease semantic predications extracted from Medline abstracts to generate a list of potential drug-disease pairs. We further ranked the generated pairs, by assigning scores based on the predicates that qualify drug-gene and gene-disease relationships. On comparing the top-ranked drug-disease pairs against the Comparative Toxicogenomics Database, we found that a significant percentage of top-ranked pairs appeared in CTD. Co-occurrence of these high-ranked pairs in Medline abstracts is then used to improve the rankings of the inferred drug-disease relations. Finally, manual evaluation of the top-ten pairs ranked by our approach revealed that nine of them have good potential for biological significance based on expert judgment. In the fourth study, we proposed a method, utilizing information surrounding causal findings, to prioritize discoveries generated by LBD systems. We focused on discovering drug-disease relations, which have the potential to identify drug repositioning candidates or adverse drug reactions. Our LBD system used drug-gene and gene-disease semantic predication in SemMedDB as causal findings and Swanson’s ABC model to generate potential drug-disease relations. Using sentences, as a source of causal findings, our ranking method trained a binary classifier to classify generated drug-disease relations into desired classes. We trained and tested our classifier for three different purposes: a) drug repositioning b) adverse drug-event detection and c) drug-disease relation detection. The classifier obtained 0.78, 0.86, and 0.83 F-measures respectively for these tasks. The number of causal findings of each hypothesis, which were classified as positive by the classifier, is the main metric for ranking hypotheses in the proposed method. To evaluate the ranking method, we counted and compared the number of true relations in the top 100 pairs, ranked by our method and one of the previous methods. Out of 181 true relations in the test dataset, the proposed method ranked 20 of them in the top 100 relations while this number was 13 for the other method. In the last study, we used biomedical literature and clinical trials in ranking potential drug repositioning candidates identified by Phenome-Wide Association Studies (PheWAS). Unlike previous approaches, in this study, we did not limit our method to LBD. First, we generated a list of potential drug repositioning candidates using PheWAS. We retrieved 212,851 gene-disease associations from PheWAS catalog and 14,169 gene-drug relationships from DrugBank. Following Swanson’s model, we generated 52,966 potential drug repositioning candidates. Then, we developed an information retrieval system to retrieve any evidence of those candidates co-occurring in the biomedical literature and clinical trials. We identified nearly 14,800 drug-disease pairs with some evidence of support. In addition, we identified more than 38,000 novel candidates for re-purposing, encompassing hundreds of different disease states and over 1,000 individual medications. We anticipate that these results will be highly useful for hypothesis generation in the field of drug repurposing

    Can humain association norm evaluate latent semantic analysis?

    Get PDF
    This paper presents the comparison of word association norm created by a psycholinguistic experiment to association lists generated by algorithms operating on text corpora. We compare lists generated by Church and Hanks algorithm and lists generated by LSA algorithm. An argument is presented on how those automatically generated lists reflect real semantic relations
    corecore