34,046 research outputs found

    Design of optimal spacecraft-asteroid formations through a hybrid global optimization approach

    Get PDF
    Purpose – The purpose of this paper is to present a methodology and experimental results on using global optimization algorithms to determine the optimal orbit, based on the mission requirements, for a set of spacecraft flying in formation with an asteroid. Design/methodology/approach – A behavioral-based hybrid global optimization approach is used to first characterize the solution space and find families of orbits that are a fixed distance away from the asteroid. The same optimization approach is then used to find the set of Pareto optimal solutions that minimize both the distance from the asteroid and the variation of the Sun-spacecraft-asteroid angle. Two sample missions to asteroids, representing constrained single and multi-objective problems, were selected to test the applicability of using an in-house hybrid stochastic-deterministic global optimization algorithm (Evolutionary Programming and Interval Computation (EPIC)) to find optimal orbits for a spacecraft flying in formation with an orbit. The Near Earth Asteroid 99942 Apophis (2004 MN4) is used as the case study due to a fly-by of Earth in 2029 leading to two potential impacts in 2036 or 2037. Two black-box optimization problems that model the orbital dynamics of the spacecraft were developed. Findings – It was found for the two missions under test, that the optimized orbits fall into various distinct families, which can be used to design multi-spacecraft missions with similar orbital characteristics. Research limitations/implications – The global optimization software, EPIC, was very effective at finding sets of orbits which met the required mission objectives and constraints for a formation of spacecraft in proximity of an asteroid. The hybridization of the stochastic search with the deterministic domain decomposition can greatly improve the intrinsic stochastic nature of the multi-agent search process without the excessive computational cost of a full grid search. The stability of the discovered families of formation orbit is subject to the gravity perturbation of the asteroid and to the solar pressure. Their control, therefore, requires further investigation. Originality/value – This paper contributes to both the field of space mission design for close-proximity orbits and to the field of global optimization. In particular, suggests a common formulation for single and multi-objective problems and a robust and effective hybrid search method based on behaviorism. This approach provides an effective way to identify families of optimal formation orbits

    No-Regret Constrained Bayesian Optimization of Noisy and Expensive Hybrid Models using Differentiable Quantile Function Approximations

    Full text link
    This paper investigates the problem of efficient constrained global optimization of hybrid models that are a composition of a known white-box function and an expensive multi-output black-box function subject to noisy observations, which often arises in real-world science and engineering applications. We propose a novel method, Constrained Upper Quantile Bound (CUQB), to solve such problems that directly exploits the composite structure of the objective and constraint functions that we show leads substantially improved sampling efficiency. CUQB is a conceptually simple, deterministic approach that avoid constraint approximations used by previous methods. Although the CUQB acquisition function is not available in closed form, we propose a novel differentiable sample average approximation that enables it to be efficiently maximized. We further derive bounds on the cumulative regret and constraint violation under a non-parametric Bayesian representation of the black-box function. Since these bounds depend sublinearly on the number of iterations under some regularity assumptions, we establis bounds on the convergence rate to the optimal solution of the original constrained problem. In contrast to most existing methods, CUQB further incorporates a simple infeasibility detection scheme, which we prove triggers in a finite number of iterations when the original problem is infeasible (with high probability given the Bayesian model). Numerical experiments on several test problems, including environmental model calibration and real-time optimization of a reactor system, show that CUQB significantly outperforms traditional Bayesian optimization in both constrained and unconstrained cases. Furthermore, compared to other state-of-the-art methods that exploit composite structure, CUQB achieves competitive empirical performance while also providing substantially improved theoretical guarantees

    Upper Bounding in Inner Regions for Global Optimization under Inequality Constraints

    Get PDF
    International audienceIn deterministic constrained global optimization, upper bounding the objective function generally resorts to local minimization at the nodes of the branch and bound. The local minimization process is sometimes costly when constraints must be respected. We propose in this paper an alternative approach when the constraints are inequalities or relaxed equalities so that the feasible space has a non-null volume. First, we extract an inner region, i.e., an (entirely feasible) convex polyhedron or box in which all points satisfy the constraints. Second, we select a point inside the extracted inner region and update the upper bound with its cost. We use two inner region extraction algorithms implemented in our interval B&B called IbexOpt [7]. This upper bounding shows good performance in medium-sized systems proposed in the COCONUT suite

    Upper Bounding in Inner Regions for Global Optimization under Inequality Constraints

    Get PDF
    International audienceIn deterministic continuous constrained global optimization, upper bounding the objective function generally resorts to local minimization at several nodes/iterations of the branch and bound. We propose in this paper an alternative approach when the constraints are inequalities and the feasible space has a non-null volume. First, we extract an inner region , i.e., an entirely feasible convex polyhedron or box in which all points satisfy the constraints. Second, we select a point inside the extracted inner region and update the upper bound with its cost. We describe in this paper two original inner region extraction algorithms implemented in our interval B&B called IbexOpt. They apply to nonconvex constraints involving mathematical operators like +,x,power,sqrt,exp,log,sin. This upper bounding shows very good performance obtained on medium-sized systems proposed in the COCONUT suite

    Parallel Deterministic and Stochastic Global Minimization of Functions with Very Many Minima

    Get PDF
    The optimization of three problems with high dimensionality and many local minima are investigated under five different optimization algorithms: DIRECT, simulated annealing, Spall’s SPSA algorithm, the KNITRO package, and QNSTOP, a new algorithm developed at Indiana University

    A multi-objective DIRECT algorithm for ship hull optimization

    Get PDF
    The paper is concerned with black-box nonlinear constrained multi-objective optimization problems. Our interest is the definition of a multi-objective deterministic partition-based algorithm. The main target of the proposed algorithm is the solution of a real ship hull optimization problem. To this purpose and in pursuit of an efficient method, we develop an hybrid algorithm by coupling a multi-objective DIRECT-type algorithm with an efficient derivative-free local algorithm. The results obtained on a set of “hard” nonlinear constrained multi-objective test problems show viability of the proposed approach. Results on a hull-form optimization of a high-speed catamaran (sailing in head waves in the North Pacific Ocean) are also presented. In order to consider a real ocean environment, stochastic sea state and speed are taken into account. The problem is formulated as a multi-objective optimization aimed at (i) the reduction of the expected value of the mean total resistance in irregular head waves, at variable speed and (ii) the increase of the ship operability, with respect to a set of motion-related constraints. We show that the hybrid method performs well also on this industrial problem

    Hybridization of multi-objective deterministic particle swarm with derivative-free local searches

    Get PDF
    The paper presents a multi-objective derivative-free and deterministic global/local hybrid algorithm for the efficient and effective solution of simulation-based design optimization (SBDO) problems. The objective is to show how the hybridization of two multi-objective derivative-free global and local algorithms achieves better performance than the separate use of the two algorithms in solving specific SBDO problems for hull-form design. The proposed method belongs to the class of memetic algorithms, where the global exploration capability of multi-objective deterministic particle swarm optimization is enriched by exploiting the local search accuracy of a derivative-free multi-objective line-search method. To the authors best knowledge, studies are still limited on memetic, multi-objective, deterministic, derivative-free, and evolutionary algorithms for an effective and efficient solution of SBDO for hull-form design. The proposed formulation manages global and local searches based on the hypervolume metric. The hybridization scheme uses two parameters to control the local search activation and the number of function calls used by the local algorithm. The most promising values of these parameters were identified using forty analytical tests representative of the SBDO problem of interest. The resulting hybrid algorithm was finally applied to two SBDO problems for hull-form design. For both analytical tests and SBDO problems, the hybrid method achieves better performance than its global and local counterparts
    • …
    corecore