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Abstract In deterministic continuous constrained global optimization, upper
bounding the objective function generally resorts to local minimization at
several nodes/iterations of the branch and bound. We propose in this paper
an alternative approach when the constraints are inequalities and the feasible
space has a non-null volume. First, we extract an inner region, i.e., an entirely
feasible convex polyhedron or box in which all points satisfy the constraints.
Second, we select a point inside the extracted inner region and update the
upper bound with its cost. We describe in this paper two original inner region
extraction algorithms implemented in our interval B&B called IbexOpt [27].
They apply to nonconvex constraints involving mathematical operators like
+, q , /, power, sqrt, exp, log, sin. This upper bounding shows very good
performance obtained on medium-sized systems proposed in the COCONUT

suite.
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E-mail: Bertrand.Neveu@enpc.fr

G. Chabert
LINA, Ecole de Mines de Nantes, France
E-mail: Gilles.Chabert@emn.fr



2 Ignacio Araya et al.

1 Introduction

In deterministic constrained global optimization, upper bounding the objec-
tive function consists in finding a feasible point that improves the best cost
already found in the branch and bound. Most global optimizers resort to lo-
cal minimization1 using a Lagrangian relaxation. The considered function is
sometimes big, which may render the local minimization slow.

This paper describes an alternative approach for constrained global opti-
mization. This approach avoids the cost of evaluating the objective function
repeatidly. It however requires the feasible space formed by the inequality
constraints to have a non-null volume. More precisely, the continuous global
optimization problem we handle is defined by:

min
x∈[x]

f(x) subject to g(x) ≤ 0,

where f : Rn → R is the real-valued objective function and g : Rn → R
m is a

vector-valued function. x = (x1, ..., xi, ...xn) is a vector of variables varying in
a box [x].2 x is said to be feasible if it satisfies the constraints.

The main idea is to exploit so-called inner regions, i.e., subsets of the search
space in which all points are feasible.

Two communities working on interval methods have proposed several heuris-
tics for checking whether a given domain is an inner box or, more interestingly,
extracting inner boxes inside a given domain (outer box). The interval (nu-
merical) analysis community has especially studied linear systems with inter-
val coefficients [24,25]. The constraint programming community has proposed
general-purpose heuristics for non convex systems of inequality constraints [9,
4,10].

Two original inner region extraction algorithms are described in this paper.
These heuristics are applied for the first time to general-purpose constrained
global optimization. At every node (iteration) of our interval B&B named
IbexOpt [27], the cost is bounded above by using two inner region extraction
heuristics called InnerPolytope and InHC4.

The InnerPolytope algorithm, described in Section 3, builds a hyperplane
for every inequality constraint. The hyperplane is produced by a special convex
form of interval Taylor where the expansion point is chosen at a corner of
the studied outer box. If it succeeds in building an inner polytope, the point
minimizing an over-estimated linearized form of the objective function is used
to update the upper bound.

InHC4 is a completely different approach that makes no linearization. On
the other hand, the inner region has a more basic shape, namely a box. It
is based on an operator-wise decomposition of each function and is described
in Section 4. It first tries to extract an inner box from the current outer box
constraint per constraint. If it fails, it simply picks a point randomly inside

1 We consider minimization in this paper without loss of generality.
2 An interval [xi] = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi. A box [x] is the

Cartesian product of intervals [x1]× ...× [xi]× ...× [xn].
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the outer box and checks its feasibility. If it succeeds, a simple monotonicity
analysis of f replaces the intervals of the monotonic variables by the adequate
bounds in the found inner box and the other values are randomly chosen (no
additional feasibility check is necessary since all the points in the box returned
by InHC4 are feasible). The feasible point thus obtained is used to update the
upper bound.

Contrary to existing approaches, the proposed inner region extraction algo-
rithms separate the feasibility part (handled first, by inner region extraction)
and the computation of the cost (handled next, inside the found inner region).

Section 5 highlights that, like the other inner region extraction algorithms,
our algorithms are heuristics. In other words, they sometimes fail to find an in-
ner region even if one such region exists. However, the same section underlines
that they are rather inexpensive.

The experiments shown in Section 6 highlight that this upper bounding
policy, with the two procedures InnerPolytope and InHC4, brings very good
speedups to our interval B&B IbexOpt [27].

2 Background and handled problem

Intervals allow reliable computations on computers by managing floating-point
bounds and outward rounding.

Intervals

An interval [xi] = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi, where
xi and xi are floating-point numbers. IR denotes the set of all intervals. The
size or width of [xi] is w([xi]) = xi − xi. A box [x] is the Cartesian product
of intervals [x1] × ... × [xi] × ... × [xn]. Its width is defined by maxi w([xi]).
m([x]) denotes the middle of [x]. The hull of a subset S of Rn is the smallest
n-dimensional box enclosing S.

Interval arithmetic [20] has been defined to extend to IR elementary func-
tions over R. For instance, the interval sum is defined by [x1] + [x2] = [x1 +
x2, x1 + x2]. When a function f is a composition of elementary functions, an
extension of f to intervals must be defined to ensure a conservative image
computation.

Definition 1 (Extension of a function to IR; inclusion function; range
enclosure)
Consider a function f : Rn → R.
[f ] : IRn → IR is said to be an extension of f to intervals iff:

∀[x] ∈ IR
n [f ]([x]) ⊇ {f(x), x ∈ [x]}

∀x ∈ R
n f(x) = [f ]([x, x])
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The natural extension [f ]N of a real function f corresponds to the mapping
of f to intervals using interval arithmetic. The inner interval linearizations
proposed in this paper is related to the first-order interval Taylor exten-
sion [20], defined as follows:

[f ]T ([x]) = f(x̃) +
∑

i

[ai] . ([xi]− x̃i)

where x̃ denotes any point in [x], e.g., m([x]), and [ai] denotes
[

∂f
∂xi

]

N
([x]).

Equivalently, we have: ∀x ∈ [x], [f ]T ([x]) ≤ f(x) ≤ [f ]T ([x]).

Example. Consider f(x1, x2) = 3x2
1 + x2

2 + x1x2 in the box [x] = [−1, 3] ×
[−1, 5]. The natural evaluation provides: [f ]N ([x1], [x2]) = 3[−1, 3]2+[−1, 5]2+
[−1, 3][−1, 5] = [0, 27] + [0, 25] + [−5, 15] = [−5, 67]. The partial derivatives
are: ∂f

∂x1

(x1, x2) = 6x1 + x2, [
∂f
∂x1

]N ([−1, 3], [−1, 5]) = [−7, 23], ∂f
∂x2

(x1, x2) =

x1+2x2, [
∂f
∂x2

]N ([x1], [x2]) = [−3, 13]. The interval Taylor evaluation with x̃ =
m([x]) = (1, 2) yields: [f ]T ([x1], [x2]) = 9 + [−7, 23][−2, 2] + [−3, 13][−3, 3] =
[−76, 94].

Handled problem

A continuous constrained global optimization problem is defined as follows.

Definition 2 (Constrained global optimization)
Consider a vector of variables x = (x1, ..., xi, ...xn) varying in a box [x], a
real-valued function f : Rn → R, vector-valued functions g : Rn → R

m and
h : Rn → R

p.
Given the system S = (f, g, h, [x]), the constrained global optimization prob-

lem consists in finding:

min
x∈[x]

f(x) subject to g(x) ≤ 0 ∧ h(x) = 0.

f denotes the objective function; g and h are inequality and equality con-
straints respectively. x is said to be feasible if it satisfies the constraints.

Our interval optimizer extracts inner boxes and inner polytopes inside clas-
sical (outer) boxes.

Definition 3 Consider a system (f, g, [x]) comprising only inequality con-
straints. An inner region rin is a feasible subset of [x], i.e., rin ⊂ [x] and all
points x ∈ rin satisfy g(x) ≤ 0.

Only a few softwares rigorously solve the constrained global optimization
defined above. Several global optimizers based on an interval B&B, like Glob-
Sol [12] and Icos [14], return a tiny box guaranteed to contain a real-valued
vector x ǫ-minimizing: f(x) s.t. g(x) ≤ 0 ∧ h(x) = 0.3

3 ǫ-minimize f(x) means minimize f(x) with a precision ǫ, i.e., we have f(y) ≥ f(x)− ǫ,
for all (feasible) y.
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Inspired by the IBBA solver [22], we propose to relax pure equalities
hj(x) = 0 by “thick” equations hj(x) ∈ [−ǫeq,+ǫeq], i.e., two inequalities:
−ǫeq ≤ hj(x) ≤ +ǫeq. Therefore, our IbexOpt global optimizer [27] rigorously
computes a floating-point vector x ǫ-minimizing:

f(x) s.t. g(x) ≤ 0 ∧ (−ǫeq ≤ h(x) ≤ +ǫeq).

Note that IBBA and IbexOpt can only guarantee the global optimum of the
relaxed system, although ǫeq can often be chosen almost arbitrarily small.
Also note that most of the deterministic global optimizers (generally based on
a spatial branch and bound), like Baron [26] or Couenne [3], can guarantee the
solution neither to the constrained global optimization problem (Definition 2)
nor to the relaxed problem. Finally note that, in practice, most of the equations
are already “thick” and thus do not need to be further relaxed with an ǫeq.
Equations modeling physical systems often have indeed at least one coefficient
that can be represented by an interval constant. This parameter corresponds
to a bounded uncertainty, e.g., an imprecision on a measurement.

In the sake of simplicity, since our optimizer accepts inequalities and re-
laxed equalities that are also inequalities, we consider from now on that the
handled constrained global optimization problem is:

min
x∈[x]

f(x) s.t. g(x) ≤ 0,

i.e., the functions h(x) − ǫeq(≤ 0) and −h(x) − ǫeq(≤ 0) belong to the vector
g : Rn → R

m of functions.
Note that numerous convex and nonconvex mathematical operators can be

taken into account, such as +, q , /, xn, exp, log, sqrt, sine, etc.

3 Inner polytope algorithm

The main idea is to build a half-space for each inequality gj(x) ≤ 0, such that
all the points in the computed half-space satisfy the constraint. For that pur-
pose, we use a specific first order interval Taylor form of a nonlinear function.
The usual first-order interval Taylor form, defined in Section 2, can select any
expansion point x̃ inside the box to achieve the linearization. Instead of the
usual midpoint, a corner of the box is chosen here, i.e., x.

Consider a function gj : R
n → R and a domain [x]. For any variable xi ∈ x,

let [aji ] be
[

∂gj
∂xi

]

N
([x]). The idea is to bound gj(x) from above with an affine

function glj(x) obtained by a corner-based interval Taylor form. For all real
vector x ∈ [x], we have:

gj(x) ≤ glj(x) = gj(x) +
∑

i

aji .(xi − xi). (1)

If we consider an inequality gj(x) ≤ 0, relation (1) enables us to build a
hyper-plane glj(x) = 0 bounding the solution/feasible set from above: gj(x) ≤
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glj(x) ≤ 0. That is to say, the linear function glj(x) can be used to define an
inner region of [x].

Proposition 1 The interval linear form (1) is correct and rigorous, i.e., it
can be made robust to computation errors over floating-point numbers.

Rigor is ensured by the interval Taylor [21]. The correction of relation (1) lies
on the fact that any “variable” (xi − xi) is positive since its domain is [0, di],

with di = w([xi]) = xi−xi. Therefore, maximizing each term [aji ].(xi−xi) for

any point (xi − xi) ∈ [0, di] is obtained with aji .

Example

Consider the constraint

g1(x1, x2) = x3
1 + cos(x1)− sin(x2)− 0.15 ≤ 0

in a box [x1]× [x2] = [−0.32, 0.52]× [0.90, 1.06].
We can derive from the gradient of g1:

–
[

∂g1
∂x1

]

N
= 3.[−0.32, 0.52]2−sin([−0.32, 0.52]) = 3[0, 0.2704]−[−0.314, 0.497]

= [−0.497, 1.1252]

–
[

∂g1
∂x2

]

N
= −cos([0.90, 1.06]) = [−0.6216,−0.488872082]

The function g1 is illustrated in Fig. 1. The feasible space appears in grey.
Applying (1) to g1 provides:

g1(−0.32, 0.90) + 1.1252 (x1 + 0.32) +−0.4889 (x2 − 0.90) ≤ 0.

The left part of the figure shows in dark grey the corresponding inner region,
a polytope obtained by intersecting this half-space with the box.

The right side of the figure shows an inner space computed by a standard
interval Taylor with an expansion point taken in the middle of the box:

g1(0.10, 0.98) + [−0.497, 1.1252] (x1 − 0.10) + [−0.6216,−0.4889] (x2 − 0.98)

This form implies a (non necessarily convex) union of four polytopes, each
polytope being obtained by the intersection of 5 half-spaces: the first two
correspond to the sign constraints (a shifted orthant, separated by dotted
lines on the figure), the next two correspond to the box boundaries and the
last to the Taylor expansion. For instance, the first polyhedron is:























x1 < m[x1]
x2 < m[x2]
x1 ≥ x1

x2 ≥ x2

0.0155067948− 0.497 (x1 − 0.10)− 0.6216 (x2 − 0.98) ≤ 0

Note that two of the polytopes are empty on this example (including the one
detailed above). The other two appear on the figure and are generated by the
following Taylor forms:
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1. 0.0155067948− 0.497 (x1 − 0.10)− 0.4889 (x2 − 0.98) ≤ 0 (x1 < m[x1] and
x2 > m[x2])

2. 0.0155067948+1.1252 (x1−0.10)−0.4889 (x2−0.98) ≤ 0 (x1 > m[x1] and
x2 > m[x2])

0.3        -0.2       -0.1         0           0.1        0.2         0.3        0.4        0.5

1.06

1.02

0.98

0.94

0.90

x1

x2

0.3        -0.2       -0.1         0           0.1        0.2         0.3        0.4        0.5

1.06

1.02

0.98

0.94

0.90

x1

x2

Fig. 1 Left: Inner polytope generated by a corner-based interval Taylor in (x1, x2).
Right: Two inner polytopes generated by a midpoint interval Taylor in two of the four
orthants.

A linear program for a better feasible point (upper bound)

Applying this idea to the objective function f(x) and to the inequalities
gj(x) ≤ 0, we can derive the linear program LPub:

LPub = min f(x) +
∑

i ai ∗ (xi − xi)

subject to : ∀j gj(x) +
∑

i a
j
i ∗ (xi − xi) ≤ 0

∀i xi ≤ xi ∧ xi ≤ xi

A Simplex algorithm solves LPub and returns infeasibility or the optimal so-
lution xl (see Algorithm 1). Infeasibility proves nothing because the linearized
system is more constrained than the original system, so that one could still
find solutions in the original one. If the Simplex algorithm returns an optimal
solution of the inner approximation, then xl is also a solution to the origi-
nal system, maybe not the optimal one. The previous process is correct on

Algorithm 1 InnerPolytopeUB (in: S, [x]out; in-out: ub, xub)

LPub ← InnerLinearization (S, [x]out)
xl ← Simplex(LPub)
if xl 6= ⊥ and FeasibilityCheck (xl, S) then

cost← [f ]N ([xl, xl])
if cost < ub then ub← cost; xub ← xl end if

end if
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the real numbers, but is not necessarily always correct on a computer due to
roundoff errors on floating-point numbers. Indeed, since we use a standard
Simplex algorithm working with floating-point numbers, it is possible that the
best (floating) value returned by the LP solver falls slightly outside the inner
polytope and is not feasible. That is why we render the whole process rigor-
ous by checking the feasibility of x with an interval evaluation (see line 3 of
Algorithm 1).

The pseudocode finally details that one evaluates the objective function
(the original one, not the linearized one) at the point xl and potentially im-
proves the upper bound. In this case, we update the point xub and its cost
(i.e., the new upper bound) ub.

Related work, discussion

Interval Taylor forms have often been used to produce an outer linear approx-
imation of the solution set or of the objective function. However, when the
expansion point is chosen strictly inside the domain, the system obtained by
an interval Taylor form is not convex. It forms an intersection of non-convex
sub-spaces. (Examples can be found in [21,12,19].) Contracting optimally a
box containing this non-convex relaxation has been proven to be NP-hard [13].
This explains why the interval analysis community has worked a lot on this
problem for decades [23,11,6].

Several researchers proposed to select as expansion point of the interval
Taylor form a corner of the studied box, instead of the usual midpoint [2,15–17,
21]. The main drawback is that it leads generally to a larger system relaxation
surface. The main virtue is that the approximated solution set belongs to a
unique orthant and is convex, i.e., it is a polytope.

The dual form defined by (1) has never been used before to achieve an
inner polytope extraction, and so has never been used before to improve an
upper bound in constrained global optimization.

4 The InHC4 algorithm

InHC4 is similar to the state-of-the-art constraint propagation algorithm HC4 [4,
9,18] to the extent that its core procedure called InHC4-Revise (in short
InHC4R) is based on a forward-backward traversal of the tree representation of
constraints (see Fig. 2). Furthermore, the forward phase is exactly the same as
in the core procedure of HC4, called HC4-Revise (in short HC4R). However, the
main loop and the backward phase are radically different, as we detail below.
In addition, they do not calculate of course the same box. Let us start with
the main loop.

The main loop of InHC4 handles every constraint once in sequence and
performs each time a call to InHC4R. Given an input box [x], InHC4R produces
an inner box [x]in ⊆ [x] with respect to the constraint under process. It is
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then easy to build incrementally a box that is inner with respect to the whole
system. More precisely, the main loop:

– calls InHC4R on the 1st constraint with the outer box as input,
– calls InHC4R on the jth constraint with the box obtained after the previous

call (the one for the (j − 1)th constraint), provided it is non empty.

Thus, if a non empty box is returned after the handling of the last con-
straint, then this box is inner w.r.t. all the constraints.

Let us now detail InHC4R. Unlike the refutation process of HC4R, InHC4R
tries to extract an inner region at each operator of the constraint.

Fig. 2 Binary tree representation of the constraint 10y − x − y2 ≤ 0. Left: First forward
evaluation phase. Right: backward inner projection phase.

Let us denote by [x] the input box and gj(x) ≤ 0 the constraint. Each node
of the tree is associated to an interval, the intervals related to the leaves are
initialized with the corresponding values in [x]. Then, the following two phases
are performed:

– Forward evaluation (see Fig. 2–left): The tree is traversed from the leaves to
the root and intervals associated to an operator are computed with interval
arithmetics. For example, the node pointed by the arrow is initialized with
the interval [0, 10]− [0, 15] = [−15, 10]. Thus, every node contains an inter-
val corresponding to the natural interval evaluation of the subexpression.

– Backward inner projection (see Fig. 2–right): From the root to the leaves,
the intervals in each node are contracted using specific inner projection
operators.
In each node related to a binary operator op and labeled with an interval
[z] (i.e., z = x1 op x2), the 2-dimensional box corresponding to its children
vertices x1 and x2 is reduced to an inner box [x1]

in × [x2]
in such that:

∀(x1, x2) ∈ [x1]
in × [x2]

in : x1 op x2 ∈ [z] (2)
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If op corresponds to a unary operator (i.e., z = op(x)), its unique child is
reduced to [x]in, such that:

∀x ∈ [x]in : op(x) ∈ [z] (3)

If an inner projection returns an empty box (i.e., no box satisfying (2) or
(3) has been found), then the top-down process is interrupted. It means that
InHC4R failed to find a box that is inner w.r.t. gj(x) ≤ 0. It implies that InHC4
failed to find a box that is inner w.r.t. the n inequality constraints, so that the
main loop of InHC4 is interrupted.

Consider for instance the backward projection applied to the product op-
erator of Fig. 2–right and its two children. The reduced intervals appear in
bold in the left side of each node (e.g., [z] is [0, 5]). Before reduction, its chil-
dren are labeled with the intervals [10, 10] and [0, 1]. They are then reduced
to [10, 10] and [0, 0.5] respectively. The reduction agrees with relation (2), i.e,
∀y ∈ [0, 0.5] : 10 . y ∈ [0, 5]. The next section details how these basic inner
projection operators are achieved.

4.1 Inner projection for basic operators

We report in this section the main guidelines to implement the inner projection
for the main mathematical operators. Four different cases must be studied
and follow a monotonocity analysis. This approach extends the case-by-case
approach proposed in Section 3 of [7]. We have built a more generic projection
based on monotonicity properties.4 The first case is trivial but serves as a basis
for understanding the others.

Case 1: monotonic unary operators

The first case applies to monotonic and continous unary operators, like log
and exp. More precisely, we consider operators z = op(x) that are continuous
and monotonic w.r.t. x in [x].

In this case, inner projection is trivial (see Fig. 3). We compute the max-
imum inner interval (i.e, no feasible point is lost, leaving aside roundoffs)
using the inverse function of op, like in a standard projection in HC4R. E.g.,
if z = exp(x), [x]in := log([z]). However, to take into account floating-point
roundoff errors, the outward rounding of HC4R is replaced by inward rounding.5

4 In addition, Chabert & Beldiceanu handled a dual problem consisting in finding a box
with no solution (i.e., all points in this box violate the constraints) and required an initial
point to be “inflated” to a box...

5 With floating-point numbers, an interval evaluation is conservative (i.e., contains all
the real-valued images) if the lower bound of the interval image is rounded towards −∞
while the upper bound is rounded to +∞. Both rounding operations constitute a so-called
outward rounding.
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x

z=op(x)

z

Fig. 3 Case 1: Inner projection of a monotonic operator. The horizontal segment in the
bottom of the figure is the result of the inner projection on x.

Case 2: non monotonic unary operators

The second case applies to non monotonic unary operators, like x2 or sine.
More precisely, we consider operators z = op(x) that are not monotonic w.r.t.
x in [x].

In this case, we achieve a piecewise monotonicity analysis and obtain an
interval for every monotonic part. Finally, unless the union of computed in-
tervals forms a connected set, we select randomly one interval. Note that for

x

z=op(x)

z

Fig. 4 Case 2: Inner projection of a non monotonic operator, i.e., sqr. Two intervals (il-
lustrated by horizontal segments) are obtained by projection on x (i.e., using the inverse
operation of sqr), and one of them is randomly chosen and returned.

With inward rounding, the lower bound is rounded towards +∞ and the upper bound
towards −∞. The property enforced by outward (resp. inward) rounding for an operator op
is (1), resp. (2):
1. ∀x ∈ [x] ∃z ∈ op([x]) z = op(x)

2. ∀z ∈ op([x]) ∃x ∈ [x] z = op(x)
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non monotonic unary operators, the standard HC4R returns the hull of the in-
tervals. For an inner projection in InHC4R, only a single interval is kept since
holes between these intervals represent inconsistent/infeasible points (Fig. 4).

Case 3: monotonic binary operators

A specific handling must be carried out on monotonic binary operators.

Definition 4 A function R
2 → R f(x1, x2) is nondecreasing (resp., non-

increasing) monotonic w.r.t. x1 in [x1] × [x2] if for all c in [x2] we have:
∀(a, b) ∈ [x1]

2, a ≤ b ⇒ f(a, c) ≤ f(b, c) (resp. a ≤ b ⇒ f(a, c) ≥ f(b, c)).

f(x1, x2) is said monotonic if f(x1, x2) is monotonic w.r.t each of its vari-
ables in [x1]× [x2].

Note that f may be for instance nondecreasing w.r.t. x1 and nonincreasing
w.r.t. x2.

For binary (or n-ary) operators that are monotonic w.r.t. each of their vari-
ables, a generic procedure, called MonoMaxInnerBox, can compute randomly
one maximal inner box, if one such box exists, as shown in Fig. 5.

x1

x2
g(x1,x2)=0

(x1,x2). .

x1

x2.

.

[z]

other maximal
inner boxes

Fig. 5 Case 3, procedure MonoMaxInnerBox: The dotted box corresponds to a maximal
inner box of [z] w.r.t. the monotonic constraint g(x1, x2) ≤ 0. A point ẋ1 is randomly
picked inside the range of allowed values illustrated by the horizontal segment. Only one
remaining value ẋ2 can then make the computed inner box maximal.

As depicted in Fig. 5, there usually exists an infinite number of maximal
boxes so that we select randomly one of these maximal inner boxes.
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Handling a monotonic binary operator amounts to handling the two in-
equalities

z ≤ (x1 op x2) ≤ z.

Both inequalities are handled in sequence, the inner box computed for one
inequality being used as input of the second one. This procedure is of course
used for implementing the inner projection of the addition and subtraction
operators.

It is also used for handling several (monotonic) subcases of the non mono-
tonic binary operators: the multiplication and the division described below.

Case 4: non monotonic binary operators

The last case includes the binary (or n-ary) operators that are not monotonic
w.r.t. each of their variables, i.e., the multiplication and the division.

Fig. 6 illustrates the two main cases for the multiplication x1.x2 ∈ [z],
depending whether 0 belongs or not to [z].

x1.x2 >z

maximal innerbox

w.r.t. x1.x2 ∈ [z]

x1

x2x2

x1

0 ∈ [z]  0 ∉ [z]  

x1.x2<z 

[x]:=hull([xA],[xB])

[xA]

x2

[xB]
x1

Fig. 6 Inner projection for the binary multiplication. Left: Two maximal boxes that can
indifferently be computed by MonoMaxInnerBox in the two disjoint inner regions (quadrants)
defined by the operator x1.x2 ∈ [z] ≥ 0. Middle and right: Maximal box computed for
x1.x2 ∈ [z] ∋ 0 (z ≥−z) with four calls to MonoMaxInnerBox (boxes in grey).

For the case x1.x2 ∈ [z] ∋ 0, note that a direct procedure (although more
difficult to be implemented) could also been achieved without resorting to
MonoMaxInnerBox.

Two different implementations for the division have been tested. One ap-
proach amounts to rewriting x1/x2 = x1.

1
x2

∈ [z]. The other approach directly
considers the different monotonic subcases of the operator, like for the muli-
plication. Non exhaustive experiments show that both versions seem to have
the same performance in practice.

4.2 Improving the upper bound using InHC4

Algorithm 2 details how InHC4 is used by IbexOpt for improving the upper
bound.
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Algorithm 2 Inhc4UB (in: S, [x]out; in-out: ub, xub)

[x]in ← InHC4 (S, [x]out) /* Inner box extraction */
if [x]in 6= ∅ then

[x]in ← MonotonicityAnalysis (f , [x]in)
x← RandomProbing([x]in) // or gradient descent

else

x← RandomProbing([x]out)
end if

cost← [f ]N ([x, x]) /* Cost evaluation */

if cost < ub and ([x]in 6= ∅ or [g]N ([x, x]) ≤ 0) then

ub← cost; xub ← x

end if

If an inner box [x]in is found by InHC4, then MonotonicityAnalysis an-
alyzes the monotonicity of the objective function f w.r.t. every variable xi.

If the partial derivative [ai] =
[

∂f
∂xi

]

N
([x]in) ≥ 0, then f is increasing w.r.t.

xi in [x], and [xi] is replaced by the degenerated interval [xi, xi] in [x]in for
minimizing f(x) over [x]in. If [ai] ≤ 0, f is decreasing and [xi] is replaced by
[xi, xi] in [x]in.

Next, we pick randomly a point x inside the resulting box, and replace xub

by x if x satisfies the constraints and improves the best cost ub. Two different
cases may occur. If an inner box has been extracted by InHC4, then a point is
selected inside [x]in. The feasibility of x does not need to be checked since [x]in

contains only feasible points. If no inner box is available, a random point is
still picked in the outer box [x]out, and the constraints must then be checked.

Replacing this simple probing by a home-made gradient descent did not
improve the strategy. However, our implementation was not sophisticated and
we should try other descent algorithms (quasi-Newton, etc.) before drawing
definite conclusions.

5 Properties

Several properties can be deduced from the material presented in the previous
two sections. The first one is a negative one.

Observation 1 The two algorithms InnerPolytope and InHC4 are correct
but incomplete, i.e., they are heuristics that can sometimes miss an inner
region whereas one such region does exist.

InnerPolytope is incomplete because it does not calculate, in general, an
inner polytope that is maximal (with respect to the inclusion), eventhough
roundoff errors are left aside. The calculated polytope may be empty. This is
a consequence of the overestimate produced by the interval Taylor form.

The InHC4-Revise procedure (handling a single constraint) is also incom-
plete because it overestimates the intervals in the forward phase and makes
random choices in the backward phase. Indeed, if an intermediary node is
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overestimated, we can choose in the backward phase a part of the domain
that is not compatible with the variables. The overestimate can be induced by
variables appearing several times in the function or by a discontinuity of the
function. Consider for instance the constraint sin(1/x) ≤ 0.5 and the domain
[x] = [−1/π, 1/π]. During the forward phase, the discontinuity of 1/x leads to
hull [−∞,−π] ∪ [π,+∞] to [−∞,+∞]. During the backward phase, choosing
unluckily the monotonic part [−π/2, π/6] would lead to find no inner box.

Finally, even though InHC4-Revise was complete (for a single constraint),
the InHC4 algorithm could be not able to find a box that is inner to the whole
system. One can observe that all the cases handled by the InHC4R procedure,
except the first one (monotonic unary operator), ignore a part of the feasible
space.6 Therefore, an inner box “arbitrarily” built by InHC4R for a given con-
straint, as underlined in Section 4.1, sometimes leads to an empty inner box
when handling a subsequent constraint.

The following proposition highlights an interesting aspect of InHC4-Revise.

Proposition 2 Consider a function gj that contains at most one occurrence
of each variable and is continuous in its domain [x].

InHC4-Revise always succeeds in extracting an inner box [x]in w.r.t. the
constraint gj(x) ≤ 0 in the domain [x], and [x]in is maximal (leaving aside
roundoff errors due to floating-point arithmetic), i.e., there is no other larger
box [x]in

′

⊃ [x]in that is an inner box of [x] w.r.t. gj.

Proof (sketch)

As mentioned above, the continuity of the function gj and the single occurrence
condition are the conditions to avoid an overestimate of the basic operators
during the forward phase.

We can prove that every implemented unary and binary operator computes
a maximal inner box, leaving aside the loss involved by inward roundoffs. This
is straightforward for cases 1 and 2. This is obtained by construction in the
case 3 from the procedure MonoMaxInnerBox. The only difficulty lies in the
proof of the case x1.x2 ∈ [z] when 0 ∈ [z].7

The single occurrence condition follows that of the standard HC4R [5]. It
ensures that the expression is a tree structure and not a directed acyclic graph
(because a variable appearing several times in the expression has several par-
ents in the graph) that cannot keep the property by induction. In other terms,
the condition ensures that, during the backward traversal, the composition of
inner boxes provides maximal inner intervals on all the dimensions. ✷

6 In the case 2, only one inner interval is considered among the different ones in the union.
In the case 3, only one maximal inner box is computed (using a random choice on x1) among
an infinite number of possibles boxes. The last case gathers both drawbacks (from cases 2
and 3). Consider for instance the case of the multiplication x1.x2 ∈ [z] where z is positive
(see left side of Fig. 6).

7 The difficulty is only related to our implementation. The maximality can be more easily
checked with a direct implementation.
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We recall that the maximality property does not hold for a system of in-
equality constraints handled by InHC4. Also note that InnerPolytope and
InHC4 are not comparable because the box produced by InHC4 is not neces-
sarily included in the polytope produced by InnerPolytope.

A second proposition provides the worst-case time-complexity of our two
inner region extraction algorithms.

Proposition 3 Consider a system (f, g, [x]) with n variables and m inequali-
ties. Let k be the maximum number of unary and binary operators in a function
gj. Let t the maximum time required to evaluate a primitive mathematical op-
erator.

Then, the worst-time complexity of the InnerPolytope extraction proce-
dure is O(m(k.t + n)). The worst-time complexity of the InHC4 extraction
procedure is O(m.k.t).

Proof

For InnerPolytope, computing a hyperplane (or generating a linearized form
of the objective function) is achieved in time O(k.t+n). Indeed, computing the
gradient of a given function gj is obtained in time O(k.t+ n) with automatic

differentiation; evaluating gj(x) requires time O(k.t); the sum of terms aji .(xi−
xi) is O(n) for all the variables. Finally, generating the linear program LPub

amounts to m+1 calls to the previous procedure (i.e., the m constraints plus
the objective function). Note that the time complexity for a call to an LP solver
must be added to this time complexity in the procedure InnerPolytopeUB.

The procedure InHC4 handles at mostm constraints one by one. The proce-
dure InHC4R applies at most k interval evaluations in time O(t) each during the
backward projection phase, and k times a constant number (between one and
four) calls to the procedure MonoMaxInnerBox during the top-down projection
phase. When applied to a binary basic monotonic mathematical operator, the
complexity of MonoMaxInnerBox is O(t) because it amounts to two iterations
(on the two variables), each dominated by an interval evaluation of the basic
operator. ✷

In contrast to InnerPolytope, observe that the worst-case complexity of
InHC4 is not reached when InHC4R fails to handle a constraint, since the loop
on all the constraints is then interrupted. Therefore, the less chances InHC4

has to extract an inner box (because the outer box is large compared to the
inner subspace), the fewer constraints are handled by InHC4, and the shorter
is the runtime needed.

6 Experiments

These two upper bounding algorithms have been implemented in our interval
B&B IbexOpt. IbexOpt [27] is implemented in Ibex (Interval Based EXplorer)
and enriches this C++ library devoted to interval solving [8].
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At each node of the B&B, IbexOpt is called with our best operators for
reducing the search space and improving the lower bound of the objective
function:

– Constraint programming contraction:
The ACID(Mohc) operator is an adaptive version of CID [28] using Mohc [1]
as basic contractor. Mohc is a state-of-the-art constraint propagation algo-
rithm that exploits the monotonicity of constraints to better contract the
current box. Mohc can be viewed as an improvement of the HC4 constraint
propagation algorithm.

– Contraction and lower bounding using a polyhedral convexifica-
tion of the system:
The operator X-Newton uses the dual form of (1) to contract the search
space and improve the lower bound [2].

Most problems were solved using as bisection heuristic a variant of Kear-
fott’s Smear function described in [27]. Only a few problems in the test achieved
in Section 6.1 were solved using the round robin bisection heuristic (denoted
by rr in Table 2).

For upper bounding the cost, IbexOpt calls the InnerPolytopeUB and
InHC4UB procedures described in this paper at each iteration/node of the B&B.

Note that the first version of IbexOpt was implemented in the first semester
of year 2011, with the version 1.19 of Ibex, and published in [27]. We show
in the experiments below three variants of IbexOpt with different features:
the first version in Ibex 1.19, the latest version in Ibex 2.0, and an inter-
mediary version in Ibex 1.20 (the last release of the version 1 of Ibex). The
main features distinguishing these three variants of IbexOpt are summarized
in Table 1.

Table 1 Main changes in different versions of IbexOpt

Ibex(Opt) version 1.19 1.20 2.0

Constraint programming operator Mohc ACID(Mohc) ACID(HC4)

Polyhedral convexification lowerbounding lb and contraction lb and contraction
with X-Newton with X-Newton with X-Newt. and

affine arithmetic

Inner Polytope expansion point x x random corner

Note that the Mohc constraint propagation algorithm is not yet reimple-
mented in Ibex 2.0, and using ACID(Mohc) instead of ACID(HC4) will improve
the current strategy. Following studies reported in [2], the X-Newton (in fact
X-Taylor) polyhedral convexification method is better exploited when 2n+1
calls to a linear programming solver improves both the lower bound and the 2n
variable interval bounds. In addition, two hyperplanes are built per inequality
in the latest version of the operator (see [2]). Finally, randomly choosing the
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expansion point of the inner Taylor form at each node of the B&B slightly im-
proves the results (compared to choosing always a same corner, e.g., x in (1)).
IbexOpt 2.0 and IBBA techniques are currently merging, allowing the latest
version of IbexOpt to embedd affine arithmetic (thanks to Jordan Ninin).

6.1 Benefits brought by our upperbounding heuristics

The purpose of this section is to compare our algorithms for extracting inner
regions (InnerPolytopeUB and InHC4UB) to a more basic inner test based on
constraint inversion [4]. This test consists in reversing the inequality signs and
applying HC4-Revise on every negated constraint. If the box [x]out is each
time discarded, one can conclude that every negated constraint contains no
solution point in [x]out, i.e., [x]out is entirely feasible.

To this end, we have set up a variant of our optimizer, called IbexOpt0,
where the upper bounding is simplified as follows:

– InnerPolytope is not called.
– Only a simplified version of Algorithm 2 is called. In this version, the call to

InHC4 is removed. Instead, a call to the inner test is carried out. This test
is a sufficient condition answering true if the handled box [x]out is inner.

If the test fails, one resorts to random probing, as described in Algorithm 2.
IbexOpt and IbexOpt0 were implemented in Ibex 1.20 (see Table 1).
We made the comparison on a sample of instances issued from the series 1

of the COCONUT constrained global optimization benchmark. Equations
hk(x) = 0 are relaxed by inequalities −ǫeq ≤ hk(x) ≤ ǫeq, with ǫeq = 1.e-8.
The benchmark selection protocol is the following. We have selected the 59
systems solved in a runtime ranging from 1 second to 1 hour by IbexOpt

or IbexOpt0 with a standard computer having a 3GHz Pentium processor.
IbexOpt and IbexOpt0 were implemented in Ibex 1.20 (see Table 1).

The name and number of variables of every system in the selected sample
appear in Table 2.

The performance comparison between IbexOpt and IbexOpt0 appears in
Table 3 and Fig. 7.

Results

This experiment highlights the significant benefits of our upper bounding,
compared to simple probing and inner tests (based on constraint inversion) in
every explored outer box. A loss in performance of 31% has been observed in
only one instance whereas a speedup of at least a factor 2 has been observed on
33 systems. Furthermore, IbexOpt0 was not able to solve 10 of the 59 selected
systems: it reached the timeout in 1 system and raised a memory overflow in
9 systems.
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Table 2 Sample of 59 systems selected in the serie 1 of the COCONUT benchmark.

name n name n name n

alkyl (rr) 14 ex6 1 4 6 ex9 2 6 16
bearing 14 ex6 2 6 3 ex14 1 2 6
ex2 1 3 13 ex6 2 8 3 ex14 1 6 9
ex2 1 5 10 ex6 2 9 4 ex14 1 7 10
ex2 1 6 10 ex6 2 10 6 ex14 2 1 5
ex2 1 7 20 ex6 2 11 3 ex14 2 3 6
ex2 1 8 24 ex6 2 12 4 ex14 2 4 6
ex2 1 9 10 ex6 2 14 4 ex14 2 6 5
ex2 1 10 20 ex7 2 1 7 ex14 2 7 6
ex3 1 1 8 ex7 2 3 9 haverly 12
ex3 1 3 6 ex7 2 7 (rr) 4 hhfair 28
ex5 2 2 c1 9 ex7 2 8 (rr) 8 himmel11 9
ex5 2 2 c2 9 ex7 2 9 (rr) 10 himmel16 18
ex5 2 2 c3 9 ex7 3 4 12 house 8
ex5 2 4 7 ex7 3 5 13 hydro 30
ex5 3 2 22 ex8 1 8 6 immun (rr) 21
ex5 4 2 8 ex8 5 1 6 launch 38
ex5 4 3 16 ex8 5 2 6 meanvar 7
ex6 1 1 8 ex8 5 3 5 process 10
ex6 1 3 12 ex8 5 6 6

Table 3 Gains obtained by different optimizers X (IbexOpt, InHC4, IP) w.r.t. IbexOpt0.
IP denotes a variant of the optimizer calling only InnerPolytopeUB at each iteration. InHC4
denotes a variant of the optimizer calling only InHC4UB at each iteration. IbexOpt=IP+InHC4

calls InnerPolytopeUB and InHC4UB. The gain is defined by
time(IbexOpt0)

time(X)
. For each line

(gain range), the number of problems obtaining that gain is reported for the different opti-
mizers. The penultimate line reports the number of systems successfully handled by X but
which induce a memory overflow with IbexOpt0.

Gain IbexOpt InHC4 IP

< 0.69 0 0 0
0.69 – 0.9 1 4 2
0.9 – 1 2 2 2
1 – 1.1 0 11 0
1.1 – 2 14 13 13
2 – 10 19 15 22
10 – 100 11 3 8
> 100 3 2 3

Memory overflow (MO) with IbexOpt0 9 7 9

Solved within the timeout 59 57 59

InnerPolytope seems more useful than InHC4, but endowing a B&B with
InnerPolytope and InHC4 together is more robust and shows a better perfor-
mance than using each individually.
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Fig. 7 Performance profile. A point on a curve indicates the number of systems solved
within the CPU time in abscissa by the corresponding optimizer.

Qualitative study

Several qualitative analyses were conducted on the systems to better under-
stand them individually and also to discover some general trends of our upper
bounding heuristics.

A first attempt was to determine which of the two inner region extraction
heuristics is the most useful in every system. To measure this, we counted the
number of times InHC4UB and InnerPolytopeUB improved the upper bound.
No general conclusion was drawn because the result does depend on every
instance.

We also measured the mean size of outer boxes in which the algorithms
succeed in extracting an inner region. Again, no definite trend was observed,
but it appears that InHC4UB generally improves the upper bound in boxes
that are larger than boxes where InnerPolytopeUB does. This would confirm
that an interval Taylor form provides a good approximation of a non-convex
function in a small box handled at the bottom of the search tree.

We finally observed a greater variability in runtime when IbexOpt is called
with InHC4UB only than with InnerPolytopeUB only. (We tried 10 runs with
different seeds for the random number generator.) This is due to the random
choices made in the cases 2, 3 and 4 of InHC4UB (in the MonoMaxInnerBox

procedure).
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6.2 Comparison with other global optimizers

We conclude experiments with a comparison between six competitors belong-
ing to the three types of deterministic branch & bounds for constrained global
optimization (over the reals) introduced in Section 2:

– Baron [26] and Couenne [3] cannot guarantee their results (see Section 2).
In addition, Couenne rewrites the whole system using a DAG-based rep-
resentation of the expressions where some common sub-expressions are
detected and synthesized. The equations in this DAG are relaxed by two
inequalities each, thus making the overall relaxation larger than with the
original system.

– IbexOpt and IBBA return a floating-point vector guaranteed to be feasible
in a system where the equations are relaxed. Two versions of IbexOpt are
tested: the first one (Ibex 1.19) and the latest one (Ibex 2.0).

– Icos and GlobSol rigorously handle the global optimization problem under
inequality and equality constraints (see Definition 2).

The rigorous answer of Icos and GlobSol is very interesting, but these
interval optimizers are not competitive at all with the others in terms of per-
formance. They show a loss of performance of several orders of magnitude
compared to Baron or IbexOpt on many difficult instances. Thus, the results
do not appear in the performance profile. Tables 2 and 3 in the first paper
about IbexOpt [27] show the results obtained by Icos and GlobSol on 32
instances of the above sample.

The sample of instances used in the performance profile shown in Fig. 8
comprises the 74 instances tested by Ninin et al. [22] and reused in our
AAAI article [27]. This sample allows a comparison with IBBA [22]. All
the competitors used the same precision parameters (i.e., 1e-8 for the cost
and the relaxation of equations). Most of the competitors were run on the
same computer (Intel X86, 3GHz). Baron was launched on the Neos server
(see www.neos-server.org/neos/) also on a X86, thus making the compari-
son rather fair. (Other experiments showed that the difference in CPU time
between both computers is about 10%.) We can observe that Baron version
12 (June 2013) is generally the most efficient optimizer, but the difference
with IbexOpt 2.0 is small, especially after 1 second of CPU time. Note that
IbexOpt 2.0 solves two more instances than Baron in one hour. In particular,
the system ex7 2 3 cannot be solved by Baron within the time limit of 3600
seconds, while this system is solved in less than 100 seconds by IbexOpt 2.0.

IbexOpt compares favorably with Couenne version 0.4 on this sample. It
is worthwhile noting Couenne answers that 4 instances have no feasible points
(ex3 1 1, ex5 2 4, ex7 3 1, ex14 1 9). This underlines that the lack of rigor
is not a theoretical drawback but does lead to failures in practice.

Baron and Couenne seem better than IbexOpt and IBBA on the most simple
instances, in part because they can solve some of them during a pre-processing
phase. IbexOpt and IBBA are not endowed with these pre-processing tools.
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Fig. 8 Performance profile. For a given strategy, a point (t, p) on the corresponding curve
indicates that p among the 74 systems are solved in less than t seconds.

However, in 1 or 2 seconds, IbexOpt can solve the same number of systems as
Couenne, while IbexOpt 2.0 reaches the performance of Baron in 50 seconds.

IbexOpt is (one order of magnitude) more efficient than IBBA and we know
that upperbounding with inner regions mainly explains this gain in perfor-
mance (see [27]).

7 Conclusion

We have proposed in this paper a new upperbounding policy for systems with
inequality constraints (or relaxed equalities). The two proposed heuristics
(InnerPolytope and InHC4) first extract an inner (entirely feasible) region
and then select a good (or best) point inside the extracted inner region for
updating the upper bound with its cost. We have obtained very good results
on a representative sample of medium-sized instances proposed in the CO-

CONUT benchmark suite. InnerPolytope obtains the best results on the
sample, although using both InnerPolytope and InHC4 renders the upper-
bounding phase more robust. Overall, endowed with these upperbounding fea-
tures, IbexOpt compares favorably with deterministic global optimizers found
in the literature, namely Couenne, IBBA, Icos, GlobSol. Baron remains more
efficient than IbexOpt, in particular on easy instances or on polynomial ones.
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This is not the case for systems with non polynomial operators (division, sine,
log, etc).

It is worthwhile noting that our upperbounding does not use any local
minimization approach. As shown in Section 5, our heuristics are not costly
and are thus used at each node of the interval B&B. In other deterministic
optimizers, upperbounding with local minimization is often costly because of
the heavy generation of the Lagrangian relaxation. Therefore, these optimiz-
ers generally do not call this process at each node of the B&B. We believe
that both approaches are complementary, and integrating them together is an
interesting line of research.
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