9,805 research outputs found

    A review of key planning and scheduling in the rail industry in Europe and UK

    Get PDF
    Planning and scheduling activities within the rail industry have benefited from developments in computer-based simulation and modelling techniques over the last 25 years. Increasingly, the use of computational intelligence in such tasks is featuring more heavily in research publications. This paper examines a number of common rail-based planning and scheduling activities and how they benefit from five broad technology approaches. Summary tables of papers are provided relating to rail planning and scheduling activities and to the use of expert and decision systems in the rail industry.EPSR

    Generation of the transport service offer with application to timetable planning considering constraints due to maintenance work

    Get PDF
    Line planning is an important step in strategic timetable planning in public transport. In this step the transport offer for the customer is generated by the public transport operator, whereby the resulting costs for the operator should be as deep as possible. Mathematical models for line planning allow to create optimized line plans quickly. Planners can use these models to rate and select different alternatives. This is particularly valuable under the aspect of increasing maintenance and construction tasks of the railway infrastructure. We show, that in this case, it is possible to create functional requirements for automated timetable creation from the result of line planning step. The practical use of the involved models is illustrated by a real application example

    Integer programming based solution approaches for the train dispatching problem

    Get PDF
    Railroads face the challenge of competing with the trucking industry in a fastpaced environment. In this respect, they are working toward running freight trains on schedule and reducing travel times. The planned train schedules consist of departure and arrival times at main stations on the rail network. A detailed timetable, on the other hand, consists of the departure and arrival times of each train in each track section of its route. The train dispatching problem aims to determine detailed timetables over a rail network in order to minimize deviations from the planned schedule. We provide a new integer programming formulation for this problem based on a spacetime networkÍľ we propose heuristic algorithms to solve it and present computational results of these algorithms. Our approach includes some realistic constraints that have not been previously considered as well as all the assumptions and practical issues considered by the earlier works

    An intelligent framework and prototype for autonomous maintenance planning in the rail industry

    Get PDF
    This paper details the development of the AUTONOM project, a project that aims to provide an enterprise system tailored to the planning needs of the rail industry. AUTONOM extends research in novel sensing, scheduling, and decision-making strategies customised for the automated planning of maintenance activities within the rail industry. This paper sets out a framework and software prototype and details the current progress of the project. In the continuation of the AUTONOM project it is anticipated that the combination of techniques brought together in this work will be capable of addressing a wider range of problem types, offered by Network rail and organisations in different industries

    Phase Synchronization in Railway Timetables

    Full text link
    Timetable construction belongs to the most important optimization problems in public transport. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is a targeted contribution to the functioning of public transport. In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a timetable is its robustness against delay propagation. Here we study the balance of efficiency and robustness in long-distance railway timetables (in particular the current long-distance railway timetable in Germany) from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspective opens a new avenue towards an understanding of railway timetables by representing them as spatio-temporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern

    TIMETABLE MANAGEMENT TECHNIQUE IN RAILWAY CAPACITY ANALYSIS: DEVELOPMENT OF THE HYBRID OPTIMIZATION OF TRAIN SCHEDULES (HOTS) MODEL

    Get PDF
    There are two general approaches to improve the capacity in a rail corridor, either by applying new capital infrastructure investment or by improving the operation of the rail services. Techniques to evaluate the railway operation include modeling and optimization through the use of commercial timetable management and rail simulation tools. However, only a few of the existing tools include complete features of timetable management techniques (e.g. timetable compression) are equipped with an optimization model for rescheduling and timetable improvement and this is especially true when it comes to the U.S. rail environment that prevalently uses unstructured operation practices. This dissertation explores an application of timetable (TT) management techniques (e.g. rescheduling and timetable compression techniques) in the U.S. rail environment and their effect on capacity utilization and level of service (LOS) parameters. There are many tools and simulation packages used for capacity analysis, by both European and the U.S. rail industry, but due to the differences in the operating philosophy and network characteristics of these two rail systems, European studies tend to use timetable-based simulation tools (e.g. RailSys, OpenTrack) while the non-timetable based tools (e.g. RTC) are commonly used in the U.S. (Chapter 1). This research study investigated potential benefits of using a “Hybrid Simulation” approach that would combine the advantages of both the U.S. and European tools. Two case studies (a single track and a multiple-track case study) were developed to test the hybrid simulation approach, and it was concluded that applying timetable management techniques (e.g. timetable compression technique) is promising when implemented in a single track corridor (Chapter 2), but it is only applicable for the multiple track corridors under directional operation pattern (Chapter 3). To address this, a new heuristic rescheduling and rerouting technique was developed as part of the research to convert a multiple track case study from non-directional operation pattern to a fully directional operation pattern (Chapter 4). The knowledge and skills of existing software, obtained during the development and testing of “Hybrid Simulation”, was used to develop an analytical rescheduling/optimization model called “Hybrid Optimization of Train Schedules” (HOTS) (Chapter 5). While the results of the “Hybrid simulation approach” are promising, the method was also time consuming and challenging, as all respective details and database of the given corridors had to be replicated in both simulation tools. The “HOTS Model” could provide the same functions and features of train rescheduling, but with much less efforts and challenges as in the hybrid simulation. The HOTS model works in conjunction with any commercial rail simulation software and it can reschedule an initial timetable (with or without conflict) to provide a “Conflict-Free” timetable based on user-defined criteria. The model is applicable to various types of rail operations, including single, double and multiple-track corridors, under both directional and nondirectional operation patterns. The capabilities of the HOTS model were tested for the two case studies developed in the research, and its outcomes were compared to those obtained from the commercial software. It was concluded that the HOTS model performed satisfactorily in each of the test scenarios and the model results either improved or maintained the initial timetable characteristics. The results are promising for the future development of the model, but limitations in the current model structure, such as station capacity limits, should be addressed to improve the potential of applying the model for industrial applications

    Susceptibility of optimal train schedules to stochastic disturbances of process times

    Get PDF
    This work focuses on the stochastic evaluation of train schedules computed by a microscopic scheduler of railway operations based on deterministic information. The research question is to assess the degree of sensitivity of various rescheduling algorithms to variations in process times (running and dwell times). In fact, the objective of railway traffic management is to reduce delay propagation and to increase disturbance robustness of train schedules at a network scale. We present a quantitative study of traffic disturbances and their effects on the schedules computed by simple and advanced rescheduling algorithms. Computational results are based on a complex and densely occupied Dutch railway area; train delays are computed based on accepted statistical distributions, and dwell and running times of trains are subject to additional stochastic variations. From the results obtained on a real case study, an advanced branch and bound algorithm, on average, outperforms a First In First Out scheduling rule both in deterministic and stochastic traffic scenarios. However, the characteristic of the stochastic processes and the way a stochastic instance is handled turn out to have a serious impact on the scheduler performance
    • …
    corecore