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Abstract This work focuses on the stochastic evaluation of train schedules
computed by a microscopic scheduler of railway operations based on determin-
istic information. The research question is to assess the degree of sensitivity
of various scheduling algorithms to variations in process times (running and
dwell times). In fact, the objective of railway traffic management is to reduce
delay propagation and to increase disturbance robustness of train schedules
at a network scale. We present a quantitative study of traffic disturbances
and their effects on the schedules computed by simple and advanced schedul-
ing algorithms. Computational results are based on a complex and densely
occupied Dutch railway area; train delays are computed based on accepted
statistical distributions, and dwell and running times of trains are subject
to additional stochastic variations. From the results obtained on a real case
study, an advanced branch and bound algorithm, on average, outperforms a
First In First Out scheduling rule both in deterministic and stochastic traf-
fic scenarios. However, the characteristic of the stochastic processes and the
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E-mail: a.dariano@dia.uniroma3.it

F. Corman
Centre for Industrial Management - Katholieke Universiteit Leuven, Belgium
E-mail: francesco.corman@cib.kuleuven.be

D. Pacciarelli
Dipartimento di Informatica e Automazione - Università degli Studi Roma Tre, Italy
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way a stochastic instance is handled turn out to have a serious impact on the
scheduler performance.

Keywords Railway Traffic Optimization · Delay Minimization · Simulation ·
Uncertainty.

1 Introduction

Railway services are normally managed on the basis of a timetable (detailed
plan of operations) that has been planned in advance with suitable time mar-
gins to absorb minor delays.

When planning the traffic over a railway network, it is usually assumed
the presence of deterministic running times. Uncertainties are normally dealt
with by insertion of appropriate buffer times in the timetable to absorb de-
lays. However, during operations major disturbances cause traffic deviation
from the planned timetable and thus may influence the timetable feasibility.
In such cases, real-time adjustments of train timing and orders are required to
assure compatibility with the real traffic situation and to limit delay propaga-
tion. This task is currently performed manually by dispatchers. There is thus a
need for advanced decision support tools to reduce the dispatchers’ workload
and to satisfy the requirements of infrastructure managers, train operators
and passengers [2]. Recently, advanced models and algorithms have been de-
veloped to reschedule trains in complicated railway areas with dense traffic
and multiple delayed trains (see, e.g., the literature reviews in [5,14,18]).

In rescheduling of railway operations, the need to quickly find solutions
has directed most efforts to develop advanced heuristic methods, that find a
good solutions with a limited computation effort. This is in line with a general
trend for scheduling and managing systems under uncertainty for complex
real-world scheduling problems, that use solving procedures based on fully
deterministic information [20,15]. Such approaches simplify the problems by
feeding the scheduling routines with only deterministic and static data and
neglecting further uncertainties. However, most real-life scheduling problems,
and especially railway traffic scheduling, are inherently dynamic and prone to
uncertainties. A key question is therefore whether the quality of the optimized
solutions is partially or completely lost when dealing with uncertainty.

Assuming deterministic and static data may cause discrepancies between
what is expected to happen in the model and what actually happens when the
plan is applied in practice. In fact, the gap between the offline published plan
and the actual schedule put into operations affects the operations’ performance
and railway passengers’ comfort heavily.

Research aiming to increase the robustness of railway systems is gener-
ally directed at addressing uncertainty to fill this gap, mostly following two
directions:

(i) computing schedules with some sort of slack to recover from disturbances,
(ii) assessing the effects of uncertainties of a pre-defined schedule before im-

plementation.
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In (i), optimal schedules can be computed using detailed models and dedi-
cated algorithms, able to take the uncertainties and the dynamic nature of
the problem into account. However such methods require the development of
complex methods such as robust optimization [1] or stochastic programming
[22] approaches that are generally harder to solve. The approach in (ii) is to
use simple models able to compute efficient schedules based on deterministic
information and to evaluate the effects of uncertainty, e.g., with the use of
Monte Carlo simulations. This enables assessing the effects of stochastic dis-
turbances on a schedule by running a simulation of the future evolution of the
railway system.

This paper follows the (ii) approach. Our aim is to develop a tool able to
assess the effects of unpredictable disturbances on a schedule enabling a more
informed evaluation of different rescheduling algorithms. In fact when dealing
with real life problems one should also include the possibility that the system
might evolve in directions unknown at the moment of optimization, and not
considered in the schedule generated by the solver. This concern is especially
relevant when comparing solutions obtained by simple dispatching rules with
solutions obtained by sophisticated optimization methods, as tighter packed
schedules might be more susceptible to disruptions. This work studies the
variability of optimized train schedules in presence of uncertainty. A simulation
setup is proposed, in which train schedules are computed by minimizing delays
in case of deterministically known perturbed operations. Such train schedules
are computed by a microscopic optimization-based train scheduler, working at
the level of block signals. We compute the process times in seconds. This detail
is required to assess the propagation of delay between following trains precisely.
The resulting solutions are then evaluated under small stochastic variations
in process times, that simulate errors in input data due to uncertainty in
train tracking, or further unpredictable events. This is done within a detailed
microsimulation tool, that allows quantifying the effects of such disturbances
precisely.

The paper is organized as follows: Section 2 briefly reviews the train schedul-
ing and robustness analysis literature. Section 3 presents the proposed frame-
work for the robustness evaluation while Section 4 describes the computational
results by evaluating the robustness of three rescheduling algorithms on a com-
plex dispatching area of the Dutch railway network. Finally conclusions and
future research directions are highlighted in Section 5.

2 Literature on robust railway systems

A growing stream of scientific literature focuses on addressing how to gener-
ate robust timetables. Even if there is still no clear consensus on the exact
definition of robustness, as also discussed in Dewilde et al. [10]. In fact several
definitions have been proposed in the literature [3,11,16,23].

Among the papers dealing with robust timetabling problems we distinguish
between approaches developing optimization-based timetables with some de-
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gree of disturbance robustness, i.e., point (i) of the Introduction, and papers
dealing with the assessment of the robustness of a timetable by means of sim-
ulation tools, i.e., point (ii) of the Introduction.

Liebchen et al. [17] use an integer programming approach to generate a
delay resistant periodic timetable on a part of the German railway network.
They sequentially evaluate it according to a delay management strategy. The
problem of managing passenger connections is to decide which connections
should be kept in the actual plan and which should be dropped [6,13].

Fischetti et al. [12] propose a light robustness approach to take robustness
of a solution into account and at the same time maintain low computational
times. On a medium sized network, the proposed approach results in two order
of magnitude improvements for CPU time while maintaining almost the same
solution quality.

Schöbel and Kratz [24] present a bi-objective approach for generating ro-
bust and efficient timetables. Given a level of uncertainty, the problem of
finding a Pareto optimal timetable is solved as efficiently as the original single
objective problem. However, it is generally difficult to predict the impact of
the level of stochasticity of railway systems.

Shafia et al. [25] describe a mathematical model for train timetabling with
some degree of robustness. As described by the same authors in their remarks,
the model makes strong assumptions on safety issues related to train move-
ments in the network. Based on this model and on two methods for the compu-
tation of buffer times, a branch and bound algorithm and a beam search-based
heuristic are proposed by the authors for the computation of timetables. A real
railway line is used for testing the algorithms while fictitious data are assumed
for the travelling trains. The results show some improvements obtained by the
two dedicated algorithms compared with a commercial software.

Vansteenwegen and Van Oudheusden [27] focus on the development of a
robust timetable. They propose a two phase approach, in which, first, ideal
buffer times with respect to train connections are computed, and then LP is
used to build a timetable minimizing the waiting costs. Finally a discrete event
simulation is used to compare the original timetables with the new one. The
authors reports substantial improvements.

Simulation is a common approach to evaluate the robustness of train sched-
ule, as in point (ii) of the Introduction. And we comment on some railway
applications of simulation tools to evaluate timetable robustness:

Carey and Carville [4] compare the reliability of proposed schedules by
simulating detailed train traffic in a busy complex station. The simulator uses
a rescheduling algorithm to solve arising conflicts. Their approach can also be
used to evaluate different reliability measures on a given timetable.

Salido et al. [23] propose two analytical measures of robustness of a timetable
and use a macroscopic simulator to validate the analytical and the observed
empirical robustness. They use their approach on a case study with about 30
trains to compare two timetables with different buffer times.

Takeuchi et al. [26] propose a robustness index, measuring the passenger
disutility introduced by a disturbance. They simulate the traffic on a line with
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Fig. 1 Flow of information in the framework.

39 stations and 63 trains, to show the differences between two timetables by
changing time margins in the timetable.

To the best of our knowledge, very limited research has addressed the
topic of robustness during rescheduling of railway networks, with a microscopic
detail, and solutions based on optimization algorithms. Only recently Meng
and Zhou [19] developed a stochastic programming approach with recourse
to incorporate different probabilistic scenarios in the rolling horizon decision.
The approach reschedules trains in a perturbed situation, in order to minimize
delays under different forecasted scenarios. Experiments on a single track line
located in China with 18 stations and 50 daily circulating trains are carried
out using a rolling horizon approach.

However there is no study trying to assess the performance of different
rescheduling actions in real-time. Different train rescheduling plans can be
obtained by using advanced conflict resolution methods, by solving train con-
flicts and by predicting the delay propagation in the overall studied area or
by adopting local and myopic rescheduling rules. On the one hand, an opti-
mization algorithm based on deterministic information may produce a more
effective but fragile solution, i.e., an apparently good solution at the time it is
computed, that is highly sensitive to uncertain factors, and that might result
in unattractive plans for infrastructure managers and train operating compa-
nies. On the other hand, a rule-based algorithm may produce a seemingly less
optimized but more robust solution, i.e., it may be able to absorb disturbances
without a relevant degradation of the quality of the solution. However, in both
cases, the impact of stochastic disturbances needs to be carefully evaluated be-
fore schedule implementation.

The main motivation of our study is thus to quantify the improvement that
can be achieved in real time, if any, achievable by using optimization-based
rescheduling methods under stochastic disturbances.

3 Robustness evaluation framework

Figure 1 presents the flow of data in the framework developed to evaluate the
quality of train schedules when dealing with uncertain information.

The framework takes as input:

A railway instance. A deterministic railway instance contains a detailed de-
scription (at block section level) of the railway network under study, the
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set of trains running in the network over the considered time horizon and
the timetable they should follow on a railway network.

Railway network status. The current status of the network, i.e., train position
and speed of all trains at time t0, is assumed to be known. Based on
this information it is possible to generate the actual entrance delays in
the network that must be provided to the solver. The entrance delays
are generated as deterministic values of train positions and speeds, that
represent the current status of the network and the expected evolution in
the short term.

Stochasticity information. The simulator needs to know the probability func-
tions of the duration of all operations subject to uncertainty. If an operation
is not deterministic the probability function should be known and speci-
fied. In our tests we considered uncertain duration for all running and dwell
times.

All this input defines a stochastic instance. Since it is assumed that the
train scheduling solver is not able to directly tackle a stochastic train schedul-
ing instance the framework must transform it into a deterministic instance.1

This is done as follows: The probability function associated to each opera-
tion (running times and dwell times) is converted into a deterministic value
by means of a sampling strategy. As a sampling strategy one could consider
taking the median of the probability function, the expected value, or a given
quantile.

Next the train scheduler is invoked on the deterministic instance and it is
expected to produce a deterministic solution to the problem. The scheduler
uses a train scheduling algorithm in order to detect and solve potential con-
flicts, and outputs a microscopic plan of operations, with a level of detail of
single block sections and a precision of seconds.

As solver we use ROMA [8,9], a computerized system that can assist train
operators in their tasks. ROMA is able to estimate and control the future evo-
lution of the railway traffic by considering deterministic information on track
occupation and safety constraints. This may prevent the decision maker from
taking less effective decisions, such as causing a deadlock situation or unsat-
isfactory throughput. The resulting solution represents a new plan of arrival
and departure times that minimizes train delays with respect to an original
timetable. ROMA also enables the optimization of railway traffic if the actual
timetable is not conflict-free and/or deadlock-free, or during severe traffic dis-
turbances, such as when emergency timetables are required and dispatchers
need extensive support to solve train conflicts and to handle disruptions (i.e.,
unexpected blockage of some tracks).

After the computation of a new schedule by the solver, the framework
replaces deterministic process times in the deterministic solution with their
original probability functions from the stochastic instance, creating a stochastic
solution.

1 Clearly, if the solver is able to deal with a stochastic instance there is no need of removing
stochastic data.
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Fig. 2 The layout of the network (top). A deterministic solution (middle) and the corre-
sponding stochastic solution (bottom), for a small instance with three trains. Each train
passes a section in 100 time units and is subject to [−10%, 20%] variability.
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A set of Monte Carlo trials are then performed on the stochastic solution
creating a set of sample solutions (scenarios). This transformation of the solu-
tion is depicted in Figure 2: The top plot represents the small railway network
with three trains. The middle plot is a Gantt chart, in which all operations
are deterministic, and shows two trains progressing along a track with an-
other train traversing part of it in the opposite direction. The bottom plot is
a stochastic Gantt chart, and instead of square block representing operations,
its shapes height corresponds to the likelihood of the operation running at the
current time. On the basis of the generated scenarios, train delay indicators
are computed. We observe that computing the train delay indicators does not
add excessive computational burden on the solver. In fact, the more costly
operation in the framework is to evaluate the robustness of a solution. For
large scale instances (as the one we consider in our tests) this can be done
quickly. Furthermore, different solvers can be used as long as they are able to
handle a stochastic or a deterministic train scheduling instance and provide a
solution with the desired level of modeling detail.

4 Case study

In this section we first introduce the experimental setup of the tests and then
we evaluate the robustness of different train scheduling algorithms.

4.1 The railway network

The test case is a complex and densely occupied area of the Dutch railway
network, as in [7]. We study the central station of Utrecht area, which is a
major hub of the Dutch railway network, at the crossroads of the five main
lines criss-crossing the Netherlands. About 200.000 passengers use the station
every day. Specifically, there are:

– a double track line to the west, towards Rotterdam and The Hague, served
by 12 trains per hour per direction;

– a four-track line to the north-west, towards Amsterdam, served by 11 train
per hour per direction;

– a four-track line to the north, towards Amersfoort, served by 12 trains per
hour per direction;

– a double track line to the east, in the direction of Arnhem and Germany,
served by 6 trains per hour per direction;

– and finally a double track line to the south, towards Den Bosch, served by
9 trains per hour per direction.

The train network under consideration is shown in Figure 3. The lines are
interconnected by two complex interlocking areas at both sides of the station
with a total of about 100 switches, and 20 platform tracks at the station itself.
The area under consideration stretches along a few kilometres of the lines, for
a diameter of about 20 km.
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Fig. 3 Map of the Utrecht area.

4.2 Timetable and deviations

The 2008 timetable is considered, which is very dense, featuring 80 trains
per hour on a regular-interval timetable. The traffic is mixed, divided ap-
proximately evenly between intercity trains and commuter trains, with a few
long-distance, high-speed trains. We consider two train scheduling instances,
with a time horizon of traffic prediction of 3600 and 7200 seconds. Those two
instances define a set of 1962 and 3924 stochastic process times respectively,
corresponding to travel and dwell times subject to delays.

For each of the two instances we assess 40 cases of entrance delays from
[7], representing delays that have already happened before the time window
under consideration in the instances, or that are expected in the short term.
Each train has a planned arrival time defined by the timetable and associated
with each scheduled stop, giving rise to different delay measures.

The difference between plan and realization is the total delay of a train
at a scheduled stop (equivalent to a tardiness measure), and can be further
divided in two parts: Primary delays that cannot be avoided even by letting
train running at maximum allowed speed and with no hindrances, and con-

secutive delays (or secondary delays) that are caused by domino effects and
usually can be partially avoided through a careful planning of the operations
[5,7]. Since primary delays are by definition unavoidable, we use the mini-
mization of consecutive delays as performance measures (that is the output
delay due to potential train conflicts in the area under study). In the compu-
tational experiments, we show the minimization of the maximum and average
consecutive delays.

The schedule robustness is evaluated by the analysis of small stochastic
variations for the running and dwell times of train traffic in the network. Those



10 Larsen Rune et al.

variations can be the result of e.g., measurements errors, coarse grained train
detection data (for instance based on block section occupancy, rather than a
precise positioning system), additional unexpected disturbances, overcrowding
or additional delays at station platforms.

We generate 1000 random instantiations of the associated probability func-
tions and use them to evaluate schedule robustness. In other words, each
stochastic solution is evaluated over 1000 Monte Carlo trials (scenarios). In
order to obtain a fair comparison, when evaluating the robustness of the solu-
tions provided by different algorithms on the same instance, we apply exactly
the same scenarios in the Monte Carlo trials phase.

Since the scheduling solvers are deterministic all durations must be sup-
plied as deterministic values and not as probability functions. The proposed
robustness evaluation framework has a single parameter that has to be set.
Namely we have to specify how the sampling strategy works, i.e., how a
stochastic instance is transformed into a deterministic instance. To this aim
we use a sampling strategy parametrized on:

g ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

Those values represent the quantiles of the probability functions given in the
stochastic instance, ranging from g = 0.0 to g = 1.0. Setting g = 0 means that
the scheduling solver is considering an instance where all the times are set to
the shortest possible duration allowed by the distribution of that operation.
When g = 0.5 the sampling strategy provides the median times, and when
g = 1 the maximum of each distribution is taken. As we use unbounded
Weibull distributions (explained later), we treat g ≥ 0.99 as g = 0.99 for them
to avoid infinities. Note that for all the distributions used, the expected values
of the distribution corresponds to using g = 0.5 (Uniform distributions) or
g ≈ 0.56 (the used Weibull distributions).

4.3 Performance indicators

Recall that consecutive delays were defined as the part of the total delays
(tardiness) that were unavoidable regardless of scheduling decisions, and note
that operations are indexed by j. Arrival times taj are computed as longest
paths in the temporal network representing the solution G = (N,F ∪ S),
where F is a set of fixed edges that must be present in any solution, and S is
a set chosen by a scheduling algorithm.

Given a planned arrival time t
p
j , the tardiness can be calculated as ttj =

max{taj − t
p
j , 0}. Let l(0, j) be the longest path in the temporal network with-

out any non-fixed edges selected (G = (N,F )). The primary delay tuj =
max{l(0, j)− t

p
j , 0} and the consecutive delay can be computed as tcj = ttj − tuj

which is guaranteed to be positive or zero.
In the train scheduling problem we consider both maximum consecutive

delay:
max

j∈planned
(tcj) (1)
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average consecutive delay: ∑
i∈planned(t

c
j)

|planned|
(2)

maximum tardiness:
max

j∈planned
(ttj) (3)

and finally average tardiness:
∑

i∈planned(t
t
j)

|planned|
(4)

where planned is the set of operations with a planned arrival time and |planned|
is the cardinality of the set.

4.4 Solver settings

The scheduler works with deterministic information based on an alternative
graph formulation of the train scheduling problem. Three scheduling algo-
rithms are considered: the simple dispatching rule First In First Out (FIFO),
a greedy heuristic (AMCC) [21] and a truncated Branch and Bound (B&B)
algorithm [5]. The FIFO rule simply states that the train arriving first at a
track junction passes first. The AMCC heuristic is based on the alternative
graph formulation of the train scheduling problem [8] and it basically takes
sequential decisions trying to avoid the worst possible decisions at each time.
The B&B is an advanced branch and bound algorithm using both FIFO and
AMCC as initial solutions and a Jackson Preemptive Schedule lower bound.
In order to guarantee reasonable computing times the B&B is truncated after
120 seconds.

The deterministic scheduling solution computed by the three algorithms is
transformed into a stochastic solution using predefined probability functions
as explained in the following, and then evaluated using 1000 instantiations of
the stochasticity in the process times. From our tests it turns out that, given a
solution, the analysis of the 1000 scenarios can be done in about 10 seconds for
the largest instance and all objectives. This time is affected by the measures
of consecutive delays, as they require an extra longest path calculation to be
made to determine primary delays. The process is easily parallelized if faster
computation is needed.

4.5 Distribution of process times

We consider probability distributions for the running and dwell times as fol-
lows. Weibull distributions are used to characterize the variability of relevant
process times, as in [7,28]. Specifically, the same dataset of events is used
as in [7], that contains about 33000 records of arrival and departure events
at Utrecht station, corresponding to a month of operations. When studying
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Fig. 4 Densities of dwell times for trains at stations. The spike at time 48 represents
the enforced minimum. The height of the curve indicates the likelihood of the probability
distribution assuming that delay.

dwell times, we divided the events into on peak and off peak events. A stan-
dard Maximum Likelihood fitting procedure is used to derive the three pa-
rameters describing the two Weibull distributions. Distributions of peak dwell
times have a shape parameter κ = 1.7914, a scale parameter λ = 255 and a
shift of −16 seconds towards shorter durations. The off peak dwell times have
κ = 2.0824, λ = 261 and a shift of 4.

Densities for the two probability distributions (on- and off-peak dwell
times) are plotted in Figure 4. As expected, during peak hours the larger
amount of passengers results in longer dwell times. Both probability functions
are bound on the lower values by a minimum technical stopping time of 48
seconds, resulting in a small peak on the probability density graph.

Another source of uncertainty is related to running times. This is modeled
as a variation of the running time per every single operation (i.e. the passage
of a train over a block section); the variation is considered normalized with
regard to the planned duration, and follows uniform distributions.

The probability functions related to different trains and different block
sections have no correlation in time or space. Unfortunately, little research
has been focused on the assessment of the variability of individual running
times at a microscopic level. Further research would be required to have a
comprehensive description of the statistical characteristics of running time
variations, based on recorded data.

We consider four different levels of distributions of running time varia-
tions: the intervals describing the uniform distributions are respectively v =
[−2.5%,+5%], [−5%,+10%], [−7.5%,+15%] and [−10%,+20%], i.e. there is
a slight bias towards longer durations.
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4.6 Robustness evaluation

Using two time horizons of traffic prediction, four sets of process time stochas-
ticity, on/off peak behavior, 40 entrance delay cases and 10 sampling strategies,
we have 6400 runs per algorithm. Adding 1000 scenarios and a deterministic
case, three algorithms (FIFO, B&B and Greedy) and four performance indica-
tors, 76.876.800 objectives are evaluated. This was completed with 12 machines
(Intel Core i5 CPU at 3.20GHz), with the last one finishing after 36 hours.

The plots in Figure 5 show the effect of the sampling strategy. The plots
are averaged over all cases and on peak/ off peak dwell times. The right plots
show the average and maximum consecutive delays obtained by the solvers
while solving the deterministic problems, and the left plots are a result of ap-
plying these solutions to the 1000 scenarios. The right plots show a gradual
increase in objective values, which is expected as all process and dwell times
increase as g grows. Note also that this growth does not correctly represent
what would happen with added random perturbations, as the plots on the
left show. In fact, if solvers are optimistic (i.e., assume low values of g) when
executing the schedule with added random perturbations the observed perfor-
mance indicators are greater than expected by the solvers. On the other hand,
when assuming high values for g, the objective function as seen by solvers is
larger than what it happens when actually executing that plan with random
durations.

The missing values in Figure 5 indicate that the greedy heuristic failed to
find a feasible solution for g ∈ {0.4, 0.7, 0.8, 0.9, 1.0}. It does however produce
competitive results for g ∈ {0.5, 0.6}.

The spread between the scheduling algorithms is in general limited, unless
a large value of g is considered, representing a more conservative expectation
of the process times. The closeness of results between algorithms for the same
value of g indicates that the g parameter is a stronger predictor of the quality
of the stochastic solution than the selected algorithm. Note that underestimat-
ing delays when solving the deterministic instances corresponds to low values
of g (g ≤ 0.33 . . .), and thus resulting (on average) in worse solutions. Using
expected values for the probability distributions (corresponding to g = 0.5
for the uniformly distributed running times, and g ≈ 0.56 for the dwell times
following Weibull distributions) yields much better results (roughly 100 sec-
onds less average consecutive delay), and if the distributions of the delays are
unknown, overestimation is better than underestimation, as shown in Figure
5.

Let’s observe how assuming g = 1 leads to poor solutions. This is due to
the presence of unbounded distributions, i.e. the Weibull used to model dwell
times. Specifically, assuming g = 1 (g = 0.99) corresponds to sample extremely
large dwell time thus shadowing the travel times and producing poor quality
solutions when stochasticity has been applied.

A value of g = 0.6 yields the best solutions for all three algorithms, and
will thus be used in subsequent comparisons between the three algorithms.
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Fig. 5 Average values of consecutive delays as a function of the sampling strategy (g). The
two plots to the right are the solution quality produced by the solvers, and the two plots to
the left are the quality after the Monte Carlo samplings are applied to the same solutions.

Table 1 reports a quantitative comparison between B&B and FIFO, for
the deterministic (first two columns) and stochastic (last two columns) solu-
tions, in terms of the four delay indicators (reported in seconds). Namely, we
consider average and maximum tardiness and average and maximum consecu-
tive delays. The greedy heuristic has been omitted since we obtained the same
solutions as B&B for g = 0.6. The presented results are average over the off-
peak on-peak dwell time distributions, respectively. Overall, the B&B slightly
outperforms FIFO. However, in case of high stochasticity B&B produces sig-
nificantly better solutions compared to FIFO in terms of the minimization of
maximum consecutive delays.

When comparing deterministic and stochastic instances in Table 1, it must
be noted that the train delays are much larger when stochasticity is consid-
ered, on average 10% for total delay, and up to ≈ 250% for average consecutive
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Table 1 Average results on deterministic and stochastic instances for g = 0.6, split by
off/on peak, process time stochasticity and objective function. The greedy heuristic has
been omitted since we obtained the same solutions as B&B for g = 0.6. The % column
indicates how many % FIFO was outperformed by B&B on average.

Off peak Deterministic Stochastic
Stoch. Obj. func. FIFO B&B % FIFO B&B %

[−2.5%, 5%]

Avg. Tard. 223.02 219.1 1.76 241.01 235.76 2.18
Max. Tard. 1160.00 1160.00 0.00 1456.41 1460.19 -0.26
Avg. Con. 27.36 23.44 14.34 63.75 58.50 8.23
Max. Con. 256.50 253.00 1.36 667.89 658.09 1.47

[−5%, 10%]

Avg. Tard. 233.54 229.74 1.63 247.53 242.09 2.20
Max. Tard. 1208.00 1208.00 0.00 1482.45 1482.15 0.02
Avg. Con. 29.14 25.33 13.05 65.38 59.94 8.32
Max. Con. 280.50 280.50 0.00 670.63 653.20 2.60

[−7.5%, 15%]

Avg. Tard. 242.40 240.76 0.68 254.76 249.91 1.90
Max. Tard. 1252.00 1252.00 0.00 1508.07 1503.40 0.31
Avg. Con. 30.46 28.81 5.39 67.79 62.94 7.15

Max. Con. 305.50 303.00 0.82 676.21 652.42 3.52

[−10%, 20%]

Avg. Tard. 255.78 254.48 0.51 261.58 257.39 1.60
Max. Tard. 1456.50 1304.00 10.47 1603.30 1531.23 4.50
Avg. Con. 33.10 31.81 3.91 69.39 65.20 6.04

Max. Con. 361.50 331.00 8.44 736.55 659.19 10.50

On peak Deterministic Stochastic
Stoch. Obj. func. FIFO B&B % FIFO B&B %

[−2.5%, 5%]

Avg. Tard. 247.05 244.63 0.98 282.09 277.27 1.71
Max. Tard. 1238.00 1238.00 0.00 1640.27 1640.12 0.01
Avg. Con. 32.89 30.47 7.35 82.74 77.91 5.83
Max. Con. 325.50 297.00 8.76 777.00 754.66 2.87

[−5%, 10%]

Avg. Tard. 257.88 256.05 0.71 288.70 284.28 1.53
Max. Tard. 1453.00 1286.00 11.49 1712.81 1664.68 2.81
Avg. Con. 34.66 32.83 5.28 84.24 79.81 5.25
Max. Con. 376.50 323.50 14.08 816.48 754.47 7.59

[−7.5%, 15%]

Avg. Tard. 266.92 265.55 0.51 295.37 291.05 1.46
Max. Tard. 1477.50 1330 9.98 1735.24 1690.04 2.60
Avg. Con. 36.13 34.76 3.79 86.08 81.77 5.01

Max. Con. 362.00 348.50 3.73 817.38 760.29 6.98

[−10%, 20%]

Avg. Tard. 287.29 277.97 3.25 310.29 298.01 3.96
Max. Tard. 1507.00 1507.00 0.00 1754.92 1753.14 0.10
Avg. Con. 45.73 36.40 20.39 95.55 83.27 12.85
Max. Con. 722.50 339.50 53.01 1006.18 789.95 21.49

delay. This reflects a high sensitivity of the train movements to delay propa-
gation, and justifies the usage of microscopic models that can compute delay
propagation between subsequent trains precisely. The ratio (% columns) be-
tween average delays and maximum delays (both consecutive delay and tardi-
ness/total delay) produced by B&B and FIFO remains comparable across the
different stochastic levels. B&B generates consistently better solutions com-
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and consecutive delays (right) for FIFO and B&B in seconds, for all g, for all v.

pared to FIFO in terms of maximum and average consecutive delay, both in
the deterministic and the stochastic case.

Surprisingly the relative gap in average consecutive delay between B&B
and FIFO increases for the stochasticity level [−7.5%, 15%] (and other bold
entries in the table), when stochasticity is added. It was hypothesized before
running the tests that the tighter schedule would make more delays propagate.
We also observe that the maximum consecutive delays produced by the B&B
grow much slower than the maximum consecutive delays produced by FIFO
as the stochasticity v increases. The difference between algorithms increases
slightly with the amount of stochasticity v, due to both a greater expected
value of the process times, and a greater chance of delay propagation due to
the larger variability.

The plots in Figure 6 give further details on the statistic trends, aggregating
over all values of g, all stochasticity levels v and on/off peak. Also in this case
the greedy heuristic has been omitted from the plots, as it fails to give a feasible
solution in all cases thus skewing any density plots. The plots on the left report
the distribution of the averaged average2 tardiness and the averaged average
consecutive delay incurred by FIFO and B&B. Solutions computed by B&B
are in general better, as observed in Table 1. This can be seen by a shift towards
lower delays for both performance indicators. Another interesting feature of
B&B is the reduced spread compared to FIFO, i.e., its distributions has a
sharper peak. This means that B&B is able to come up with good solutions
more consistently and suffers from uncertainty to a lesser extent. Similar trends
arise for the average tardiness. Finally, the ripple pattern on the right tail of
the figure is due to the aggregation of multiple values of g into a single plot.
This highlights the role of the sampling strategy, that has a relatively large

2 When two aggregators are specified, the inner aggregates over the operations in the
solution.
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influence on the final solutions. The plot on the right represents the densities of
the average maximum tardiness and the average maximum consecutive delay.
B&B outperforms FIFO on average consecutive delays as seen in Table 1,
while having similar averaged maximum tardiness values. In general, the same
patterns arise as for the average delays, but due to the high non-linearity of
the maximum delay as indicator, the plots are more erratic, and trends are
more difficult to visualize.

Figure 7 shows the contribution to left plot in figure 6 that comes from
the case where g = 0.6, for all stochasticity levels v. The right tail shows
a very neat reduction towards zero; the other trends that were discussed in
Figure 6 are more easily seen. In this plot, the greedy heuristic and B&B are
indistinguishable.

Figure 8 illustrates the difference in average consecutive delays between
solutions produced by FIFO and B&B for all Monte Carlo samples for g = 0.6,
for all stochastic levels v. Since the plot is skewed to the right is clear that
B&B is the best algorithm, on average. On the other hand, the tails of the
distributions are quite large, so there exist samples for which the solution
provided by the FIFO performs better than the one produced by the B&B
on the scenarios. However, the B&B solutions happen to be better than or at
least as good as after stochasticity is added in the 77.47% of the cases for v =
[−2.5%, 5%], in 76.65% for v = [−5%, 10%], in 73.97% for v = [−7.5%, 15%]
and finally in the 82.23% of the cases for the higher stochastic level v =
[−10%, 20%]. The gap between B&B and FIFO in terms of average consecutive
delays increases as the travel times become more uncertain.

Two scenarios were considered for dwell time durations: on peak and off
peak. Figure 9 demonstrates a shift in average solution quality: when dwell
time increases in the peak hours (Figure 4), the average consecutive delay
increases significantly, with about 15 seconds deviation on average. Thus, a
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relatively limited difference in dwell time probability may result in remarkable
differences in output. This confirms the general idea that stations are the main
bottleneck of railway systems, specially for stations with multiple platforms
and tracks such as the one considered in this study, that have many conflicting
inbound and outbound routes, and serve large amounts of passengers.

4.7 Needs for rescheduling

It can be observed that in practice, when the delays exceed a given threshold
the human dispatcher may execute the rescheduling algorithm to produce a
new plan more adherent to the current network status. Therefore an algo-
rithm able to produce a robust schedule may lead to a reduced rescheduling
frequency, which is desirable. The proposed robustness evaluation framework
can then be used to evaluate how often the given rescheduling threshold is
exceeded and the rescheduling process is triggered. To determine in what per-
centage of cases a rescheduling is required, we must first decide on the threshold
level to consider. We used the average consecutive delay as objective function
indicator, because it allows comparisons between instances with different pri-
mary delays. It is also clear that the tardiness measures are a poor basis on
which to decide if a rescheduling is needed, as all of them might be unavoidable,
i.e., caused by entrance delays an travel times. The percentage of simulated
outcomes requiring rescheduling is plotted against the chosen threshold level
based on the average consecutive delay in Figure 10. The figure shows the
behavior of FIFO and B&B for a low stochasticity (v = [−2.5%, 5%]) and
high stochasticity (v = [−10%, 20%]) situations when g = 0.6 is considered.
From the plot it is clear that average values below 50 seconds are rare, while
values greater than 150 seconds seldom occur. For values in between, there is
a consistent gap between B&B and FIFO, indicating that choosing acceptable
average consecutive delays in this interval ([50, 150]) would force more frequent
reschedules for FIFO than for B&B.

4.8 Analysing the influence of a single dwell or process time

Another value of interest is the influence on the overall schedule of the variation
of a single dwell operation. To this aim we have to identify the operation with
the greatest potential impact on the average consecutive delay of all trains.

Longest path calculations done on the graph are used to obtain starting
times for each operation, and allows for identification of critical operations. By
selecting an operation oi to analyze, changes can be made to that operations
process times for all the sample graphs3, and the resulting sets of objectives
can be analyzed.

3 By evaluating estimates for oi in increasing order, longest path calculations can be
reduced to propagate changes on paths rooted in the oi in the temporal networks.
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age of scenarios requiring rescheduling can be determined. These values are computed for
g = 0.6.

The operation with the greatest potential impact on the objective is identi-
fied by applying the sampling strategies g = 0.0 and g = 1.0. For each of these
two cases, the average consecutive delay is computed on and averaged over all
Monte Carlo samplings. The difference in the two computed means represents
an estimate on the averaged impact of changing that operations duration from
the minimum to the maximum possible value.

Figure 11 shows the distribution of the average consecutive delay for dif-
ferent values of g for the operation changing the average objective the most.
This operation corresponds to a dwell time as expected due to dwell times
having a larger range of possible values. On the contrary, the corresponding
plot for trains travel times shows little discernible difference for g = 0 and
g = 1, even with v = [−10%,+20%]. This again confirms that while process
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times for trains travel summed up matters, their individual influence is easily
drowned out by a single dwell time.

5 Conclusions and further research

This paper proposed a framework for evaluating the robustness of a given so-
lution to the train rescheduling problem, where robustness under disturbances
is the ability to handle small stochastic variations in running and dwell times
of trains in the network, without increasing output delays. The robustness
analysis is carried out with a very small computational cost, thus it is suitable
for the real-time evaluation of different alternative solutions.

The behavior of three deterministic scheduling algorithms has been eval-
uated in a stochastic environment. The B&B solutions are only slightly less
robust to variability of input parameters than the myopic FIFO rule that relies
on local information only, as demonstrated in Table 1. The greedy heuristic
performs well when it delivers results, but it must be deemed too unstable to
use outside a framework such as B&B.

The influence of algorithms, stochasticity and sampling strategy was also
assessed. From the results, it turned out that the sampling strategy, used
to generate the deterministic instances, has significant effect on the solution
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quality. Sampling strategies when ignoring delays (i.e. g ≈ 0.33) performed
significantly worse than strategies corresponding to using expected values for
each distribution (g ≈ 0.5). Furthermore it was shown that slightly overesti-
mating the expected value of the distributions performs better than underes-
timation. This observation becomes important when the exact distributions
are unknown.

B&B was originally feared to be more sensitive to stochasticity than FIFO,
being the schedule produced by B&B tighter. We have shown, however, that
B&B often outperforms FIFO after taking stochasticity into account.

Future research should be directed to:

– Exploring more sophisticated sampling strategies, and further determining
the statistical properties of the recorded distributions of process times.

– Applying closed loop rescheduling based on the real time analysis of solu-
tions robustness.

– Maintaining pools of candidate solutions, and guiding (as real time events
occurs) execution of schedules by the plan exhibiting the best performance
indicators.
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