7,182 research outputs found

    Design Methodology of Very Large Scale Integration

    Get PDF
    Very Large Scale Integration (VLSI) deals with systems complexity rather than transistor size or circuit performance. VLSI design methodology is supported by Computer Aided Design (CAD) and Design Automation (DA) tools, which help VLSI designers to implement more complex and guaranteed designs. The increasing growth in VLSI complexity dictates a hierarchical design approach and the need for hardware DA tools. This paper discusses the generalized Design Procedure for CAD circuit design; the commercial CADs offered by CALMA and the Caesar System, supported by the Berkeley design tools. A complete design of a Content Addressable Memory (CAM) cell, using the Caesar system, supported by Berkeley CAD tools, is illustrated

    Geometrically-constrained, parasitic-aware synthesis of analog ICs

    Get PDF
    In order to speed up the design process of analog ICs, iterations between different design stages should be avoided as much as possible. More specifically, spins between electrical and physical synthesis should be reduced for this is a very time-consuming task: if circuit performance including layout-induced degradations proves unacceptable, a re-design cycle must be entered, and electrical, physical, or both synthesis processes, would have to be repeated. It is also worth noting that if geometric optimization (e.g., area minimization) is undertaken after electrical synthesis, it may add up as another source of unexpected degradation of the circuit performance due to the impact of the geometric variables (e.g., transistor folds) on the device and the routing parasitic values. This awkward scenario is caused by the complete separation of said electrical and physical synthesis, a design practice commonly followed so far. Parasitic-aware synthesis, consisting in including parasitic estimates to the circuit netlist directly during electrical synthesis, has been proposed as solution. While most of the reported contributions either tackle parasitic-aware synthesis without paying special attention to geometric optimization or approach both issues only partially, this paper addresses the problem in a unified way. In what has been called layout-aware electrical synthesis, a simulation-based optimization algorithm explores the design space with geometric variables constrained to meet certain user-defined goals, which provides reliable estimates of layout-induced parasitics at each iteration, and, thereby, accurate evaluation of the circuit ultimate performance. This technique, demonstrated here through several design examples, requires knowing layout details beforehand; to facilitate this, procedural layout generation is used as physical synthesis approach due to its rapidness and ability to capture analog layout know-how.Ministerio de Educación y Ciencia TEC2004-0175

    The changing perception in the artefacts used in the design practice through BIM adoption

    Get PDF
    When CAD (Computer Aided Design) was generally adopted in the early 1990’s, the hand drawn process was replaced with the CAD drawing but the nature of the artefacts / deliverables and the exchanges of information between disciplines remained fundamentally the same. The deliverables remained 2D representations of 3D forms and Specifications and Bill of Quantities. However, the building industry is under great pressure to provide value for money, sustainable design and construction. This has propelled the adoption of Building Information Modelling (BIM). BIM is a foundational tool for a team based lean design approach. It can enable the intelligent interrogation of design; provide a quicker and cheaper design production; better co-ordination of documentation; more effective change control; less repetition of processes; a better quality constructed product; and improved communication both for the architectural practice and across the supply chain. As BIM enables a new of working methodology, it entails the change in perceiving artefacts used and deliverables produced in the design and construction stages. In other words, defining what the informational issues are, who does what and who is responsible for what and the level of detail required at each stage in design and construction is critically important to adopt and implement BIM in the construction sector. This paper presents the key findings through the action research methodology about the change in the nature of artefacts and deliverables resulting from the BIM adoption in the KTP (Knowledge Transfer Partnership) project undertaken by the University of Salford and John McCall Architects

    On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    Get PDF
    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.Ministerio de Educación y Ciencia TEC2004-0175

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    VLSI design methodology

    Get PDF

    When self-consistency makes a difference

    Get PDF
    Compound semiconductor power RF and microwave device modeling requires, in many cases, the use of selfconsistent electrothermal equivalent circuits. The slow thermal dynamics and the thermal nonlinearity should be accurately included in the model; otherwise, some response features subtly related to the detailed frequency behavior of the slow thermal dynamics would be inaccurately reproduced or completely distorted. In this contribution we show two examples, concerning current collapse in HBTs and modeling of IMPs in GaN HEMTs. Accurate thermal modeling is proved to be be made compatible with circuit-oriented CAD tools through a proper choice of system-level approximations; in the discussion we exploit a Wiener approach, but of course the strategy should be tailored to the specific problem under consideratio

    Transformation of ADA programs into silicon (82 Mar. 1 - 82 Oct. 31)

    Get PDF
    technical reportThis report outlines the beginning steps taken in an integrated research effort toward the development of a methodology, and supporting systems, for transforming Ada programs, or program units, (directly) into corresponding VLSI systems. The time seems right to expect good results. The need is evident; special purpose systems should be realistic alternatives where simplicity, speed, reliability, and security are dominant factors. Success in this research can lead to attractive options for embedded system applications
    corecore