52 research outputs found

    A dependently-typed construction of semi-simplicial types

    Get PDF
    International audienceThis paper presents a dependently-typed construction of semi-simplicial sets in type theory where sets are taken to be types. This addresses an open question raised on the wiki of the special year on Univalent Foundations at the Institute of Advanced Study (2012-2013)

    Semi-simplicial Types in Logic-enriched Homotopy Type Theory

    Full text link
    The problem of defining Semi-Simplicial Types (SSTs) in Homotopy Type Theory (HoTT) has been recognized as important during the Year of Univalent Foundations at the Institute of Advanced Study. According to the interpretation of HoTT in Quillen model categories, SSTs are type-theoretic versions of Reedy fibrant semi-simplicial objects in a model category and simplicial and semi-simplicial objects play a crucial role in many constructions in homotopy theory and higher category theory. Attempts to define SSTs in HoTT lead to some difficulties such as the need of infinitary assumptions which are beyond HoTT with only non-strict equality types. Voevodsky proposed a definition of SSTs in Homotopy Type System (HTS), an extension of HoTT with non-fibrant types, including an extensional strict equality type. However, HTS does not have the desirable computational properties such as decidability of type checking and strong normalization. In this paper, we study a logic-enriched homotopy type theory, an alternative extension of HoTT with equational logic based on the idea of logic-enriched type theories. In contrast to Voevodskys HTS, all types in our system are fibrant and it can be implemented in existing proof assistants. We show how SSTs can be defined in our system and outline an implementation in the proof assistant Plastic

    A parametricity-based formalization of semi-simplicial and semi-cubical sets

    Full text link
    Semi-simplicial and semi-cubical sets are commonly defined as presheaves over respectively, the semi-simplex or semi-cube category. Homotopy Type Theory then popularized an alternative definition, where the set of n-simplices or n-cubes are instead regrouped into the families of the fibers over their faces, leading to a characterization we call indexed. Moreover, it is known that semi-simplicial and semi-cubical sets are related to iterated Reynolds parametricity, respectively in its unary and binary variants. We exploit this correspondence to develop an original uniform indexed definition of both augmented semi-simplicial and semi-cubical sets, and fully formalize it in Coq.Comment: Associated formalization in Coq at https://github.com/artagnon/bona

    Two-Level Type Theory and Applications

    Get PDF
    We define and develop two-level type theory (2LTT), a version of Martin-L\"of type theory which combines two different type theories. We refer to them as the inner and the outer type theory. In our case of interest, the inner theory is homotopy type theory (HoTT) which may include univalent universes and higher inductive types. The outer theory is a traditional form of type theory validating uniqueness of identity proofs (UIP). One point of view on it is as internalised meta-theory of the inner type theory. There are two motivations for 2LTT. Firstly, there are certain results about HoTT which are of meta-theoretic nature, such as the statement that semisimplicial types up to level nn can be constructed in HoTT for any externally fixed natural number nn. Such results cannot be expressed in HoTT itself, but they can be formalised and proved in 2LTT, where nn will be a variable in the outer theory. This point of view is inspired by observations about conservativity of presheaf models. Secondly, 2LTT is a framework which is suitable for formulating additional axioms that one might want to add to HoTT. This idea is heavily inspired by Voevodsky's Homotopy Type System (HTS), which constitutes one specific instance of a 2LTT. HTS has an axiom ensuring that the type of natural numbers behaves like the external natural numbers, which allows the construction of a universe of semisimplicial types. In 2LTT, this axiom can be stated simply be asking the inner and outer natural numbers to be isomorphic. After defining 2LTT, we set up a collection of tools with the goal of making 2LTT a convenient language for future developments. As a first such application, we develop the theory of Reedy fibrant diagrams in the style of Shulman. Continuing this line of thought, we suggest a definition of (infinity,1)-category and give some examples.Comment: 53 page

    Homotopy Type Theory in Isabelle

    Get PDF

    Computads for generalised signatures

    Full text link
    We introduce a notion of signature whose sorts form a direct category, and study computads for such signatures. Algebras for such a signature are presheaves with an interpretation of every function symbol of the signature, and we describe how computads give rise to signatures. Generalising work of Batanin, we show that computads with certain generator-preserving morphisms form a presheaf category, and describe a forgetful functor from algebras to computads. Algebras free on a computad turn out to be the cofibrant objects for certain cofibrantly generated factorisation system, and the adjunction above induces the universal cofibrant replacement, in the sense of Garner, for this factorisation system. Finally, we conclude by explaining how many-sorted structures, weak ω\omega-categories, and algebraic semi-simplicial Kan complexes are algebras of such signatures, and we propose a notion of weak multiple category.Comment: 39 page

    Extending homotopy type theory with strict equality

    Get PDF
    In homotopy type theory (HoTT), all constructions are necessarily stable under homotopy equivalence. This has shortcomings: for example, it is believed that it is impossible to define a type of semi-simplicial types. More generally, it is difficult and often impossible to handle towers of coherences. To address this, we propose a 2-level theory which features both strict and weak equality. This can essentially be represented as two type theories: an ``outer'' one, containing a strict equality type former, and an ``inner'' one, which is some version of HoTT. Our type theory is inspired by Voevodsky's suggestion of a homotopy type system (HTS) which currently refers to a range of ideas. A core insight of our proposal is that we do not need any form of equality reflection in order to achieve what HTS was suggested for. Instead, having unique identity proofs in the outer type theory is sufficient, and it also has the meta-theoretical advantage of not breaking decidability of type checking. The inner theory can be an easily justifiable extensions of HoTT, allowing the construction of ``infinite structures'' which are considered impossible in plain HoTT. Alternatively, we can set the inner theory to be exactly the current standard formulation of HoTT, in which case our system can be thought of as a type-theoretic framework for working with ``schematic'' definitions in HoTT. As demonstrations, we define semi-simplicial types and formalise constructions of Reedy fibrant diagrams

    Strictification of weakly stable type-theoretic structures using generic contexts

    Full text link
    We present a new strictification method for type-theoretic structures that are only weakly stable under substitution. Given weakly stable structures over some model of type theory, we construct equivalent strictly stable structures by evaluating the weakly stable structures at generic contexts. These generic contexts are specified using the categorical notion of familial representability. This generalizes the local universes method of Lumsdaine and Warren. We show that generic contexts can also be constructed in any category with families which is freely generated by collections of types and terms, without any definitional equality. This relies on the fact that they support first-order unification. These free models can only be equipped with weak type-theoretic structures, whose computation rules are given by typal equalities. Our main result is that any model of type theory with weakly stable weak type-theoretic structures admits an equivalent model with strictly stable weak type-theoretic structures

    Covering Spaces in Homotopy Type Theory

    Get PDF
    Broadly speaking, algebraic topology consists of associating algebraic structures to topological spaces that give information about their structure. An elementary, but fundamental, example is provided by the theory of covering spaces, which associate groups to covering spaces in such a way that the universal cover corresponds to the fundamental group of the space. One natural question to ask is whether these connections can be stated in homotopy type theory, a new area linking type theory to homotopy theory. In this paper, we give an affirmative answer with a surprisingly concise definition of covering spaces in type theory; we are able to prove various expected properties about the newly defined covering spaces, including the connections with fundamental groups. An additional merit is that our work has been fully mechanized in the proof assistant Agda
    • …
    corecore