8,697 research outputs found

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed

    MAC & Mobility In Wireless Sensor Networks

    Get PDF

    Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans

    No full text
    The Greenland and Antarctic Ice Sheets cover ~\n10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40–2.54?Tg per year in Greenland and 0.06–0.17?Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting

    USCID water management conference

    Get PDF
    Presented at Meeting irrigation demands in a water-challenged environment: SCADA and technology: tools to improve production: a USCID water management conference held on September 28 - October 1, 2010 in Fort Collins, Colorado.Includes bibliographical references.The Colorado Satellite-Linked Water Resources Monitoring System: 25 years later -- Using state water law for efficient water use in the West -- On-farm strategies for deficit or limited irrigation to maximize operational profit potential in Colorado's South Platte Basin -- Economics of groundwater management alternatives in the Republican Basin -- Effects of policies governing water reuse on agricultural crops -- Flow calibration of the Bryan Canal radial gate at the United Irrigation District -- Considering canal pool resonance in controller design -- Synthetic canal lining evaluation project -- South Platte Ditch Company: demonstration flow monitoring and data collection project -- The case for ditch-wide water rights analysis in Colorado -- Bore wells: a boon for tail end users -- Irrigation efficiency and water users' performance in water management: a case study on the Heran distributary, Sanghar, Sindh, Pakistan -- Initiating SCADA projects in irrigation districts -- Use of GIS as a real time decision support system for irrigation districts -- Interaction of Advanced Scientific Irrigation Management (ASIM) with I-SCADA system for efficient and sustainable production of fiber on 10,360 hectares -- Improving irrigation system performance in the Middle Rio Grande through scheduled water delivery -- Cost-effective SCADA development for irrigation districts: a Nebraska case study -- Accomplishments from a decade of SCADA implementation in Idaho's Payette Valley -- Critical success factors for large scale automation experiences from 10,000 gates -- Mapping ET in southeastern Colorado using a surface aerodynamic temperature model -- Alfalfa crop coefficients developed using a weighing lysimeter in southeast Colorado -- Turfgrass ET from small lysimeters in northeast Colorado -- Monitoring turf water status with infrared thermometry -- Training tool for on-farm water management using heuristic simulation software -- Water production functions for high plains crops -- Assessment of economic and hydrologic impacts of reduced surface water supply for irrigation via remote sensing -- Developing corn regional crop coefficients using a satellite-based energy balance model (ReSET) in the South Platte River area of Colorado

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Alaska University Transportation Center 2012 Annual Report

    Get PDF

    Toward Reliable, Secure, and Energy-Efficient Multi-Core System Design

    Get PDF
    Computer hardware researchers have perennially focussed on improving the performance of computers while stipulating the energy consumption under a strict budget. While several innovations over the years have led to high performance and energy efficient computers, more challenges have also emerged as a fallout. For example, smaller transistor devices in modern multi-core systems are afflicted with several reliability and security concerns, which were inconceivable even a decade ago. Tackling these bottlenecks happens to negatively impact the power and performance of the computers. This dissertation explores novel techniques to gracefully solve some of the pressing challenges of the modern computer design. Specifically, the proposed techniques improve the reliability of on-chip communication fabric under a high power supply noise, increase the energy-efficiency of low-power graphics processing units, and demonstrate an unprecedented security loophole of the low-power computing paradigm through rigorous hardware-based experiments

    A high-throughput multi-hop WSN for structural health monitoring

    Get PDF
    Two major challenges with existing multi-hop WSNs used for structural health monitoring (SHM) are how to increase the data transmission rate (DTR) for large amounts of sampling data and enlarge the data transmission range without degrading link quality. To handle these issues, this paper proposes a new design method of a multi-hop WSN with multi-radio sink node (M-RSN) and double-radio relay node (D-RRN) which can increase the data transfer ability at the sink and extend the monitoring distance without degrading wireless link quality. Additionally, a tight scheduled approach and multi-radio time synchronization method are designed for the stable implementation of the proposed network. To evaluate the effectiveness and robustness of the proposed network designing method, experiments in outdoor environment and for aircraft composite wing boxes monitoring are carried out. The evaluation results have shown the advantages of the proposed methods
    corecore