494 research outputs found

    The Dual Polynomial of Bipartite Perfect Matching

    Get PDF
    We obtain a description of the Boolean dual function of the Bipartite Perfect Matching decision problem, as a multilinear polynomial over the Reals. We show that in this polynomial, both the number of monomials and the magnitude of their coefficients are at most exponential in O(nlogn)\mathcal{O}(n \log n). As an application, we obtain a new upper bound of O(n1.5logn)\mathcal{O}(n^{1.5} \sqrt{\log n}) on the approximate degree of the bipartite perfect matching function, improving the previous best known bound of O(n1.75)\mathcal{O}(n^{1.75}). We deduce that, beyond a O(logn)\mathcal{O}(\sqrt{\log n}) factor, the polynomial method cannot be used to improve the lower bound on the bounded-error quantum query complexity of bipartite perfect matching

    Robust Assignments via Ear Decompositions and Randomized Rounding

    Get PDF
    Many real-life planning problems require making a priori decisions before all parameters of the problem have been revealed. An important special case of such problem arises in scheduling problems, where a set of tasks needs to be assigned to the available set of machines or personnel (resources), in a way that all tasks have assigned resources, and no two tasks share the same resource. In its nominal form, the resulting computational problem becomes the \emph{assignment problem} on general bipartite graphs. This paper deals with a robust variant of the assignment problem modeling situations where certain edges in the corresponding graph are \emph{vulnerable} and may become unavailable after a solution has been chosen. The goal is to choose a minimum-cost collection of edges such that if any vulnerable edge becomes unavailable, the remaining part of the solution contains an assignment of all tasks. We present approximation results and hardness proofs for this type of problems, and establish several connections to well-known concepts from matching theory, robust optimization and LP-based techniques.Comment: Full version of ICALP 2016 pape

    Parameterized Complexity of Biclique Contraction and Balanced Biclique Contraction

    Full text link
    In this work, we initiate the complexity study of Biclique Contraction and Balanced Biclique Contraction. In these problems, given as input a graph G and an integer k, the objective is to determine whether one can contract at most k edges in G to obtain a biclique and a balanced biclique, respectively. We first prove that these problems are NP-complete even when the input graph is bipartite. Next, we study the parameterized complexity of these problems and show that they admit single exponential-time FPT algorithms when parameterized by the number k of edge contractions. Then, we show that Balanced Biclique Contraction admits a quadratic vertex kernel while Biclique Contraction does not admit any polynomial compression (or kernel) under standard complexity-theoretic assumptions

    Flows and bisections in cubic graphs

    Get PDF
    A kk-weak bisection of a cubic graph GG is a partition of the vertex-set of GG into two parts V1V_1 and V2V_2 of equal size, such that each connected component of the subgraph of GG induced by ViV_i (i=1,2i=1,2) is a tree of at most k2k-2 vertices. This notion can be viewed as a relaxed version of nowhere-zero flows, as it directly follows from old results of Jaeger that every cubic graph GG with a circular nowhere-zero rr-flow has a r\lfloor r \rfloor-weak bisection. In this paper we study problems related to the existence of kk-weak bisections. We believe that every cubic graph which has a perfect matching, other than the Petersen graph, admits a 4-weak bisection and we present a family of cubic graphs with no perfect matching which do not admit such a bisection. The main result of this article is that every cubic graph admits a 5-weak bisection. When restricted to bridgeless graphs, that result would be a consequence of the assertion of the 5-flow Conjecture and as such it can be considered a (very small) step toward proving that assertion. However, the harder part of our proof focuses on graphs which do contain bridges.Comment: 14 pages, 6 figures - revised versio
    corecore