6,947 research outputs found

    Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

    Full text link
    Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.Comment: Accepted for publication in Nature Communication

    Multi-source Multimodal Data and Deep Learning for Disaster Response: A Systematic Review.

    Get PDF
    Mechanisms for sharing information in a disaster situation have drastically changed due to new technological innovations throughout the world. The use of social media applications and collaborative technologies for information sharing have become increasingly popular. With these advancements, the amount of data collected increases daily in different modalities, such as text, audio, video, and images. However, to date, practical Disaster Response (DR) activities are mostly depended on textual information, such as situation reports and email content, and the benefit of other media is often not realised. Deep Learning (DL) algorithms have recently demonstrated promising results in extracting knowledge from multiple modalities of data, but the use of DL approaches for DR tasks has thus far mostly been pursued in an academic context. This paper conducts a systematic review of 83 articles to identify the successes, current and future challenges, and opportunities in using DL for DR tasks. Our analysis is centred around the components of learning, a set of aspects that govern the application of Machine learning (ML) for a given problem domain. A flowchart and guidance for future research are developed as an outcome of the analysis to ensure the benefits of DL for DR activities are utilized.Publishe

    Advancements in Forest Fire Prevention: A Comprehensive Survey

    Get PDF
    Nowadays, the challenges related to technological and environmental development are becoming increasingly complex. Among the environmentally significant issues, wildfires pose a serious threat to the global ecosystem. The damages inflicted upon forests are manifold, leading not only to the destruction of terrestrial ecosystems but also to climate changes. Consequently, reducing their impact on both people and nature requires the adoption of effective approaches for prevention, early warning, and well-coordinated interventions. This document presents an analysis of the evolution of various technologies used in the detection, monitoring, and prevention of forest fires from past years to the present. It highlights the strengths, limitations, and future developments in this field. Forest fires have emerged as a critical environmental concern due to their devastating effects on ecosystems and the potential repercussions on the climate. Understanding the evolution of technology in addressing this issue is essential to formulate more effective strategies for mitigating and preventing wildfires

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Deep Representation Learning and Prediction for Forest Wildfires

    Get PDF
    An average of 8000 forest wildfires occurs each year in Canada burning an average of 2.5M ha/year as reported by the Government of Canada. Given the current rate of climate change, this number is expected to increase each year. Being able to predict how the fires spread would play a critical role in fire risk management. However, given the complexity of the natural processes that influence a fire system, most of the models used for simulating wildfires are computationally expensive and need a high variety of information about the environmental parameters to be able to give good performances. Deep learning algorithms allow computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined in terms of its relation to simpler concepts. We propose a deep learning predictor that uses a Deep Convolutional Auto-Encoder to learn the key structures of a forest wildfire spread from images and a Long Short Term Memory to predict the next phase of the fire. We divided the predictor problem in three phases: find a dataset of wildfires, learning the essential structure of forest fire, and predict the next image. We first present the simulated wildfires dataset and the algorithm we applied on it to make it more suitable to the model. Then we present the Deep Forest Wildfire Auto-Encoder and its implementation using the Caffe framework. Particular attention is given to the design considerations and to the best practice used to implement the model. We also present the design of the Deep Forest Wildfire Predictor, and some possible future variations of it

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Fuzzy Logic in Surveillance Big Video Data Analysis: Comprehensive Review, Challenges, and Research Directions

    Get PDF
    CCTV cameras installed for continuous surveillance generate enormous amounts of data daily, forging the term “Big Video Data” (BVD). The active practice of BVD includes intelligent surveillance and activity recognition, among other challenging tasks. To efficiently address these tasks, the computer vision research community has provided monitoring systems, activity recognition methods, and many other computationally complex solutions for the purposeful usage of BVD. Unfortunately, the limited capabilities of these methods, higher computational complexity, and stringent installation requirements hinder their practical implementation in real-world scenarios, which still demand human operators sitting in front of cameras to monitor activities or make actionable decisions based on BVD. The usage of human-like logic, known as fuzzy logic, has been employed emerging for various data science applications such as control systems, image processing, decision making, routing, and advanced safety-critical systems. This is due to its ability to handle various sources of real world domain and data uncertainties, generating easily adaptable and explainable data-based models. Fuzzy logic can be effectively used for surveillance as a complementary for huge-sized artificial intelligence models and tiresome training procedures. In this paper, we draw researchers’ attention towards the usage of fuzzy logic for surveillance in the context of BVD. We carry out a comprehensive literature survey of methods for vision sensory data analytics that resort to fuzzy logic concepts. Our overview highlights the advantages, downsides, and challenges in existing video analysis methods based on fuzzy logic for surveillance applications. We enumerate and discuss the datasets used by these methods, and finally provide an outlook towards future research directions derived from our critical assessment of the efforts invested so far in this exciting field
    corecore