295 research outputs found

    A deep learning pipeline to classify different stages of Alzheimer's disease from fMRI data

    Get PDF
    Alzheimer's disease (AD) is an irreversible, progressive neurological disorder that causes memory and thinking skill loss. Many different methods and algorithms have been applied to extract patterns from neuroimaging data in order to distinguish different stages of Alzheimer's disease (AD). However, the similarity of the brain patterns in older adults and in different stages makes the classification of different stages a challenge for researchers. In this paper, convolutional neuronal network architecture AlexNet was applied to fMRI datasets to classify different stages of the disease. We classified five different stages of Alzheimer's using a deep learning algorithm. The method successfully classified normal healthy control (NC), significant memory concern (SMC), early mild cognitive impair (EMCI), late cognitive mild impair (LMCI), and Alzheimer's disease (AD). The model was implemented using GPU high performance computing. Before applying any classification, the fMRI data were strictly preprocessed. Then, low to high level features were extracted and learned using the AlexNet model. Our experiments show significant improvement in classification. The average accuracy of the model was 97.63%. We then tested our model on test datasets to evaluate the accuracy of the model per class, obtaining an accuracy of 94.97% for AD, 95.64% for EMCI, 95.89% for LMCI, 98.34% for NC, and 94.55% for SMC.Natural Sciences and Engineering Research Council of Canad

    Pattern Analysis and Prediction of Mild Cognitive Impairment Using the Conn Toolbox

    Get PDF
    Alzheimer\u27s is an irreversible neurodegenerative disorder described by dynamic psychological and memory defalcation. It has been accounted for that the pervasiveness of Alzheimer\u27s is to increase by 4 times in a few years, where one in every 75 people will have this disorder. Hence, there is a critical requirement for the analysis of Alzheimer\u27s at its beginning stage to diminish the difficulty of the overall medical complications. The initial state of Alzheimer’s is called Mild cognitive impairment (MCI), and hence it is a decent target for premature diagnosis and treatment of Alzheimer\u27s. This project focuses on coordinating numerous imaging modalities to identify people in danger for MCI. The current advancement of brain network connectivity analysis has led to the identification of neurological issues at an entire connectivity level, thereby providing a new road to the classification of brain-related diseases. Utilizing neuroimage pattern classification and various machine learning techniques, we endeavor to incorporate information from CONN toolbox and resting-state functional magnetic resonance imaging (rs-fMRI) for refining MCI prediction accuracy

    Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review

    Get PDF
    Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions

    DEEP-AD: The deep learning model for diagnostic classification and prognostic prediction of alzheimer's disease

    Get PDF
    In terms of context, the aim of this dissertation is to aid neuroradiologists in their clinical judgment regarding the early detection of AD by using DL. To that aim, the system design research methodology is suggested in this dissertation for achieving three goals. The first goal is to investigate the DL models that have performed well at identifying patterns associated with AD, as well as the accuracy so far attained, limitations, and gaps. A systematic review of the literature (SLR) revealed a shortage of empirical studies on the early identification of AD through DL. In this regard, thirteen empirical studies were identified and examined. We concluded that three-dimensional (3D) DL models have been generated far less often and that their performance is also inadequate to qualify them for clinical trials. The second goal is to provide the neuroradiologist with the computer-interpretable information they need to analyze neuroimaging biomarkers. Given this context, the next step in this dissertation is to find the optimum DL model to analyze neuroimaging biomarkers. It has been achieved in two steps. In the first step, eight state-of-the-art DL models have been implemented by training from scratch using end-to-end learning (E2EL) for two binary classification tasks (AD vs. CN and AD vs. stable MCI) and compared by utilizing MRI scans from the publicly accessible datasets of neuroimaging biomarkers. Comparative analysis is carried out by utilizing efficiency-effects graphs, comprehensive indicators, and ranking mechanisms. For the training of the AD vs. sMCI task, the EfficientNet-B0 model gets the highest value for the comprehensive indicator and has the fewest parameters. DenseNet264 performed better than the others in terms of evaluation matrices, but since it has the most parameters, it costs more to train. For the AD vs. CN task by DenseNet264, we achieved 100% accuracy for training and 99.56% accuracy for testing. However, the classification accuracy was still only 82.5% for the AD vs. sMCI task. In the second step, fusion of transfer learning (TL) with E2EL is applied to train the EfficientNet-B0 for the AD vs. sMCI task, which achieved 95.29% accuracy for training and 93.10% accuracy for testing. Additionally, we have also implemented EfficientNet-B0 for the multiclass AD vs. CN vs. sMCI classification task with E2EL to be used in ensemble of models and achieved 85.66% training accuracy and 87.38% testing accuracy. To evaluate the model’s robustness, neuroradiologists must validate the implemented model. As a result, the third goal of this dissertation is to create a tool that neuroradiologists may use at their convenience. To achieve this objective, this dissertation proposes a web-based application (DEEP-AD) that has been created by making an ensemble of Efficient-Net B0 and DenseNet 264 (based on the contribution of goal 2). The accuracy of a DEEP-AD prototype has undergone repeated evaluation and improvement. First, we validated 41 subjects of Spanish MRI datasets (acquired from HT Medica, Madrid, Spain), achieving an accuracy of 82.90%, which was later verified by neuroradiologists. The results of these evaluation studies showed the accomplishment of such goals and relevant directions for future research in applied DL for the early detection of AD in clinical settings.En términos de contexto, el objetivo de esta tesis es ayudar a los neurorradiólogos en su juicio clínico sobre la detección precoz de la AD mediante el uso de DL. Para ello, en esta tesis se propone la metodología de investigación de diseño de sistemas para lograr tres objetivos. El segundo objetivo es proporcionar al neurorradiólogo la información interpretable por ordenador que necesita para analizar los biomarcadores de neuroimagen. Dado este contexto, el siguiente paso en esta tesis es encontrar el modelo DL óptimo para analizar biomarcadores de neuroimagen. Esto se ha logrado en dos pasos. En el primer paso, se han implementado ocho modelos DL de última generación mediante entrenamiento desde cero utilizando aprendizaje de extremo a extremo (E2EL) para dos tareas de clasificación binarias (AD vs. CN y AD vs. MCI estable) y se han comparado utilizando escaneos MRI de los conjuntos de datos de biomarcadores de neuroimagen de acceso público. El análisis comparativo se lleva a cabo utilizando gráficos de efecto-eficacia, indicadores exhaustivos y mecanismos de clasificación. Para el entrenamiento de la tarea AD vs. sMCI, el modelo EfficientNet-B0 obtiene el valor más alto para el indicador exhaustivo y tiene el menor número de parámetros. DenseNet264 obtuvo mejores resultados que los demás en términos de matrices de evaluación, pero al ser el que tiene más parámetros, su entrenamiento es más costoso. Para la tarea AD vs. CN de DenseNet264, conseguimos una accuracy del 100% en el entrenamiento y del 99,56% en las pruebas. Sin embargo, la accuracy de la clasificación fue sólo del 82,5% para la tarea AD vs. sMCI. En el segundo paso, se aplica la fusión del aprendizaje por transferencia (TL) con E2EL para entrenar la EfficientNet-B0 para la tarea AD vs. sMCI, que alcanzó una accuracy del 95,29% en el entrenamiento y del 93,10% en las pruebas. Además, también hemos implementado EfficientNet-B0 para la tarea de clasificación multiclase AD vs. CN vs. sMCI con E2EL para su uso en conjuntos de modelos y hemos obtenido una accuracy de entrenamiento del 85,66% y una precisión de prueba del 87,38%. Para evaluar la solidez del modelo, los neurorradiólogos deben validar el modelo implementado. Como resultado, el tercer objetivo de esta disertación es crear una herramienta que los neurorradiólogos puedan utilizar a su conveniencia. Para lograr este objetivo, esta disertación propone una aplicación basada en web (DEEP-AD) que ha sido creada haciendo un ensemble de Efficient-Net B0 y DenseNet 264 (basado en la contribución del objetivo 2). La accuracy del prototipo DEEP-AD ha sido sometida a repetidas evaluaciones y mejoras. En primer lugar, validamos 41 sujetos de conjuntos de datos de MRI españoles (adquiridos de HT Medica, Madrid, España), logrando una accuracy del 82,90%, que posteriormente fue verificada por neurorradiólogos. Los resultados de estos estudios de evaluación mostraron el cumplimiento de dichos objetivos y las direcciones relevantes para futuras investigaciones en DL, aplicada en la detección precoz de la AD en entornos clínicos.Escuela de DoctoradoDoctorado en Tecnologías de la Información y las Telecomunicacione

    Towards Practical Application of Deep Learning in Diagnosis of Alzheimer's Disease

    Full text link
    Accurate diagnosis of Alzheimer's disease (AD) is both challenging and time consuming. With a systematic approach for early detection and diagnosis of AD, steps can be taken towards the treatment and prevention of the disease. This study explores the practical application of deep learning models for diagnosis of AD. Due to computational complexity, large training times and limited availability of labelled dataset, a 3D full brain CNN (convolutional neural network) is not commonly used, and researchers often prefer 2D CNN variants. In this study, full brain 3D version of well-known 2D CNNs were designed, trained and tested for diagnosis of various stages of AD. Deep learning approach shows good performance in differentiating various stages of AD for more than 1500 full brain volumes. Along with classification, the deep learning model is capable of extracting features which are key in differentiating the various categories. The extracted features align with meaningful anatomical landmarks, that are currently considered important in identification of AD by experts. An ensemble of all the algorithm was also tested and the performance of the ensemble algorithm was superior to any individual algorithm, further improving diagnosis ability. The 3D versions of the trained CNNs and their ensemble have the potential to be incorporated in software packages that can be used by physicians/radiologists to assist them in better diagnosis of AD.Comment: 18 pages, 8 figure

    Automated medical diagnosis of alzheimer´s disease using an Efficient Net convolutional neural network

    Get PDF
    Producción CientíficaAlzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the EfficietNet-b0 convolutional neural network (CNN) with a novel approach—"fusion of end-to-end and transfer learning"—to classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    The Application of Deep Learning for Classification of Alzheimer's Disease Stages by Magnetic Resonance Imaging Data

    Get PDF
    Detecting Alzheimer’s disease (AD) in its early stages is essential for effective management, and screening for Mild Cognitive Impairment (MCI) is common practice. Among many deep learning techniques applied to assess brain structural changes, Magnetic Resonance Imaging (MRI) and Convolutional Neural Networks (CNN) have grabbed research attention because of their excellent efficiency in automated feature learning of a variety of multilayer perceptron. In this study, various CNNs are trained to predict AD on three different views of MRI images, including Sagittal, Transverse, and Coronal views. This research use T1-Weighted MRI data of 3 years composed of 2182 NIFTI files. Each NIFTI file presents a single patient's Sagittal, Transverse, and Coronal views. T1-Weighted MRI images from the ADNI database are first preprocessed to achieve better representation. After MRI preprocessing, large slice numbers require a substantial computational cost during CNN training. To reduce the slice numbers for each view, this research proposes an intelligent probabilistic approach to select slice numbers such that the total computational cost per MRI is minimized. With hyperparameter tuning, batch normalization, and intelligent slice selection and cropping, an accuracy of 90.05% achieve with the Transverse, 82.4% with Sagittal, and 78.5% with Coronal view, respectively. Moreover, the views are stacked together and an accuracy of 92.21% is achived for the combined views. In addition, results are compared with other studies to show the performance of the proposed approach for AD detection
    corecore