4 research outputs found

    A decision theoretic framework for selecting source location privacy aware routing protocols in wireless sensor networks

    Get PDF
    Source location privacy (SLP) is becoming an important property for a large class of security-critical wireless sensor network applications such as monitoring and tracking. Many routing protocols have been proposed that provide SLP, all of which provide a trade-off between SLP and energy. Experiments have been conducted to gauge the performance of the proposed protocols under different network parameters such as noise levels. As that there exists a plethora of protocols which contain a set of possibly conflicting performance attributes, it is difficult to select the SLP protocol that will provide the best trade-offs across them for a given application with specific requirements. In this paper, we propose a methodology where SLP protocols are first profiled to capture their performance under various protocol configurations. Then, we present a novel decision theoretic procedure for selecting the most appropriate SLP routing algorithm for the application and network under investigation. We show the viability of our approach through different case studies

    Source Location Privacy Aware Routing Protocols Selection Results

    No full text
    <p>This is the dataset used to generate the results for the journal paper " A Decision Theoretic Framework for Selecting Source Location Privacy Aware Routing Protocols in Wireless Sensor Networks"  at Future Generation Computer Systems (FGCS) 2018.</p> <p> </p> <p> </p

    Source location privacy in wireless sensor networks under practical scenarios : routing protocols, parameterisations and trade-offs

    Get PDF
    As wireless sensor networks (WSNs) have been applied across a spectrum of application domains, source location privacy (SLP) has emerged as a significant issue, particularly in security-critical situations. In seminal work on SLP, several protocols were proposed as viable approaches to address the issue of SLP. However, most state-of-the-art approaches work under specific network assumptions. For example, phantom routing, one of the most popular routing protocols for SLP, assumes a single source. On the other hand, in practical scenarios for SLP, this assumption is not realistic, as there will be multiple data sources. Other issues of practical interest include network configurations. Thus, thesis addresses the impact of these practical considerations on SLP. The first step is the evaluation of phantom routing under various configurations, e.g., multiple sources and network configurations. The results show that phantom routing does not scale to handle multiple sources while providing high SLP at the expense of low messages yield. Thus, an important issue arises as a result of this observation that the need for a routing protocol that can handle multiple sources. As such, a novel parametric routing protocol is proposed, called phantom walkabouts, for SLP for multi-source WSNs. A large-scale experiments are conducted to evaluate the efficiency of phantom walkabouts. The main observation is that phantom walkabouts can provide high level of SLP at the expense of energy and/or data yield. To deal with these trade-offs, a framework that allows reasoning about trade-offs needs to develop. Thus, a decision theoretic methodology is proposed that allows reasoning about these trade-offs. The results showcase the viability of this methodology via several case studies

    Near optimal routing protocols for source location privacy in wireless sensor networks: modelling, design and evaluation

    Get PDF
    Wireless Sensor Networks (WSNs) are collections of small computing devices that are used to monitor valuable assets such as endangered animals. As WSNs communicate wirelessly they leak information to malicious eavesdroppers. When monitoring assets it is important to provide Source Location Privacy (SLP), where the location of the message source must be kept hidden. Many SLP protocols have been developed by designing a protocol using intuition before evaluating its performance. However, this does not provide insight into how to develop optimal approaches. This thesis will present an alternate approach where the SLP problem is modelled using different techniques to give an optimal output. However, as this optimal output is typically for a restricted scenario, algorithms that trade optimality for generality are subsequently designed. Four main contributions are presented. First, an analysis is performed based on entropy and divergence to gain insight into how to reduce the information an attacker gains via the use of competing paths, and ways to compare the information loss of arbitrary routing protocols. Secondly, the SLP problem is modelled using Integer Linear Programming. The model result guides the design of a generic protocol called ILPRouting that groups messages together to reduce the moves an attacker makes. Thirdly, a timing analysis of when events occur is used to dynamically determine fake source parameters for the Dynamic and DynamicSPR algorithms. These fake sources lure the attacker to their location instead of the real source. Finally, the first SLP-aware duty cycle is investigated, and implemented for DynamicSPR to make it more energy efficient. These techniques are evaluated through simulations and deployments on WSN testbeds to demonstrate their effectiveness
    corecore