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Abstract

Wireless Sensor Networks (WSNs) are collections of small computing devices that are

used to monitor valuable assets such as endangered animals. As WSNs communicate

wirelessly they leak information to malicious eavesdroppers. When monitoring assets

it is important to provide Source Location Privacy (SLP), where the location of the

message source must be kept hidden. Many SLP protocols have been developed by

designing a protocol using intuition before evaluating its performance. However, this

does not provide insight into how to develop optimal approaches. This thesis will

present an alternate approach where the SLP problem is modelled using different

techniques to give an optimal output. However, as this optimal output is typically for

a restricted scenario, algorithms that trade optimality for generality are subsequently

designed. Four main contributions are presented. First, an analysis is performed

based on entropy and divergence to gain insight into how to reduce the information an

attacker gains via the use of competing paths, and ways to compare the information

loss of arbitrary routing protocols. Secondly, the SLP problem is modelled using

Integer Linear Programming. The model result guides the design of a generic protocol

called ILPRouting that groups messages together to reduce the moves an attacker

makes. Thirdly, a timing analysis of when events occur is used to dynamically

determine fake source parameters for the Dynamic and DynamicSPR algorithms.

These fake sources lure the attacker to their location instead of the real source. Finally,

the first SLP-aware duty cycle is investigated, and implemented for DynamicSPR to

make it more energy efficient. These techniques are evaluated through simulations

and deployments on WSN testbeds to demonstrate their effectiveness.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) are a recent innovation that are becoming widely
used to solve a variety of issues. They are comprised of many small computing
devices, called nodes. These nodes have a low powered CPU and some sensors
that allow them to measure their environment. They have a wireless radio that
allows them to communicate this information to other parts of the network. Finally,
sensor nodes are battery powered as this allows them to be easily deployed without
requiring infrastructure. It has only been due to the miniaturisation of hardware,
improvements in energy efficiency of the hardware, and better battery technology
that sensor networks have become feasible.

Wireless Sensor Networks are typically used in monitoring applications, where
sensor data is taken from the environment and relayed back to a base station through
nodes in the network. As the communication range of the nodes does not typically
cover the entire network, this means that reporting sensed events needs to travel
over multiple wireless links (also known as hops). The scope of these applications
range from monitoring animal behaviour and habitats [17, 32, 47, 80, 166, 173],
observing the health of human-made structures such as bridges [33] and other
structures [14, 31], measuring air pollution [53, 87], detecting forest fires [66, 67],
monitoring volcanoes [189], surveillance systems [7] and many other applications [5].

The advantage of wireless sensor networks in these applications is that there
is no need for a wired communication network or power infrastructure to be in
place. The nodes can be attached or scattered where desired and the network will
self-configure and adapt to any changes. This flexibility leads to a greatly simplified
deployment process which means a WSN can be setup and running with minimal
effort. The ease of deployment is one of the factors which is driving the usage of
WSNs.

However, a wider range of security and privacy issues need to be addressed
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compared to traditional wired networks. This is because messages are sent over a
wireless broadcast medium [39] in which anyone in range with an adequate radio can
detect and eavesdrop messages. Security and privacy issues also tend to be harder to
address due to the decentralised nature of WSNs, the limited capabilities of sensor
nodes themselves, and trade-offs that are made to save energy.

These security threats are not just limited to WSNs, but also to novel systems
such as the Internet of Things (IoT) and Cyber-Physical Systems (CPS). An IoT
involves many small devices that are connected to each other and other devices via
the internet. A CPS tends to be similar to both a WSN and IoT but involves a deep
integration between the physical system and the software controlling it, often due
to the CPS controlling physical actuators. As both an IoT and CPS can involve
wireless communication and sensing, many of the security threats faced by a WSN
are also applicable to an IoT or CPS. As there is much overlap between WSNs, IoT
and CPS [169], the remainder of this thesis will focus on WSNs with the intention
that the techniques and discussion could be applied to an IoT or CPS.

Some important security aspects include: ensuring message confidentiality
via encryption [145, 146], key management and exchange [135], intrusion detection,
secure message routing and validation of localisation [94]. Due to the constraints
of embedded systems, a number of novel attacks can be performed against large
distributed wireless systems, for example, preventing nodes from going to sleep to save
energy in a denial of sleep attack [26]. Another example is wormhole attacks [193]
where an attacker uses a long-range wireless link to shorten the distances between
two nodes. As many routing protocols aim to take the shortest route, messages
prefer to be sent over this wormhole. This allows the attacker to eavesdrop on many
more packets than it otherwise would.

Threats against privacy can be classified along two dimensions, they are either
(i) content-based threats, or (ii) context-based threats. Content-based privacy threats
relate to preventing the content of the messages broadcast by sensor nodes being
revealed to an eavesdropping attacker. The content of a message can be protected
using encryption. On the other hand, context-based privacy threats relate to the
context in which messages are broadcast. This information is available to attackers
because messages are sent wirelessly and can be eavesdropped by any attacker
present in the network with an antenna capable of receiving the messages. Context
is a multi-attribute concept that encompasses situational aspects of broadcasted
messages, including environmental and temporal information. Examples include
temporal privacy [83] where the times at which events occur needs to be kept secret
from an attacker, the location of the base station to which messages are being routed
(sink location privacy) [41], and the location of the nodes that detect an event (source
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location privacy) [138].
Leaking context information can occur without an eavesdropper needing to

read the content of a message. This means that it is insufficient to provide context
privacy by protecting the content of messages using encryption. Therefore, other
techniques are required to provide context privacy. These techniques must also
take into account the restrictions and limitations of the WSN hardware and battery
capacity.

1.1 Why Provide Source Location Privacy?

Asset monitoring is one of the applications where WSNs have been used to great
effect. There have been a number of theoretical and practical deployments in which
WSNs have been used to track assets. In [12] a theoretical technique to monitor
and protect tigers in the wild was presented. An actual deployment was undertaken
to monitor badger locations in [47] with a WSN deployed to route information
and specific nodes in the network designated as badger detection nodes. Another
deployment was performed in [176] where movement data was gathered for four sheep.
The work aimed to identify certain behaviours based on how the animal’s movement
changed. Position signals were transmitted every 15 minutes to aid in locating the
sheep. A larger deployment was undertaken by the WWF as part of the Wildlife
Crime Technology Report [191], where wireless mesh networks, sensors attached to
animals and UAVs were deployed to monitor and protect wildlife from poachers.
Wireless messages were encrypted [73] to ensure that the content of the messages
was protected. The Internet of Life1 project is another real world deployment that
monitors animal location in real-time. Two smart parks have been set up in Akagera
National Park in Rwanda and Mkomazi National Park in Tanzania. Sensors are
embedded in Rhino horns to enable tracking. The smart parks also facilitate other
management aspects of conservation alongside tracking. However, none of these
examples aimed to protect against context attacks, meaning that they could be
abused by an attacker to find the location of the animals being monitored or the
times at which animals were detected.

Of the different aspects of context that needs to be protected, the source’s
location is the most important. This is because these networks were originally
deployed with the aim of protecting valuable assets that sensor nodes will detect and
report information about. If the networks help an attacker find the source they were
deployed to help protect, then they have failed in their purpose. In many of these
situations the base station is a well known location from which the conservationists

1https://www.theinternetoflife.com/application.html
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(a) Attacker movement in response to mes-
sages sent by the source.
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(b) The attacker being misled by some
SLP scheme, delaying it on its way to the
source.

Figure 1.1: Example attacker movement under protectionless and SLP routing

manage the asset monitoring network. Therefore, there is no need to provide sink
location privacy, as that location is already well known.

If an attacker is equipped with a directional antenna it can hone in on the
source of a signal by moving towards the location where the signal strength increases.
It is not expected that the attacker will find the source immediately when it receives
a message, but to follow the signal over multiple messages. After receiving a message,
the attacker will move in the direction from which the message originated. Eventually
it will eavesdrop another message which it will use to refine the direction it is honing
in on. Once the node that is the source of the message is found, the valuable asset
will likely be nearby, thus allowing an attacker to capture the source using the context
of broadcasts in the network [138].

This problem was originally stated in terms of the panda-hunter game [81],
where conservationists deployed a WSN across a panda habitat to monitor where the
pandas like to gather, in order to better preserve that part of the habitat. When a
sensor node detects a panda it floods the network informing all nodes of information
about the panda. A poacher who wants to capture the panda uses this information
to capture the panda faster than performing an exhaustive search of the habitat.

To provide SLP, novel routing protocols have been designed to reduce the
information an attacker can acquire and to increase the time it takes an attacker
to capture the source. An example of protectionless and SLP routing is shown
in Figure 1.1. The SLP-aware routing protocols typically have messages travel
along non-shortest path routes or use fake messages to lure the attacker to a fake
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source. The aim of any SLP-aware protocol is to make the attacker using the context
information obtained from eavesdropping broadcasts more expensive in terms of time
than using traditional tracking techniques. Once an attacker takes longer to find the
valuable asset by following messages in an SLP-aware routing protocol its behaviour
would revert back to using traditional tracking.

When using the information leaked by the SLP-aware routing protocol be-
comes the worse option for an attacker, preventing the attacker from capturing
the source using traditional techniques remains an issue. A person component is
necessary to protect the assets by tracking and arresting the poacher, as was used in
the WWF and Internet of Life deployments. Behaviour modelling of attackers [84]
can be used to help predict where the attacker will be to enable a better allocation
of personnel to patrol those areas. However, protecting the source in this manner is
out of scope for SLP-aware routing protocols. The aim of the SLP-aware routing
protocols is to make using the broadcast context information too expensive in terms
of time for an attacker to use compared to traditional tracking techniques.

1.2 Motivation

Many solutions have been proposed to reduce the in-network attacker’s ability to use
the context information from message broadcasts to capture the source [40]. The
work thus far has approached the development of techniques by first creating the
technique and then exploring its efficiency through either simulations or theoretical
analysis. While this approach may lead to techniques with good performance, it
does not indicate if there are other better techniques that could be used instead or
provide a generic model to theoretically compare different techniques. Theoretical
analysis that is specific to an individual protocol also has limited usefulness as it
is restricted to the technique developed rather than applicable to a class of SLP
techniques. To solve this problem this thesis proposes techniques that first model
the SLP problem and then use that model to produce an optimal way of providing
SLP. These techniques should aim for optimality in the sense that the attacker fails
to capture the source using the information leaked by the routing protocol. However,
as many optimal techniques require global knowledge or only work under limited
circumstances, they are infeasible to use in practice. Therefore, intuition is still
needed to take the optimal output and devise a technique that trades optimality for
generality. The performance of these techniques then needs to be evaluated through
experiments. By using different techniques to model and analyse the SLP problem
first, insights can be gained into how to structure message routing in novel ways.

The second problem is that parameters for techniques are often specified at
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compile time. These statically specified parameters are investigated before deploy-
ment, so values that perform well (in terms of SLP provision, or other metrics the
network maintainer is interested in) are used in the actual deployment. However, this
means that if network circumstances change then these statically specified parameters
may no longer perform well (e.g., have a high capture ratio, high number of messages
sent, or other poor performance) for the new situation. Techniques should instead
seek to have parameters determined on-line using available knowledge. The way to
determine how to calculate these parameters should be derived from the modelling of
SLP-aware routing. These parameters should encompass configuring how the routing
is performed, but should also include additional considerations that are vital to how
the protocol will operate. For example, as energy is a constrained resource nodes
will need to spend as much time as possible asleep, therefore dynamic parameter
calculation should also extend into how to determine when a node should turn on
and off in what is known as duty cycling.

1.3 Contributions

The contributions made in this thesis present models from which optimal source
location privacy aware routing protocols can be obtained and use these
models to design deployable near optimal routing protocols that dynam-
ically determine parameters online. The focus of optimality in this thesis is in
terms of the level of SLP provided, so the aim is to minimise the chance an asset will
be captured by the attacker. In support of this thesis the following contributions are
made:

• In Chapter 4, the structure of SLP-aware routing protocols is analysed by the
entropy (uncertainty) of message routing and a divergence measure between
routing protocols. By aiming to minimise the information gain of an attacker, its
uncertainty of the source’s location can be increased. Techniques are presented
to measure the amount of information an attacker loses when comparing two
routing protocols, and a heuristic is developed that perturbs a protectionless
routing protocol into an SLP-aware routing protocol.

• As a key component of SLP-aware routing is the time at which events occur, a
modelling of when broadcasts occur in terms of an integer linear programming
(ILP) optimisation problem is performed in Chapter 5. Using an ILP solver,
the optimal broadcast schedule is obtained for a specific network topology.
This optimal schedule is then used to develop a near optimal routing protocol
for delay-tolerant networks that works on a wider range of topologies.
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• Furthering the importance of time, a timing analysis of when events occur in the
network is undertaken in Chapter 6, and is used to dynamically determine the
parameters to a fake source based SLP protocol. These fake sources generate
〈fake〉 messages to lure the attacker to an area of the network that is away
from the source. Two different approaches to the allocation of fake sources are
presented, with the latter aiming to reduce the energy usage of the first.

• As energy is also an important consideration when developing SLP-aware
routing, in Chapter 7 a duty cycle will be developed for a solution presented in
Chapter 6. By extending the timing analysis nodes will be able to calculate
when to turn on and off in order to go into a low power sleep mode. By sleeping
instead of staying awake, the energy cost of the technique is reduced.

1.4 Organisation

This chapter has introduced the problem of Source Location Privacy in Wireless
Sensor Networks and stated the contributions this thesis makes. The remainder of
this work is organised as follows:

• Chapter 2 presents a background of the previous work performed in developing
techniques for Source Location Privacy and other context privacy solutions for
Wireless Sensor Networks.

• Chapter 3 introduces the models used in this work and explains how the
models are used in practice when the algorithms are simulated and run on
WSN testbeds.

• Chapters 4 to 7 present the main contributions of this work.

• Chapter 8 discusses the implications of this work and also includes a comparison
between the techniques.

• Chapter 9 concludes and presents future work in this area.
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Chapter 2

Background

Wireless Sensor Networks are comprised of small computers called nodes. These
nodes are often limited in their capabilities and resources. As these nodes do not
require existing infrastructure to run (such as power cables) they have been used to
solve a wide variety of problems. In this chapter the WSN platform will be described,
including the limited nature of hardware and the existing techniques used to perform
data gathering and reporting in Section 2.1. Security issues that are faced in WSN
deployments are explained in Section 2.2. The seminal work on Source Location
Privacy will be introduced in Section 2.3 and the remaining sections will cover the
work that has been performed thus far on providing context privacy in WSNs.

2.1 Wireless Sensor Networks

The sensor nodes that make up WSNs consist of: a low powered CPU, a small amount
of RAM, a small amount of ROM (to store the executable code), a wireless radio
(to communicate), a battery (to provide power so the hardware is independent from
infrastructure), and sensors relevant to the application being deployed. These sensors
are typically temperature, light, and humidity, but other options are available, such
as range sensors, motion sensors, RFID, and GPS (to detect geographical location).

A wide variety of hardware platforms are available. The TelosB mote [126] is
one such platform that is equipped with a 8 MHz 16-bit CPU (Texas Instruments
MSP430), 10 kB of RAM, 1 MB of external flash, and an IEEE 802.15.4 [1] compatible
radio that transmits on the 2.4 GHz band. The MICAz mote [124] uses an 8 MHz
8-bit CPU (ATmega128/L), but otherwise has similar capabilities. Both devices
are expected to run off two AA batteries for long periods of time. The typical
current consumption for TelosB, MICAz and other IEEE 802.15.4 nodes is shown in
Table 2.1. For comparison, typical current consumption of IEEE 802.11 (WiFi) and
Cellular based IoT nodes are shown in Table 2.2. As the energy cost of leaving the
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TelosB MICAz Z1 Panstamp NRG3 LTC 5800-IPM
State [126] [124] [197] [139, 178] [111]
CPU awake 1800 8000 500 to 10 000 960 to 2880 1300
CPU asleep 5 15 1 3 1
Radio Tx 19 500 17 400 17 400 36 000 to 300 000 9700
Radio Rx 21 800 19 700 18 800 14 000 to 18 000 4500
Radio Idle 21 20 20
Radio Sleep 1 1 1

Table 2.1: Typical current consumption (rounded up in µA) for TelosB, MICAz, Z1,
Panstamp NRG3, and Linear Technology SmartMesh IP (IEEE 802.15.4 radio)

Photon (802.11) Electron (Cellular) Waspmote (LoRa EU)
State [143] [142] [106, 107]
CPU awake 30 000 to 40 000 47 000 to 50 000 17 000
CPU asleep 1000 to 2000 800 to 2000 30
CPU deep sleep 80 to 100 110 to 130 33
Radio Tx 235 000 to 430 000 800 000 to 1 800 000 38 900
Radio Rx 235 000 to 430 000 800 000 to 1 800 000 14 200
Radio Idle 18 000 to 100 000 180 000 to 250 000 2800

Table 2.2: Typical current consumption (µA) for Particle Photon, Particle Electron,
and Libelium Waspmote with LoRa

CPU awake is two to three orders of magnitude greater than putting it to sleep, the
sensor nodes need to spend as much of their lifetime as possible asleep. Sending and
receiving messages can be up to 1000 times more expensive than just leaving the
radio idle, which is also 10 times more expensive than putting the radio to sleep. This
means that managing the CPU and radio is very important, so protocols should aim
to minimise their usage as much as possible in order to maximise network lifetime.

Using WiFi or Cellular based communications tends to be more expensive in
terms of energy than IEEE 802.15.4 due to the protocols supporting much higher
data rates, so many solutions that need low energy consumption will prefer IEEE
802.14.5 based sensor nodes. However, due to the ease in which WiFi and Cellular
communications can take advantage of existing infrastructure and easily access the
wider internet, many IoT devices tend to prefer communicating over these kinds
of technologies. For areas in which this infrastructure does not exist the preferred
communications choices include ad-hoc low power IEEE 802.14.5 communication, or
LoRaWAN (Long Range WAN) which provide low power communications over long
ranges but with low data transmission rates. However, IoT deployments may choose
to take advantage of multiple communication technologies in their heterogeneous
deployment, depending on the scenario of interest.
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Overall, the hardware platforms that comprise wireless sensor networks are
highly constrained and these limitations need to be taken into account when designing
applications and protocols. The energy consumption of any protocols or applications
deployed on the nodes is one of the most important considerations and it needs to
be as low as possible in order to maximise network lifetime.

2.1.1 Sensing

Wireless sensor nodes can be equipped with a variety of sensors that allow them
to gather information about the environment that they are situated in. Some very
common sensors include: temperature, humidity, visible light and IR light. Many of
these are very cheap and can provide interesting information about events occurring
near the sensor node. As well as sensing the environment, the sensor node will need
to sense information about itself. For example, the voltage levels of a sensor node’s
batteries will be monitored in order to estimate the amount of energy remaining to
the node. A sensor node is also equipped with a number of implicit sensors. For
example, the wireless radio can act as a sensor to detect noise on a specific frequency.
The radio also records information about received signals in the form of the Received
Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI). WiFi technology
has even been used to detect motion, as the sensed signal changes when people move
between the sender and detector [62].

Depending on the problem that is being solved with WSNs, specific sensors
might also be used. For example, in the Oxford Flood Network deployment1 sonar
sensors are used to measure the height of rivers and streams. If sensor nodes need
access to highly accurate time synchronisation or position information, then a GPS
unit might be applicable. In industrial scenarios it might be important to monitor
the air for the presence of certain gasses such as alcohol, hydrogen, carbon dioxide
or others. These sensors could aid in the detection of leaks of these potentially
dangerous gasses. Another example is detecting the presence of animals in the wild.
These animals might be equipped with a short range radio collar, which a sensor
node would need to be able to detect and communicate with. Alternately, sensors
could detect vibrations in the ground or air to locate the animals [4].

Overall, the sensor nodes in a WSN may be equipped with a wide range of
sensors. These sensors will need to be carefully selected as there are multiple costs
to including more sensors. On one hand it is important to consider the monetary
cost of the sensor node, because cheaper hardware allows for a larger deployment of
sensor nodes. On the other hand there is also an energy cost to power the sensors.
Some sensors (such as GPS and gas monitoring [152, Table. 1]) can consume a large

1https://flood.network/news/2015/9/2/our-sensors
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quantity of energy, meaning that including them would lead to a reduction in the
lifetime of a sensor network. For example, Libelium Waspmotes can be equipped
with a GPS unit that consumes 36 mA [105, pg. 8], if deployments can avoid using
GPS then there is more energy available for other activities. Therefore, selecting the
sensors that nodes are equipped with is an important consideration to make when
deploying a WSN.

2.1.2 Network Stack

Wireless sensor networks are comprised of many sensor nodes that can communicate
with their neighbours. The network is typically deployed such that it is not fully
connected, i.e., every node can communicate with every other node. Due to this,
messages sent from a node to a target sink node will often need to travel over multiple
wireless links (or hops) to reach its destination. A variety of routing protocols have
been developed to solve the problem of sending a message from a node to the sink
in an energy efficient manner [140]. A selection of routing protocols will be briefly
described as the SLP techniques presented in this work provide SLP via novel routing
protocols.

One of the simplest routing protocols is flooding, where a message is broad-
casted by the source node to all its neighbours and other nodes will rebroadcast
messages they receive that have not been previously seen. This is a very energy
intensive protocol as all nodes in the network are involved with sending the message.
It is also a way for a node to send a message to all nodes in the network. A variant
of flooding is known as polite gossiping and is intended to reduce the number of
messages sent. In polite gossiping, if a node has a message to send it waits a short
interval and if no other node sends the same message in that interval then the node
broadcasts the stored message.

Alternate routing protocols aim to send fewer messages than flooding and
gossiping. Two of the most widely used protocols are the Collection Tree Protocol
(CTP) [57] and Ad hoc On-Demand Distance Vector (AODV) Routing [144]. In CTP
the network is arranged into a tree structure rooted at the sink. When a message is
generated anywhere in the network it is forwarded down a branch to the sink. The
path does not aim to take the fewest hops, but the path that would require the fewest
transmissions. So reliable links will be preferred over unreliable links. The designated
parent node is periodically checked, if the link is no longer present or a better parent
is available then the parent will be recalculated. CTP can also be used to form
aggregation trees where data is aggregated (such as averaging temperature data) at
nodes where two branches meet. AODV is different to CTP as it supports arbitrary
node-to-node communications, whereas in CTP all communications must be to the

11



sink. Routes are discovered when required and discarded after some time of not being
used. Loops are avoided by using sequence numbers to detect if the message has
arrived to a previous location on the path. The route discovery algorithm explores
outwards from the sending node and once the target is found a message is sent back
along the path to inform the sender. Maintenance is performed on the route to
detect link failures and alter the route around the failed link. Overall, these two
protocols provide a high level of reliability at a relatively low energy cost.

These routing protocols are a small selection of techniques that route messages
from one node to another node or multiple nodes. Many other routing protocols exist
with different aims. Providing context privacy is one such aim that routing protocols
can be used to achieve. When considering location privacy routing protocols need to
be able to consider the location, which can either be performed by geographic routing,
hop-based routing or routing based on information revealed. Routing protocols that
choose child nodes based on the energy cost lack sufficient information which could
be used to perturb the route messages take and are therefore unsuitable to provide
SLP unless modified to gather this extra information.

2.1.3 Energy Consumption

The power consumption of a WSN application is important to consider due to the
limited energy available in a sensor node’s battery. In Table 2.1 the energy cost of
different activities are shown, with the lowest power consumption being when the
node is asleep. So to minimise power consumption a sensor node needs to spend as
much time as possible asleep. However, the sensor nodes will need to wake up to
perform activities such as sensing, transmitting and receiving messages. There have
been many techniques developed to duty cycle wireless sensor nodes [30, 161]. These
approaches are typically categorised based upon how nodes synchronise their wakeups
and transmissions, either via (i) global time synchronisation, (ii) synchronising time
across a subset of nodes (semi-synchronous), or (iii) not attempting to synchronise
time (asynchronous).

Approaches such as TDMA provide a straightforward way to assign slots of
global time in which nodes are allowed to broadcast. This slot assignment can also
be used to determine when a node should sleep. When the current slot is not the
node’s slot (node might transmit) or any of its neighbour’s slots (node might receive),
the node can sleep. Existing work has already been performed to allocate a TDMA
DAS schedule that provides SLP by assigning slots in a specific way [88]. However, a
downside of using TDMA is that there is a high latency between a message being sent
and received at the sink. Alternatively, nodes could be clustered, using techniques
such as LEACH [68], in order to synchronise time among a cluster of nodes. The
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Name Symbol Description
Local Wakeup ts How long the radio sleeps for after a wakeup.
Remote
Wakeup ttx

How long a packet’s retransmission will be
attempted for.

Delay After
Receive

td
100 ms

Keep the radio on for this period after
receiving a message.

Maximum
CCA Checks

cca
400

The maximum number of CCA checks that a
receiving node performs.

Min Samples
Before Detect

msbd
3

The minimum number of detection while
performing CCA before a packet is detected.

ACK Wait
Delay

tack
256 jiffies

The amount of time a sender waits for an
acknowledgement packet.

Table 2.3: Parameters to TinyOS’ DefaultLPL component and their default values

cluster heads then interact with each other asynchronously.
Due to the cost of synchronising time, the majority of duty cycling techniques

are asynchronous. TinyOS’s Low Power Listening (LPL) [125] performs periodic
sampling for a preamble signal, if the preamble is detected then radio remains on to
receive the message after the preamble. Alternatively, the receiver can periodically
broadcast a beacon to indicate it is willing to receive a message [171]. One of the
main downsides to both of these approaches is the high latency introduced. Since
the radio only needs to be duty cycled to address the high cost of idle listening, if
another radio has a low energy cost to perform idle listening, then it can be used
to detect wakeup signals [18]. The problem is that this type of technique requires
non-standard hardware that sensor nodes are not usually equipped with. Finally, if
a WSN is sufficiently dense, then nodes can randomly wakeup and there will be a
high probability that a node will be awake when a message is being sent.

In TinyOS’s LPL there are multiple stages to the duty cycling. Initially, when
the radio is listening for messages a number of Clear Channel Assessment checks
(CCA) are performed. These CCA checks aim to detect a high energy signal being
emitted by the radio on the sending node. Multiple checks are needed to ensure
that a message is being received and to avoid staying awake when noise is detected.
Once a certain number CCAs have been detected then the radio switches to receive
mode. Once the radio is done with receiving then it will turn off for a period. When
sending a message, the radio will be turned on and packets will be retransmitted for
a period specified at compile time. Once an acknowledgement is received the radio
has the option to turn off immediately.

One of the important things that needs to be considered when deploying a
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duty cycle is what impact will it have on the routing protocol that is being used?
The duty cycle may cause links to be unavailable compared to if no duty cycle is
being used, which could cause messages to take different routes. This is usually not
an issue with routing protocols, as they focus on delivering a message with minimum
energy cost. A different route will be very important for SLP, as the space through
which messages are routed is an important consideration when trying to protect SLP.
Therefore, duty cycle protocols need to take how SLP is provided into account.

2.2 Security in Wireless Sensor Networks

There has been much work performed on providing source anonymity in networks.
One technique is to send the data to a third party that then forwards it onto
the target after removing the source’s identity from metadata known as a Chaum
Mix [35]. In this scenario the data is encrypted so that the third party cannot read
the data. Onion Routing [58, 153] is an extension of this which sends the data
through multiple anonymisers. Each onion router along the path only knows the
previous node and discovers the next node by removing a layer of encryption. By
performing this multiple times it increases the difficulty of the onion routers from
being able to infer the source and destination. However, these techniques do not
apply well to the problem of Source Location Privacy in Wireless Sensor Networks
because the attacker is capable of eavesdropping the wireless communication at any
point in the path. Onion Routing would be suitable against a stationary attacker,
but, the attacker model assumed in the SLP problem can involve a mobile attacker
or an attacker with a complete view of the network. As the attacker can see multiple
parts of the route and can change the section it can see, the attacker is capable of
tracing back from the destination to the source using just the direction from which
messages arrive.

In [13], Benenson et al. performed a thorough investigation of the attacks that
could be performed against a sensor network. The authors categorised an attacker’s
ability along two dimensions, presence and actions. It was also noted that the length
of time it takes an attacker to perform an attack is an important consideration.

local → distributed → global

Figure 2.1: Attacker presence

Presence describes the area of the network that the attacker is capable of
influencing. An attacker with local presence can only influence a small area of the
network that does not change. Such an attacker might be a wireless device fixed
at one location. A stronger variant would be an attacker with distributed presence.
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This attacker would either consist of multiple stationary entities, or mobile entities
that can move through the network. The strongest presence would be global, where
an attacker is capable of seeing or influencing the entire network.

eavesdrop → crash → disturbing → limited passive → passive → reprogramming

Figure 2.2: Attacker actions

Actions describe the ways in which an attacker can interact with the network,
where eavesdropping is the weakest and reprogramming is the strongest. An eaves-
dropping attacker is only capable of listening to network traffic. A crashing attacker
is capable of causing a node to cease operating, this could be through physical
attacks that destroy the node or by attacks that cause high energy consumption
(such as denial of sleep [26]). A disturbing attacker is able to impact the network
operation, such as by broadcasting messages or fooling sensors. The limited passive
attacker can retrieve all information held on a sensor node. This attack may require
removing the node from the network for some time. A passive adversary can access
all information on a sensor node without removing it from the network. It is also
capable of modifying data on the node. The most powerful action, reprogramming,
allows an attacker to run arbitrary code on a sensor node.

While some of these actions can be very strong, the practicality of performing
them is related to the length of time it would take to execute the attack. For example,
passive attacks such as eavesdropping can be performed continuously, so the time
to capture individual messages is low. However, depending on the information an
attacker needs to collect, the attacker could spend a long time eavesdropping to
gather sufficient information. Depending on how the attack is performed will also
impact the time it takes. If the attacker simply needs to plug in a cable, then
the attack can be performed quickly. However, if the attacker needs to de-solder
components or invoke hardware bugs then the attack would take much longer. When
attacks are time sensitive it means certain actions become unsuitable to perform
when they take a long time to execute.

2.2.1 Encryption

As WSNs have simple CPUs and limited power, encryption can be a costly ex-
pense, however, content privacy is something that needs to be provided in certain
applications. A number of different approaches with different properties have been
developed to provide energy efficient encryption for WSNs.

One of the simplest forms of encryption is to use symmetric encryption with
a Pre-Shared Key (PSK). Messages can then be encrypted and decrypted using this
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key. However, every node in the network will need to be aware of this key in order
to process received messages, or to send new messages. If an attacker compromises
one node to obtain the key, then it has compromised the entire network. A way to
reduce the impact of node compromises is to use pairwise keys, where every pair of
nodes shares a key [113]. This technique encounters a greater energy cost compared
to symmetric encryption, as a message will need to be encrypted differently and
rebroadcasted for each neighbour a node wants to send a message to. Also, setting
up public key techniques tends to be expensive in terms of energy, due the number
of messages that need to be sent to obtain the shared secrets and the computation
costs. This energy cost needs to be considered when using public key encryption,
although there exist some techniques that mitigate this cost [135].

A different alternative to symmetric and asymmetric cryptography is homo-
morphic encryption, where operations can be performed on encrypted data without
decrypting it [146]. This type of cryptography is useful in data aggregation, which is
one of the common tasks WSNs perform. Examples of this aggregation function are
finding the minimum, maximum or mean. The sensor nodes do not need to know
what the currently aggregated value is, and can use homomorphic encryption to
simply include its data in the aggregated data.

So encryption is a technique usable for content privacy on WSNs. However,
there is an energy cost involved with encrypting plaintext and also setting up the
shared secret. Storing the shared secret also makes the memory of a sensor node a
useful target to an attacker.

2.3 Seminal Work

Much work has been undertaken investigating SLP in WSNs [40, 97, 155]. This
section will first introduce the seminal work [81, 138]. The rest of the chapter that
follows will survey much of the existing work performed on location privacy in WSNs.

The seminal work by Ozturk et al. and Kamat et al. first introduced the
panda hunter game and proposed a working solution to the SLP problem. The
panda-hunter game involves a wireless sensor network being deployed to monitor
the location of pandas so conservationists know which part of their habitat to focus
on preserving. A node is designated the source when it detects a panda and will
broadcast until the panda is no longer detected, the authors assume there is only
ever one source. Another node is designated the sink, this is the node messages are
being routed to. Finally, there is an attacker present that traces the messages from
a random starting location. The attacker is physically present in the area being
monitored by the WSN and is equipped with a directional antenna so it is aware of
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the direction that messages are received from.
The authors then investigated flooding’s ability to provide SLP, however,

they found that the attacker would always be able to capture the source from the
information leaked by this protocol. Many SLP techniques use protectionless flooding
as a baseline routing protocol to compare against, as it provides no SLP. It also
leaks maximal information to the attacker as no matter its location, the attacker
will always eavesdrop a message from the source under flooding (assuming perfectly
reliable links).

The second solution Ozturk et al. proposed was that of phantom routing,
where the 〈normal〉 message being sent to the sink first takes a random walk to a
phantom node and then floods the network. The aim was to have the phantom node
appear to be the source. A purely random walk was found to provide poor SLP, so
two different directed random walks were provided: a sector-based approach and a
hop-based approach, with the walk being directed to a certain sector of the network
or along a hop gradient respectively. This technique was found to provide an increase
in the time it took an attacker to capture the source compared to protectionless
flooding. An optimisation of the technique was presented [81] which instead of
using flooding in the second phase used single-path routing. This alteration to the
second stage aimed to decrease the energy cost by reducing the number of messages
sent. Many SLP techniques have since used the idea of Phantom Routing to build
alternative SLP techniques.

2.4 Routing-based Techniques

An extension to Phantom Routing was introduced by [192], where the authors develop
a variation called Greedy Random Walk (GROW). GROW works on a very similar
principle to Phantom Routing as they both used random walks to an intermediate
node which then floods the network. The difference with GROW is that the next
node in the random walk is chosen with a weighted probability biased towards
neighbour nodes that have not participated in the random walk. The aim is for the
random walk to take very different paths each time a send is initiated. By doing
so the attacker should miss receiving messages in the first phase as it is not in the
correct location to eavesdrop them.

Phantom Walkabouts [60] is another variant of Phantom Routing where the
phantom node is created at the end of a sequence of long and short directed random
walks. Short walks are walks that are less than or equal to the sink-source distance
and long walks are longer than that distance. The results show that just performing
short walks leads to a high capture ratio, and just performing long random walks
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leads to a low capture ratio. As an optimisation alternating between long and short
random walks helps reduce the number of messages sent by the protocol.

In STaR [108] the set of phantom nodes is constrained to be in a toroidal
region around the sink. The source routes to a node within this region, before that
message is forwarded to the sink via single-path routing. The toroidal region is
divided into a grid, allowing nodes to be assigned coordinates. This allows the source
to randomly choose the target phantom node based on calculating the coordinates
in the grid from a distance from the sink and an angle. Every message will be sent
to a different randomly selected node. The author’s compare their technique to the
“totally random RRIN scheme [103]”, but expect STaR to consume less energy and
have a smaller latency due to the restrictions on the size of the toroidal region.

In Phantom Routing, messages often take different routes to different phantom
nodes. This type of technique was investigated in [183] where sensor traffic is split
to take multiple routing paths. In doing so the attacker is delayed, because when a
message is sent on a path that the attacker is not on, the attacker misses eavesdropping
that message. The problem is that it is hard to find routes that are far enough away
from each other such that the attacker will not be able to eavesdrop on multiple
paths. Two techniques are presented, the first called Random Parallel (RP) routing
uses global knowledge to assign a number of physically separate parallel routes. This
technique does reveal an approximate location of the source as the attacker can wait
to receive multiple messages at the sink. As all routes are parallel, they will all
lead in the same direction. The second technique called Weighted Random Stride
Routing (WRS) uses local information to pick a forwarding angle and distance to
travel, which is repeated multiple times. The angle selected is in the direction of
the sink. The authors found RP used less energy, but that WRS provided a higher
safety period.

The Cyclic Entrapment Method (CEM) was proposed in [137]. CEM works
by allocating certain nodes to broadcast a loop of fake messages before a source sends
any normal messages. The idea is that an attacker can become trapped in these
loops instead of following the message path. The loops get activated when a node
in a loop receives a normal message, the authors also investigated probabilistically
activating a loop, noting that an energy reduction can be achieved by trading off
the privacy provided. Longer loop lengths (after a certain cut-off) were found to
provide less privacy as it appears to be harder to generate longer loops. In the paper
the authors studied CEM with shortest path routing and noted that the delivery
ratio was 100%, this implies that the study was done without considering the effects
collisions might have.

A variety of other techniques have been proposed that modify Phantom
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Routing to obtain a benefit. For example, in [37] a limited flooding of messages
h hops away from the source is performed to help allocate phantom nodes that
are widely distributed from one another. Another example is [181] which is based
on [19, 85] and aims to create diverse routes with few zigzags or back and forth
behaviour, but still delay the attacker on its way to the source. Paths aim to detour
around alert zones in which assets are detected. Simulations show that it performs
better than Phantom Routing both in terms of having a higher safety period and
lower latency. This is also one of a few solutions that is capable of handling multiple
sources.

2.4.1 Angle-based Phantom Routing

A common issue with phantom routing is that a poor route from the source to the
phantom source can lead to poor SLP performance. One of the popular techniques
used to improve the directed random walk is by directing the path based on the
angles between source, sink, and intermediate node. The first work that modified the
directed random walk to use angle-based routing was [188]. The authors identified
that the directed random walk limits the possible nodes it can select. The authors
proposed a technique called PRLA to selected better intermediate nodes on the
random walk. PRLA uses a directed random walk based on a node’s inclination angle
with respect to the source and sink. This angle is used to determine the probability
to forward messages.

A geographic routing scheme called Angle-based Dynamic Routing Scheme
(ADRS) was proposed in [168]. The technique uses angles between nodes to determine
the route that a packet should take in a directed walk. The algorithm uses a Request-
To-Send/Clear-To-Send handshake to determine the angles needed. The handshake
also allows the algorithm to detect nodes leaving and joining the network and adapt
the path to those changes. Simulations showed a larger safety period and decreased
packet latency compared to standard Phantom Routing.

The work in [119, 120] uses multiple preselected phantom nodes to provide
SLP. The phantom nodes are selected by the base station. All the nodes selected to
become phantom nodes are outside α degrees either side of the direction the source
is in. The set of phantom nodes will be periodically recomputed at the base station
and informed of the phantom status. An issue with this approach is that it relies on
a centralised allocation of phantom nodes.

An issue with Phantom Routing is that the source node has no control over
the location of the phantom node. To solve this the authors of [102, 103, 154] propose
the Routing through a Randomly selected Intermediate Node (RRIN) technique,
where the source node selects the area of the network the message should be routed
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to before sending the message. Once a message reaches one of these phantom nodes it
could either be routed to the sink, or a subsequent RRIN could be selected and routed
to. Two approaches to selecting multiple RRINs were presented. An angle-based
approach and a quadrant-based approach.

The angle-based routing in [79] also aimed to ensure that phantom sources
were geographically dispersed across the network. However, it also aimed to utilise
energy rich sections of the network. This means that phantom nodes were preferred
to be allocated in areas that had more remaining energy compared to areas with less
energy in their batteries.

Overall, angle-based techniques for performing the directed random walk
phase of phantom routing are capable of better distributing the phantom sources
that are allocated. This better allocation leads to an increase in the time it takes an
attacker to capture the source, and in certain cases also improves other metrics such
as the message latency or the energy cost of the solution.

2.4.2 Ring-based Routing

Similar to Phantom Routing is the use of routing rings. In this class of technique a set
of nodes is selected that form a ring structure in the network. When a source detects
an event a message is generated and sent to the ring. This message then travels
around the ring for a certain number of loops and is finally forwarded to the sink. By
travelling around the ring the original direction from which the message originated is
obscured from the attacker. This approach was initially proposed in work [100, 101]
that extended the concept of routing to a randomly selected intermediate note [102],
where the authors used the RRIN selection technique before routing the message to
a ring around the source. Once the message reaches the intended area of the RRIN
phase, in the Network Mixing Ring (NMR) phase, the message is first routed to a
ring node, secondly routed around the ring for a random number of hops, before
finally being sent to the source. A downside of this technique is that the path a
message needs to travel is long, causing the latency to be high.

Rather then relying on a single ring, [196] expects multiple rings to be present.
Sensor nodes on the same rings are all the same distance to the sink in hops. When
a message is sent by the source it is first routed to a ring further from the sink before
routed to a ring closer to the sink than the source. The direction the message is
routed in is randomised (clockwise or counter-clockwise). Eventually the message is
routed to the sink along the shortest path. To provide diversity 〈fake〉 messages are
injected and forwarded around a ring for a limited number of hops.

Continuing with the idea of multiple rings [131, 132] proposed the Dynamic
Optimal mix-ring-based Source Location Anonymity Protocol (DORing protocol).
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A ring is formed of nodes that are all the same distance from the sink in hops. A
mix-ring is selected from the available rings to mix packets from the network together.
As part of DORing, at a certain time interval every node sends a message to the
mix ring. If no 〈normal〉 messages are available to send, then 〈fake〉 messages are
sent instead. 〈Fake〉 messages are dropped after a certain number of hops. In the
mix-ring packets are routed both clockwise and counter-clockwise, 〈normal〉 messages
are forwarded to the sink after a certain distance has been travelled. To reduce the
energy impact on a specific set of nodes the mix-ring eliminates duplicate packets
travelling around it. The mix-ring also changes location to spread out its energy
impact.

2.4.3 Phantom Routing Vulnerabilities

Whilst Phantom Routing has been a popular area of research, a number of issues
have been encountered with this style of SLP technique.

One of the key components of phantom routing is the directed random walk
which is used partly due to the memoryless nature of these walks on a graph. The
directed random walk is memoryless in the sense that the next node in the walk
depends on the current node, but not the previous nodes in the walk. However,
if an attacker is monitoring the nodes on the network boundary it is possible to
analyse the distribution of where the walk first hits the boundary to infer the source’s
location [165]. Techniques need to be developed to avoid leaking information in this
way.

The majority of work assumes a single source, in [59] multiple source config-
urations were investigated where the sources were close together. This configuration
is interesting as it may occur when monitoring flocks of animals that have grouped
together but are detected by different nearby sensor nodes. However, Phantom Rout-
ing performed poorly, because the multiple individual phantom routes are unaware
of each other. So, when the sources separately try to allocate a phantom node, they
instead lead to the attacker being funnelled towards to group of real sources.

2.5 Fake Source Based Techniques

Fake source-based techniques are different to routing-based in that instead of altering
the route of the 〈normal〉 messages, 〈fake〉 messages are instead used to provide SLP.
〈Fake〉 messages are encrypted and padded to be indistinguishable from 〈normal〉
messages [81]. Fake sources broadcast the 〈fake〉 messages in such a way that lures
the attacker towards them instead of the real source.

The seminal work [81] was the first work to investigate using fake sources to
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provide SLP. Two techniques were proposed the Short-lived Fake Source strategy and
the Long-lived Fake Source strategy. In the short-lived strategy when a node receives
a 〈normal〉 message it chooses to send a 〈fake〉 message with some probability and
flood it to the rest of the network. The persistent strategy has nodes continue to
generate and flood 〈fake〉 messages after the first one. Neither technique performs
well and the authors dismiss the usefulness of fake sources.

A rebuttal was published in [75] showing that fake sources can provide SLP.
The authors introduced a fake source allocation algorithm based on the observations
that permanent fake sources outperform temporary ones and that the fake source
should be allocated at a similar distance from the sink as the real source [81]. Two
variants were proposed, FS1 and FS2. In FS1 〈fake〉 messages are flooded from the
intermediate nodes with a certain probability, whereas in FS2 the 〈fake〉 messages are
only sent from the nodes a target number of hops away from the sink. Results show
that the attacker’s capture ratio can be reduced to 40% compared to its performance
against protectionless flooding.

This algorithm was improved in [76, 78] to use temporary fake sources to lure
the attacker away from the source to a point in the network where a permanent fake
source was to be allocated. The work also proved that fake source selection problem
(FSSP) — the problem of selecting which nodes should become fake, at what time
and for how long — is NP-complete. The authors also looked at a wide selection of
parameter values: temporary fake source duration, fake source rate and fake source
selection probability. Different network layouts were also investigated, such as when
the sink was located in a corner and the source in the centre, forcing temporary fake
nodes to be allocated around the source. In these situations different responses were
required compared to when there are nodes adjacent to the sink that are further
from the source than the sink is.

The work in [179] showed that it is important to consider what rates nodes
will broadcast at. The more frequently real and fake sources broadcast the greater the
chance of collisions which can lead to a decrease in the level of SLP provided. Finally,
the authors showed that deceasing the rate at which the source sends messages to
increase delivery ratio and reduce energy usage, can lead to reduced provision of
SLP.

The Path Extension Method (PEM) was presented in [174]. PEM creates
fake sources dynamically when the sink receives its first message from the source,
these fake sources are then used to form multiple fake paths. Initially fake sources
are allocated on the shortest path between the sink and source. After some delay
new fake sources are chosen from an existing fake source’s 1-hop neighbourhood,
only nodes not on the shortest path between sink and source and nodes that are a
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certain distance from the real source are eligible. 〈Fake〉 message broadcast rates are
initially high to capture the attacker and are then slowed down to save energy. The
source will send messages to the sink on the shortest path and fake sources will send
〈fake〉 messages along the path of nodes previously allocated to be fake sources.

The main complaint that comes with fake source solutions is the increase
in energy cost [170]. This is because there can be a large number of fake sources
generating 〈fake〉messages this leads to more radio activity and less sleeping compared
to routing-based SLP protocols. Another issue with fake source is that when
multiple sources are present it becomes harder to provide SLP due to the increase in
collisions [93]. However, these complaints are typically against specific fake source
techniques and each approach’s energy cost and reliability should be individually
investigated with respect to the intended application [61]. For example, a short-lived
WSN deployed on a battlefield may want to prioritise SLP provision over low energy
usage, so a high energy cost is not a significant negative aspect.

2.6 Hybrid Techniques

While many techniques focus on providing SLP through just the routing protocol
or just by using fake sources, others use a hybrid of these two techniques. These
hybrid techniques can achieve better performance because SLP provision can come
from both the routing protocol and 〈fake〉 messages. However, these techniques often
encounter both costs: a high latency from the way messages are routed and a high
energy cost by using 〈fake〉 messages.

In [115] a tree structure was overlaid on the network along which 〈normal〉
and 〈fake〉 messages travel. Initially, a backbone path is established from the sink
to the network border. Along the border numerous branches are created, at the
end of the branch a fake source is allocated which broadcasts 〈fake〉 messages along
the branch and to the backbone which sends them to the sink. When the asset is
detected the source node will send a 〈normal〉 message along the branch it is on to
the network’s edge and then the message will be sent to the source via the branch
and then the backbone. This approach is similar to CTP, but uses 〈fake〉 messages
to obscure which branch the source is located down.

A hybrid of fake sources and Phantom Routing was proposed in [159] with the
technique called Source Location Privacy Using Fake Source and Phantom Routing
(FSAPR). To allocate the fake sources the real source first floods a fake_req message
to nodes h hops from it. Nodes are chosen to be a fake sources probabilistically
based on the frequency they have acted as fake sources in the past and their energy
level. Phantom routing works as it normally does. The author’s fail to describe the
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rate at which the fake sources broadcast or the period of time they last for, both of
which have been shown to be important [179].

Another popular technique is that of fog routing [44], where messages are
routed from source to sink via a number of fogs. A fog is a group of adjacent nodes
in which messages are routed between themselves. Fogs can either be routing real
messages or fake messages between their member nodes. Messages will be passed
between fogs and real messages use these inter-fog paths to be routed from the source
to the sink. Fogs are created around areas of real sources and also areas without
any sources. Two downsides of this technique are that the time it takes a message
to reach the sink is increased, and a large number of nodes are required to support
multiple fogs. However, greater privacy is provided compared to Phantom Routing.

A similar technique to fog routing is to create clouds of fake messages [117].
The main aim of this technique is to prevent the attacker from being able to
locate groups of assets. As these multiple assets are grouped together it causes an
inconsistency in the traffic pattern compared to if a single asset was being reported
about. Multiple clouds are allocated in which fake messages are sent. A real source
then sends a message to a fake source before it is forwarded to the sink, meaning the
attacker will be unable to discern which node in the cloud the message originated
from. The packets appearance is also changed at each hop by encrypting it with
different keys. This further decreases the attacker’s ability to follow specific packets.

2.7 Other Approaches

So far the solutions presented have focused on developing new routing strategies to
avoid leaking the location of the source to an attacker. These techniques typically
assume limited capabilities in terms of the hardware available to sensor nodes and
thus limited actions they can perform. However, other approaches have added specific
capabilities to sensor nodes or to the network that allows SLP to be provided using
different mechanisms.

Under a different attacker model, [175] developed a linear programming (LP)
model that varied node transmission range to avoid the attacker being able to
eavesdrop messages. The authors argued that an attacker would make observations
from afar before attempting to get closer to capture the source. This is to reduce
the risk of detection from the attacker’s perspective. When the LP model attempted
to maximise the lifetime of the network (the time the first sensor node exhausted its
power supply) the vulnerable area can be up to three times the size of the sensing
area. However, with a reduction of network lifetime by 10% the vulnerable area
could be reduced to the sensing area.
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The work in [133] presented a technique that uses coordinated jamming to
prevent an adversarial localisation system from gaining useful information about the
radio transmissions. The idea in this technique is to prevent an attacker from being
able to localise an intermediate node along a path. If an attacker is incapable of
doing that, then it cannot trace the entire path back back to the source. However,
this technique does decrease the throughput of the network and increase the energy
cost. This work assumes the attacker uses information such as the time of arrival
and received signal strength to localise an intermediate source, so the solution may
not be sufficient to defend against an attacker equipped with one or more directional
antennas.

A network coding approach was used in [51, 52] to provide SLP. Fake sources
and 〈fake〉 messages are used to generate streams of traffic to mislead the attacker.
Network coding is used to absorb 〈fake〉 messages at certain nodes to prevent an
explosion in the quantity of traffic. Another useful property of this solution is that
by using homomorphic encryption 〈fake〉 messages are made indistinguishable from
〈normal〉 messages.

In [134] the SLP problem was recast as the “Panda tracker problem”, where
a robot was deployed to track pandas moving through their habitat. The attacker
tried to locate the source by monitoring the wireless traffic from the robot, or by
compromising the robot’s memory. In this situation there was no network to route
messages over, and instead the authors focused on how much information the robot
gathered. By lowering information gained by sensors that detect assets, better
privacy was able to be provided.

2.7.1 Data Mules

One of the capabilities that WSNs may use to provide SLP are data mules. Typically
data mules are used to assist with the delivery of messages between two disconnected
areas of the network that are incapable of communicating via wireless links, or to
reduce the energy cost of transmitting [86]. The paper does not state the form data
mules take, but they may be in the form of UAVs or other mobile agents. The
Mule-Saving-Source (MSS) protocol was introduced in [98, 150], where messages are
initially routed away from the source to some phantom node a data mule collects
the packets. The data mule then moves to a different location in the network and
broadcasts the message along the shortest path to the sink. The location is chosen
to confuse the attacker as to the direction of the source. An alternative called
Direct Delivery (DD) has the mules deliver the messages directly to the sink with
the trade-off being a higher latency due to the time cost of it moving through the
network. The downside of using data mules is that additional hardware is required
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as part of the network deployment. One the key aspects of WSNs is that they are
cheap to deploy, adding a UAV, another kind of robotic mule, or having people drive
a vehicle around to gather messages adds to the cost of deploying and maintaining
the sensor network.

An alternate work [167] investigated the impact of multiple data mules passing
data between themselves when they are near. The network was initially subdivided
and data mules patrol a specific area. When the mules are near one another they
forward messages. A comparison to DD was performed and the technique proposed
in this work provided a lower message latency.

Another approach that is similar to data mules is PASSAGES [141], where
“permeability tunnels” (PT) comprised of wormholes and mobile ferries obscure the
source’s and sink’s locations. A wormhole is a link between two nodes that cannot
be eavesdropped by an attacker, such as a wired cable or a long range directional
wireless signal. Mobile ferries are conceptually similar to data mules, an example
would be the XM1216 robot 2. By routing messages through different PTs the source
and destination can be obscured from an attacker with global visibility. However, the
wormhole component of this work is unlikely to be practical in real-world scenarios.
Deploying infrastructure like a cable may often be impractical (on a battle field, or
in a large forest). Also an attacker would likely be capable of eavesdropping on a
long range wireless link, making parts of this work unlikely to be usable in practice.

2.7.2 Cross Layer

Rather than solely relying on message routing, some SLP techniques have also used
aspects of the MAC layer to provide SLP. For example, the cross-layer approach
presented in [164] used the periodic beacon messages sent by the 802.15.4 MAC layer
to propagate messages. As the beacons occur periodically, it is impractical to send
data all the way to the sink via beacons due to the high delay incurred and limit
imposed upon the data rate. The cross-layer solution aims to reduce the latency
cost by first propagating messages short distances and then switching to routing
the messages as usual. To improve privacy further, rather than routing the message
direct to the sink, another round of propagating (in a different direction) via MAC
beacons can be performed. This technique can be viewed as a hybrid of the Periodic
Collection global privacy solution in which every node periodically broadcasts and
phantom routing.

To eliminate collisions Time Division Multiple Access (TDMA) has been used
as a way to allocate each node a time slice in which they can broadcast. In [88] an
algorithm to setup a TDMA slot assignment was presented, where the slots were
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allocated in such a way that following the messages would trap the attacker rather
than lead it to the source. An extension was presented in [89] where the TDMA
slot assignment was solved using genetic algorithms. The algorithm has each node
always broadcast a message in its time slot, even if there are none in its queue to
send. This kind of solution is very energy efficient as nodes are aware of when to
sleep and when to wakeup because neighbouring TDMA slots are known. However,
the technique imposes a high latency because a node must wait for its slot to come
around before sending another message. Other techniques can instead just send the
message immediately, which leads to a low latency.

2.7.3 Cryptographic Approaches

Whilst many techniques have either relied on adjusting the routing protocols or using
fake sources to provide SLP, there have been a number of different techniques.

In [128] a technique called DCARPS was proposed. It uses layered crypto-
graphy (similar to onion routing) to prevent an attacker from being able to detect if
a packet is new or not. This is because a layer of encryption is removed in order to
send the packet on the next link. Label switching is also used to obscure the identity
of the source and sink. When sufficient traffic flows are present, DCARPS is capable
of protecting against both an attacker with local and global network visibility.

SPENA [148] uses cryptographic techniques, such as one-way hash chains
and mapping functions, to provide SLP. The attacker assumed is more capable than
typical, as it has a longer eavesdropping range compared to the sensor nodes and
is capable of compromising the sensor node’s hardware to obtain all information
stored on the node. SPENA works by hashing the source information (which can
be retrieved by the sink using its knowledge of the nodes in the network and the
hash function). When a packet is received its hash can be modified before being
broadcasted after some delay. This approach prevents an attacker from being able
to link a broadcast with a source detection event.

2.8 Global Source Location Privacy

The solutions presented thus far have focused on a mobile in-network attacker with a
small eavesdropping range, which is the attacker assumed in this work. An alternative
capability is when the attacker has global visibility over the entire network. This
can be achieved through using a single very powerful receiver or a network of many
low power receivers. The important aspect is that the attacker can see all events as
they occur in the network. This means that a different approach needs to be taken
compared to the solutions against a local attacker that have been covered thus far.
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This is because a global attacker can see where a message originates from, if flooding
or single-path routing is used, as soon as a message is sent.

The first solution has been presented as the Periodic Collection algorithm [122]
and the Constant Rate algorithm [163]. Instead of just the node that has detected a
source generating a message, every node will generate a message. If a source has
been detected then a 〈normal〉 message will be added to a queue of messages to be
sent every generation period. Every broadcast period a message will be sent, if the
queue is not empty then the 〈normal〉 message at the top of the queue is popped
and sent. If the queue is empty a 〈dummy〉 message is to be sent instead. Like
with 〈fake〉 messages, the 〈dummy〉 message must be encrypted and padded to be
indistinguishable from the 〈normal〉 messages. With this scheme every node will
send a message every broadcast period no matter if there is a real message to send
or not. This prevents the attacker from finding any information about the location
of the source as it cannot be sure that the first broadcast detected was actually from
a source node.

An extension proposed to the Constant Rate algorithm was the Fitted Prob-
abilistic Rate algorithm [163, 195]. Instead of using a constant rate of message
broadcasts the FitProbRate algorithm broadcasts messages every period, where the
period is chosen with respect to a probability distribution. As long as the messages
follow the probability distribution then the attacker cannot perform any statistical
analysis on the broadcast timings to gather information about a source’s location.
The benefit of this solution over the ConstRate algorithm is that the period between
a node sending messages is not fixed. As the period varies it allows the algorithm
to prioritise the 〈normal〉 messages over the 〈dummy〉 messages. This allows the
FitProbRate to send a 〈normal〉 message at the earliest time that would not skew
the probability distribution. Compared to ConstRate, FitProbRate can achieve a
much lower latency between the source sending the message and the sink receiving
〈normal〉 messages because they can be prioritised.

Both the ConstRate and FitProbRate algorithm are essentially flooding
algorithms, however, the way they introduce time delays, 〈dummy〉 messages, and
prevent the attacker from being able to perform analysis on the time at which
messages are sent allow them to provide SLP. An alternative solution that was
proposed by Mehta et al. [122, 123] was Source Simulation. The problem with
Periodic Collection was that it consumes a large amount of energy and also has a
high latency. Source Simulation achieves lower energy usage and a lower latency in
exchange for a higher capture ratio. The algorithm provides SLP by creating multiple
fake source traces through the network. These traces are created by modelling the
behaviour of the asset and trying to match its behaviour. The fake sources will be

28



sending 〈fake〉 messages as they move throughout the network. This is similar to the
fake source solution proposed in Chapter 6 except that it is designed to mislead a
global attacker rather than a local one, making the design approach and behaviour
different.

Since these initial pieces of work, there has been a lot of focus on developing
techniques to protect against a global attacker. As ConstRate and Periodic Collection
provide optimal SLP, many of these solutions aim to improve another metric (such
as energy consumption or latency) in a trade-off with the SLP provided. In [130]
OSAP, a cluster based solution, can trade-off between the amount of network traffic
and message delivery latency. Another solution used data aggregation alongside
broadcasting messages with a period determined by an exponential probability
distribution in [194]. By aggregating data fewer data packets needed to be sent,
saving energy.

2.9 Additional Aspects

In the literature the majority of the solutions against a local attacker assume that
there is only a single one present in the network. The fake source solution in [75] is
one work that investigated multiple attackers, where the network was divided into
four quadrants and one attacker was assigned to each quadrant. Once an attacker
receives and responds to a message, no other attackers will respond to that message
again. The authors found that these multiple attackers cause an increase of 100%
in the capture ratio (from roughly 40% to 80%). This was associated with one
attacker receiving many 〈fake〉 messages in one quadrant and another focusing on
the 〈normal〉 messages in another quadrant.

There have also been a number of works that do not attempt to introduce
new techniques but present insights into the problem. In [74] it was proposed that
SLP protocols have three components: (1) selection of decoys (such as the location
of phantom nodes or fake sources), (2) use and routing of control messages, and (3)
use and routing of decoy messages (such as 〈fake〉 messages). These components
then either have a temporal, spatial or hybrid nature. Not all of these components
need to be implemented by SLP-aware protocols. For example, Phantom Routing
does not implement the third component. The conclusion of this work is that there
needs to be some form of redundancy in the network to allow SLP to be provided.
Either in terms of space (such as an area to lure the attacker to), or in terms of time
(such as delaying the attacker by causing it to miss receiving messages).

As is evident by the number of techniques presented thus far, there is a
large number of SLP protocols to choose from. The work in [61] presented a
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decision theoretic methodology to select which protocol is appropriate for different
deployments. The authors focused on four metrics: the capture ratio, the delivery
ratio, the number of messages sent, and the delivery latency. Users of the methodology
need to supply custom utility functions that specify how to weight the metrics and
rank the goodness of the results. Results in the paper are obtained through simulation,
but could be supplied by real world experiments. A variety of techniques were
investigated: Protectionless flooding, CTP [57], DynamicSPR [25], ILPRouting [21],
Phantom Walkabouts [60], and Phantom Routing [81]. Sample utility functions
were demonstrated that focused on different metrics, showing certain algorithms
outperforming others.

In the future it is likely that SLP-aware routing protocols will take advantage
of new hardware developments. Most techniques thus far assume basic hardware
without additional functionality, but new capabilities would allow for new SLP
protection strategies. For example, GNSS radios that consume little power or
other localisation strategies would allow SLP-aware geographical routing that takes
advantage of the physical layout rather than just the network communication topology.
By doing this SLP-aware routing could aim to take an attacker over areas that are
slower to traverse compared to existing solutions. Another example would be low
power wake-up radios [18], which could be used to optimise the broadcast schedule
of an SLP-aware protocol. Alternatively, they could be potentially used to detect
an attacker’s presence with a low energy cost and have messages routed around the
attacker. New kinds of low power hardware will enable new classes of SLP protection
strategies.

2.10 Other Context Privacy

Along with source location privacy there are two other main types of context privacy
that are important to consider in WSNs. Some solutions aim to just provide this
type of context privacy, while others provide multiple kinds of context privacy within
the same solution.

2.10.1 Sink Location Privacy

Similar to source location privacy, sink location privacy is another aspect of context
privacy that instead focuses on protecting the location of the sink. In this work
the sink is assumed to be a well known location, such as a military base or a camp
operated by conservationists, so the solutions presented by this thesis will not focus
on sink location privacy. However, there are some situations where the sink’s location
is not obvious and it becomes important to protect that location. Many of the
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techniques developed aim to protect both the sink and the source nodes.
One of the first works to investigate sink location privacy was in [41, 42]. A

capable attacker that undertook rate monitoring and time correlation of messages
routed through a tree structure was assumed. The authors showed an attacker was
easily able to detect its proximity to the sink based on the volume of messages that
were being forwarded. The solutions presented take multiple approaches to provide
the context privacy. To provide sink location privacy a combination of: (i) nodes
forwarding packets to their parents instead of children (in the tree), (ii) a random
walk is introduced on the way to the sink, (iii) fake paths are used to lure the attacker
away from the sink, and (iv) areas of high communication volume are created to
increase uncertainty as to how far from the sink the attacker is. The technique is
rationalised as the energy cost is only increased by a factor of 2 to 3, but the time
taken for the attacker to capture the sink is increased by a factor of 19.

There are many other techniques to provide Sink Location Privacy [36,
99, 129, 184–187], and overall these techniques use similar approaches to source
location privacy techniques except that the focus is on protecting the location of
the sink. These approaches include, random walks, fake paths, uniform energy
consumption, and delay. Several techniques also provide sink and source location
privacy. Depending on the scenario, providing sink location privacy may or may not
be a requirement. For example, if the base station is a well known location then
there is no need to protect it when messages are being routed.

2.10.2 Temporal Privacy

The other type of context privacy that has been investigated is temporal privacy,
where instead of attempting to protect the location of events the time at which the
event occurs is protected. Aspects of temporal privacy are very useful in providing
source location privacy as will be shown in this thesis in Chapter 5.

The first work on temporal privacy was presented in [70]. When an event is
detected a message is sent immediately, but is delayed along its route to the sink by
a random amount of time that is exponentially distributed. An alternate approach
was then presented in [151], where rather than immediately sending a message it
was cached locally for some time. After the nth event is detected all stored messages
are broadcasted together. The value for n could be a fixed value for all nodes, or
determined probabilistically. By storing messages for some time, the time at which
older messages occur is obscured.

The authors of the seminal work on SLP then presented their take on temporal
privacy in [82, 83], with a solution called RCAD which adaptively delays the packets
from being forwarded onwards. The delay increases the attacker’s uncertainty of
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when the event occurred. Four delaying strategies were presented: (i) LDF which
delays the packet that has been in the buffer the longest, (ii) LRDF which delays the
packet with the longest remaining delay time, (iii) SDTF which delays the packet
with the shortest delay time, and (iv) SRDF which delays the packet with the shortest
remaining delay time. Results showed that the LRDF strategy performed the best
in terms of privacy against a baseline adversary, but SRDF performed better against
an adaptive adversary when traffic rates were high. The adaptive adversary changes
the way it estimates event time depending on the rate of traffic.

In [162] a sub-problem of temporal privacy was identified, Rate Privacy, where
the rate at which events occur is important to protect. Two techniques that the
authors identified as being inadequate to provide rate privacy are: (i) deterministic
message generation at a specific rate, and (ii) randomised fake event messages. The
first greatly increases the delay of being informed that an event occurred and the
second increases the energy usage of the network. The solution proposed by the
paper maintains a buffer of messages to forward. When a message is received, it is
placed in a random position that is empty in the message buffer. After a random
delay a node will retrieve the first message in the buffer and broadcast it. This
reorders the messages and provides temporal privacy.

2.11 Out of Scope

The solutions presented tend to avoid the capability of detecting an attacker’s location
and re-routing messages to avoid the attacker. This is because the technique is easily
defeated if the attacker finds a better way to evade these sensors, such as by changing
the frequency it broadcasts on or by simply not broadcasting at all. However, there
exists the problem of adversarial location, where the sensor network tries to locate
the attacker itself whilst minimising information leaked to an attacker about sensor
node locations [46]. Other approaches have investigated changing how messages
are routed when an attacker is detected [156]. While such information would be
useful to an animal tracking deployment, its use is out of scope for the SLP protocols
developed in this thesis.

Another problem is ensuring that the event location reported is correct, as an
attacker may want it to seem like events are occurring at different locations than they
actually are [72]. For example, the attacker may want to mislead the conservationists
as to where animals actually are to give themselves more time to steal the animals.
Techniques have been presented to detect fake or inconsistent event location claims,
however, the work in this thesis focuses on protecting the location of a message
broadcasting node even if the event it has detected is not real. Ensuring that the
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event the node has detected is real is left to secure localisation techniques.
Some sensor networks will contain anchor nodes that broadcast messages

containing their location which other nodes in the network will use to triangulate
their position. In [48] techniques are developed to prevent untrusted nodes from being
able to use the signal strength to locate anchor nodes. The technique dynamically
changes the power used to transmit beacon frames based on a discretised exponential
distribution. However, because nodes are not aware of their physical location in this
work, it means that anchor nodes would not be present. So providing protection
for anchor nodes is unnecessary. However, changing transmit power levels can be a
useful way to help obscure location information [175].

It is not just in WSNs where context privacy needs to be provided. A wide
variety of other situations also require it. Onion routing is one example that has
already been discussed, where the context information about the actual sender
and source is obscured from onion nodes along the route packets take. The idea
of path confusion was introduced in [69] where a sequence of GPS coordinates is
perturbed in such a way that the introduced error is bounded by a quality of service
requirement. Such obfuscation would have been useful to prevent situations such as
when the mobile app Strava leaked the physical layout of military bases3. Another
example is protecting a user’s location in location based services [112], where a user’s
actual geographical location is obscured but the user is still able to use the mobile
application effectively. This sort of privacy preservation could be extended to a
number of other situations, such as hiding the identity of rumour sources on social
media, privacy preserving data mining [16], and others.

2.12 Summary

Overall, there are a large number of techniques that provide SLP. Two of the biggest
categories are (i) routing messages via a phantom node and (ii) using fake sources.
The aim in both of these techniques is to lure the attacker to a different position
in the network other than the real node. These routing protocols have a variety of
performance characteristics, including how well they protect the source’s location,
the amount of energy they consume, how long it takes a message to reach the source,
and others. Other categories of techniques also exist, but these usually assume
additional network capabilities (such as data mules) that limit their use.

3http://www.bbc.co.uk/news/technology-42853072
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Chapter 3

Models and Experimental Setup

In order to investigate ways to model SLP and develop techniques to provide SLP,
the problem first needs to be formally stated. In this chapter the formal definition
of the SLP problem will be described in terms of the Panda-Hunter Game. This
definition describes the problem at a high level and contains a number of components
that are described in more detail. The attacker model and privacy model explain
assumptions about how the attacker behaves and what the aims are when providing
SLP.

This chapter also describes how the abstract models are applied when testing
solutions experimentally, which is undertaken to quantify the performance of the
solutions. There are two main options to perform the testing: simulation and
deployment on real world hardware. There are advantages and disadvantages to
both approaches. For example, simulation allows a wide array of scenarios to be
tested, but running on real hardware allows the actual behaviour to be examined. As
both approaches have merit, both techniques will be used to evaluate the developed
algorithms.

In order to simulate and deploy these algorithms a number of choices will need
to be made. The four main choices are: (i) what Operating System will the algorithms
be written in, (ii) what configurations will they be tested for, (iii) what simulator
will be used, and (iv) what testbeds will the algorithms be deployed on. This chapter
will detail these choices, as well as describing how the experimental environment was
set up, and how the experiments were performed. Finally, an example execution of
Protectionless flooding will be examined to give a practical example of the information
available to the attacker and how it responds to eavesdropped messages.
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3.1 Panda-Hunter Game

The Panda-Hunter Game model is based on the model proposed by [81]. The aim is
for the attacker to find the location of the source s by tracing back the messages sent
by some routing protocol R. The aim of network maintainers is to modify or replace
R such that the attacker fails to capture the source. The implementation of an
SLP-aware routing protocol can occur in a number of ways which will be investigated
in this thesis. The game represented by the five-tuple (G,Q,S,R,A), where:

G = (V,E) defines the graph where V ⊂ Z is the set of sensor nodes in the
network and E ⊆ V × V defines the communication links between nodes.

Q ⊂ V are the network sinks, to which all communication is ultimately routed to.
Typically there is a single sink q.

S ⊂ V are sensor nodes that have detected an asset. Typically there is a single
source s. Assets are characterised by a mobility pattern Ms. Nodes cannot be
both a sink and a source Q∩ S = ∅.

R is the routing policy employed to protect the asset from being acquired or
tracked by the hunter.

A is the attacker, who seeks to acquire or capture a source in S through a set of
movement rules MA.

The following sections will expand on this representation and explain aspects
of the Panda-Hunter Game further. Section 3.2 will detail the network model. The
focus of the routing protocol will be briefly described in Section 3.3 as the different
implementations in Chapters 5 and 6 will describe their respective routing protocols
in depth. When SLP is considered to have been provided is detailed in Section 3.4,
and how the attacker behaves is described in Section 3.5. These sections will also
state the assumptions made that the SLP-aware routing protocols depend upon.

3.2 Network Model

A wireless sensor node is a device with a unique identifier that has limited computa-
tional capabilities and is equipped with a radio transmitter for communication. A
WSN is a set of wireless sensor nodes with communication links between pairs of
nodes. The sensor network is modelled as a graph G = (V,E) where V represents
the set of nodes and E is a set of unordered pairs that represent bidirectional links
between the nodes. In some cases the network will be modelled as G = (V,A) where
A is a set of ordered pairs that represent unidirectional links. When a link exists
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between two nodes m,n, then m and n can directly communicate with each other.
Nodes that can communicate are called neighbours and the set of neighbours of a
node n is represented by 1HopN(n) for networks with bidirectional links.

There exists a distinguished node in the network called a sink, which is
responsible for collecting data and which acts as a link between the WSN and
the external world. Other nodes sense data and then route the data via 〈normal〉
messages along a computed route to the sink for collection. It is expected that there
are multiple hops between the source and sink. Any node, except for the sink, can
be a data source. It is assumed that the network is event-triggered, i.e., when a node
senses an object, it starts sending messages periodically to the sink for a certain
amount of time.

The messages sent are encrypted and the source node includes its identifier
in the encrypted messages. The type of encryption, be it end-to-end, pairwise or
some other scheme is left undefined. Using the identifier, the sink can infer an asset’s
location as it is assumed that the network administrators will record where they put
nodes. Nodes are not assumed to know their geographical location by being equipped
with Global Navigation Satellite System (GNSS) chips (such as GPS), which is due
to the increase in energy cost that would be incurred.

The modelling performed in later chapters will assume that network links are
reliable and bidirectional to simplify the analysis. However, these assumptions will
not hold in practice, so the implementation of the techniques that will be presented
in this thesis will be developed to handle unreliable links and other reliability issues
such as message collisions. The impact to the translation of the individual modellings
to an implementation will be small and shall be described in the chapters that
perform the modelling.

3.3 Routing Protocol

In WSNs, a routing protocol is required so data can be transferred from a source
node to the sink node. It is important for the routing protocol to deliver a high
percentage of messages from the source to the sink over multiple hops. The routing
protocol is considered to be a set of paths (a path is a sequence of communication
links between pairs of nodes) and a message will travel along one of the paths to
the sink. Each message may follow the same path or messages may follow different
paths to the sink. The way the routing protocol executes depends on the topology
of the network, as messages can only travel over links present in the network. The
attacker will make use of the routing protocol to locate the asset.

There are two approaches when considering the routing protocol. Either
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the protectionless routing protocol remains the same and is augmented to provide
SLP, or a new SLP-aware routing protocol is developed. Both approaches will be
investigated in this thesis to provide SLP.

3.4 Privacy Model

The overall objective of any WSN-based SLP solution is to ensure that the asset
(at a specific location) is never captured through information leaked by the WSN.
However, if the asset is stationary, then the attacker can perform an exhaustive
search of the network to find the asset. In this case the SLP problem is irrelevant
as the attacker will always capture the source. If there exists no time bound on
the capture time, then an exhaustive search is a trivial yet effective solution. On
the other hand, if the asset is mobile, then performing an exhaustive search of the
network is unsuitable, as the attacker may hone in on a given location only to find
out that the asset has moved.

Thus, the SLP problem can only be considered when it is time-bounded.
This captures the maximum amount of time a mobile asset will spend at a given
location. This notion of time bound has been termed as safety period in the literature.
There are two alternative definitions of safety period: The first, used primarily by
routing-based techniques, e.g. [81], is where the safety period is defined as the time
required to capture the asset. The aim of these techniques is to maximise the safety
period, i.e., the higher the time to capture, the higher the SLP level provided.

The second notion of safety period is used where it is desirable to bound the
amount of time SLP is being considered for, i.e., if an attacker fails to capture a
source within the specified safety period, then SLP is said to have been provided.
That notion of safety period intuitively captures the maximum time an asset will
be at a given location before its next movement. Often, this can be obtained from
previous data gathering to know more about such mobile assets.

This second notion of safety period is more generic than the first one in that,
rather than attempting to maximise the amount of time an asset isn’t captured (as
under the first definition), the second definition captures the fact that the asset can’t
be reached before a certain time limit, i.e., setting the time limit to be ∞ in the
second instance results in the first definition.

In this thesis, the time bound model of safety period is used. In order to
calculate the safety period (Psafety), for some parameters (P), the average time the
attacker takes to capture the source (T T ) under Protectionless flooding is multiplied
by a safety factor φ. In this work the safety factor is set to 2. Different safety factors
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have been investigated in other work [61].

Psafety(P) = T T (P)× φ (3.1)

3.5 Attacker Model

It was proposed in [13] that the strength of an attacker for WSNs could be factored
along two dimensions, namely presence and actions. Presence captures the network
coverage of the attacker, while actions capture the attacks the attacker can launch.
For example, presence could be local, distributed or global, where a local attacker has
a view of a subset of the network that does not change, a distributed attacker views
a subset of the network that can change as it moves location, and a global attacker
can see the entire network (such as by deploying its own WSN, or by using long
range antennas). Some examples of actions could be eavesdropping, reprogramming,
or emitting wireless interference among others.

The attacker assumed in this thesis is a distributed eavesdropper (distributed
due to mobility) based on the patient adversary, introduced in [81]. A distributed
attacker is chosen because the attacker can move around the network to gather
information. The only other action that it can perform is eavesdropping. Such an
attacker is reactive in nature and proceeds as follows:

1. The attacker initially starts at the sink.

2. When the attacker is co-located at a node n and eavesdrops a new message
that has not been received before, from a neighbour node m, the attacker will
move to m. Thus, in a normal setting, the attacker is geared to moving closer
to the source as it only follows unique messages.

3. Once the source has been found, the attacker will no longer move.

Previous work [81] has assumed that the attacker has the ability to identify
whether a message has been previously received and moved in response to. This
assumption is also made in this work. If this assumption is not made, then a routing
protocol such as flooding would lead the attacker away from the source. The attacker
is assumed to have the capability to perfectly detect which direction a message
arrived from, that it has the same radio range as the nodes in the network, and also
has an unlimited amount of memory to keep track of information such as messages
that have been heard. This history of received messages is used to determine if a
message is new or not.

In this work, the attacker starts at the sink because the sink is the one location
in the network where the attacker is guaranteed to eavesdrop a message from the
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source node, irrespective of the routing protocol used. The attacker could potentially
start at any location in the network, however, the attacker may not receive messages
due to their location not being on the route from the source to the sink. The sink
is assumed to be located at a base known to the attacker such as a military base
or a field station used by scientists monitoring wildlife. A routing protocol (such
as flooding [81]) that provides little protection to the source location is called a
protectionless routing protocol.

3.5.1 Capabilities

This attacker model lies on the bottom of total order of attacker capabilities shown
in Figure 3.1. This is because some stronger attacks would weaken the the attacker’s
ability to capture the source by leaking information to the WSN regarding the
attacker’s position. For example, if the attacker attempted to disrupt the functioning
of the network (e.g., by a DoS attack), it would reduce the amount of useful
information the attacker could gather. If an attacker attempted to broadcast messages
to influence the SLP or routing protocol, then the WSN could potentially detect an
intrusion attack and respond by ceasing to broadcast around the attacker (similar
to [127]).

eavesdrop→ crash→ disturbing→ limited passive→ passive→ reprogramming

Figure 3.1: Attacker capability hierarchy proposed in [13].

Performing certain attacks such as breaking into a sensor node to obtain
encryption keys (i.e., passive attacks) are good strategies for an attacker trying to
defeat SLP. The problem with such an attack is that it is also time consuming. For
example, [13, p. 11] predicts that a key stealing attack will take around 30 minutes
to perform in the field (not counting preparation time elsewhere or the time it takes
to find, obtain and open a sensor). As the solutions presented in this work aims
to provide a high level of SLP within a specific safety period, if the time taken to
obtain encryption keys is larger than the safety period then the attacker will have
failed to capture the source within the safety period. This means the attacker would
have achieved better results by simply eavesdropping. Thus, in the context of SLP
in WSNs, one of the most powerful type of local attackers that can be had is the
distributed eavesdropper which is assumed in this work.

3.5.2 Reasons Against Global Visibility

As this work focuses on a distributed attacker with a small visibility of the network
at a given point in time, the techniques are not designed to protect against a global
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attacker. The reason for this is that an attacker physically present in the network is
a much more likely threat to need to defend against. For an attacker to gain global
visibility they will need to expend significant resources to either: (i) deploy their
own WSN to monitor the WSN that is monitoring the assets, (ii) build towers with
sensitive long range directional antennas, or (iii) deploy many attackers present in
the network each with a small visible range. Each of which comes with downsides.
For example, deploying a sensor network capable of triangulating the source node
will be expensive, building towers with long range antenna is going to be noticed by
personnel monitoring the assets, and having more attackers in a network increases the
chance of detection and capture of the attackers. A single attacker with distributed
visibility is much more likely as cheap commodity components (a laptop, a SDR
dongle [147], and a directional antenna) can be used to sufficiently equip the attacker.
Therefore, this work focuses on a single attacker with visibility that changes over
time as the attacker moves through the network.

3.5.3 Simulation of the Attacker

The attacker is simulated by parsing log messages outputted by either the simulation
or testbed. The attacker moves from one node’s location to another node’s location
when required by its movement rules. It cannot be simulated by an independently
moving node as neither the simulator nor testbeds support this. This is why the
attacker must be co-located with another sensor node in the network. When a node
n receives a message, if the attacker is co-located with n, then the attacker will also
receive that message. This is why the attacker is assumed to have the same range
as the wireless sensor nodes. When a new message that has not been previously
seen is received by the attacker, it will move in response to that message. If the
attacker were to move in response to messages it has previously received then it can
be defeated by Protectionless flooding, as the attacker will follow the flood away
from the source. Once the source has been found the attacker will no longer move,
as the attacker has obtained its objective of capturing the source.

3.5.4 Summary of Attacker Assumptions

As a number of assumptions about the attacker model have been presented in this
section, they are summed up below for clarity. In the seminal work [81] assumptions
1–10, 12, and 14 are made, assumption 11 is not discussed, and assumption 13 is
investigated along with other attacker eavesdropping rages. Similar assumptions are
made in other work that addresses location privacy against a local attacker [21, 38,
41, 60, 63, 78, 120, 127, 137, 168, 174].
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1. The attacker is a person physically present in the network

2. The attacker is aware of the location of the sink node that messages are routed
to

3. The attacker starts at the sink as that is the one location guaranteed to receive
messages from the source

4. The attacker has sufficient directional antennas to detect the direction from
which a message originates

5. The attacker is capable of determining if a message has been previously seen
before

6. The attacker has unlimited memory to record the messages it has moved in
response to

7. The attacker moves to the location of the proximate source when it receives a
new message

8. The attacker’s visibility of the network changes over time as it moves through
the network

9. The attacker cannot tell the difference between an encrypted 〈normal〉 message
and an encrypted and padded 〈fake〉 message

10. The attacker does not have a global view of the network

11. The attacker does not transmit any wireless signals, such as jamming the
network (as that would reveal its position)

12. The attacker does not do complicated traffic analysis or physically attack the
network (as this takes time to perform, delaying its progress towards the source
within the safety period)

Due to limitations in the simulator and the way a mobile attacker is emulated on
the testbed, the following assumptions are made:

13. The attacker has the same wireless range as the sensor nodes

14. The attacker must be co-located with a sensor node, it cannot be located at
arbitrary coordinates
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3.5.5 Discussion on Attacker Assumptions

One of the assumption made is that the attacker must be co-located with a node,
due to simulator limitations. This means that the attacker will not exist at positions
between nodes. The implications of this are that an attacker that can exist at
positions between nodes will not receive the same messages at the same times as
an attacker that can only be co-located with nodes. This pattern of movement will
not greatly affect which messages the attacker receives (and thus the decisions it
makes) as the attacker will be in a similar area of the network when it either moves
discretely between nodes, or when it can move in the space between nodes.

Another assumption is that the attacker has infinite memory and the ability
to perfectly tell if a message has been received before. It is unlikely that sufficient
headers would be exposed, or that the encrypted contents would reveal sufficient
information for an attacker to be able to perfectly detect if a message is new or
not. A reason for including this behaviour is because if the attacker responds to
all messages then Protectionless flooding would provide SLP, as the attacker would
follow the wave of 〈normal〉 messages away from the source. One possible way to
prevent this behaviour is to have the attacker keep a travel history and not go back
to the previously visited nodes, however, the attacker can possibly become stuck
if it travels in a loop. An alternative would be for the attacker to ignore messages
for a short time period after moving, however, this means that the solutions would
be limited to protecting against attackers of a specific speed and potentially causes
attackers to miss receiving new messages they would want to respond to. By giving
the attacker this stronger assumption, techniques can be tested against a larger class
of attackers than using other alternatives.

In terms of the attacker movement rules, this attacker moves in response to
receiving new messages that have not been previously received before. Alternatively,
the attacker could wait at one location to gather information in contradiction of
assumption 12. After receiving a number of messages it could choose to move based on
the information gathered. A problem with this approach is that waiting reduces the
number of moves that the attacker could potentially take. If the attacker waits a too
long then the safety period will expire and it will fail to capture the source. Note that
a proactive attacker (which makes move independently of receiving messages) may
be able to benefit from waiting to gather information and then moving independently
of receiving messages. However, this thesis focuses on a reactive attacker, so it is out
of scope. As a proactive attacker is likely to perform well, it is worth investigating
the techniques developed in this thesis against this kind of attacker.
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3.6 Operating System and Simulation Tool

In order to implement these models to simulate and test SLP algorithms, a WSN
operating system and simulation tool needed to be chosen. There are several OSes
and simulation tools for WSNs [172]. Certain simulators have support for several
OSes, but other simulators support only one. As two of the most prominent OSes
come with their own simulator, the OSes and simulators will be reviewed together.
In choosing an OS and simulation tool there were a number of requirements:

1. Code written for an OS should be able to run in a simulator without changes.
This avoids the possibility of bugs being introduced while porting code and
reduces development time.

2. The simulator should be scalable and fast. As the WSNs that need SLP
provided for are expected to contain a large number of sensor nodes, the
simulator should be capable of supporting similar configurations.

3. The OS should be widely supported among different testbeds.

4. The OS should come with support for common hardware used by testbeds.

5. The OS should provide direct support for broadcasting and receiving messages.
As routing protocols are being developed, the OS should not require that I use
one of their protocols.

3.7 Simulators

A variety of WSN simulators exist, many with different features. This section covers
a number of the simulators considered for the simulations performed in this work.
Then the choice made is stated and why it was chosen is explained.

3.7.1 TinyOS and TOSSIM

TinyOS [96] is one of the oldest WSN OSes and has a number of unique design
decisions that allow it to run on hardware with very limited resources. TinyOS
focused on (i) running on hardware with limited resources, (ii) reactive concurrency,
(iii) flexibility and, (iv) low power consumption. These features are supported because
the OS is written in a C dialect called nesC [56]. The main additions to the language
are the ability to declare modules and interfaces and specify how they interact. Once
the program is compiled how the components interact is fixed and cannot be changed.

TinyOS was initially created as a “platform for innovation” [96] with the aim
of being flexible and to enable innovation, rather than being the right OS from the
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beginning. Whilst this certainly led to high usage in its early years, the complexity
caused by that flexibility has hindered its adoption in recent years. One of the
major features of TinyOS — nesC and the component architecture — lead to greater
development time, as there is a high time cost when learning this new language.
This seems to have put many people off learning TinyOS, or at least relegating it
to academia. Many new OSes have since been developed that aim to be simpler to
understand and use, such as Contiki and RIOT.

Code written for TinyOS can be run in the TOSSIM [95] simulator and also
on a variety of hardware. However, TOSSIM only supports code written for TinyOS
as it replaces the default ActiveMessageC component with its own that provides an
abstraction for how messages are sent and received across a wireless medium. As
TOSSIM is deeply integrated into TinyOS it can simulate large networks of up to
1000 nodes quickly. However, the lack of accuracy caused by not simulating a CPU
or the associated clock leads to several disadvantages:

• The duty cycle technique Low Power Listening (LPL) is not simulated, meaning
the radio is always on and the CPU never goes to sleep.

• Only one hardware platform (MICAz) is supported.

• TOSSIM can only simulate programs written using TinyOS.

3.7.2 Contiki and COOJA

Contiki [45] is an alternate OS written in C. One of the main benefits of Contiki
is that it supports the notion of multiple processes running concurrently that can
be replaced at run time. However, the implementation of certain functionalities are
hidden behind macros, which makes comprehending the code harder.

Code written for Contiki can be simulated in COOJA [136]. But COOJA
also supports running binaries from other OSes as long as it can be supplied in
the correct ELF binary format. Special support is present in COOJA to handle
setting the nodes identifier for both the Contiki and TinyOS OSes [50]. As COOJA
executes arbitrary binaries it thus needs to simulate the node’s CPU. Simulations
are therefore very accurate but are slow. This makes running simulations for a large
number of nodes impractical. COOJA also supports executing binaries for multiple
platforms with different CPU architectures1. It supports the MSP430 and ATmega
CPUs in the form of support for the TelosB (Sky) and MICAz motes.

Whilst COOJA has proved to be very useful there are some issues with it
that do not seem to have been resolved. As reported in [158] there is a timing bug

1https://github.com/contiki-os/contiki/wiki#Platforms
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involving the SPI bus, where the time it takes the hardware to transmit data was
being greatly over predicted. This does not seem to have been reported to the Contiki
or MSPSim developers. There are also issues with the compiler for the TelosB motes2

(MSP-GCC 4.6.3) where instructions are generated for the MSP430X CPU instead of
the MSP430 CPU. This is the default compiler provided by TinyOS and the Debian
OS. Updating to a more recent version of the compiler introduced its own set of
issues, so code needs to be written to avoid generating MSP430X instructions.

However, even with issues such as these, COOJA offers the opportunity to
test the entire code stack on a relatively accurate simulation of the hardware. A
major advantage compared to TOSSIM is that executing code advances a node’s
clock. Whereas in TOSSIM a very expensive calculation could occur, but the time
interface would report no change in the time before and after that calculation.

3.7.3 RIOT

RIOT [9, 10] is a relatively new IoT OS. It supports many more features compared
to TinyOS and Contiki such as (i) support for writing in C and C++, (ii) real
multithreading support, (iii) modularity, and (iv) a real time kernel. RIOT has
a number of downsides that come with providing these features. The first is that
it is more resource intensive than TinyOS, meaning there is less space available
for user code. The second is that RIOT focuses on higher level routing protocols
than developers would typically require, such as RPL and IPv6. As this work
involves creating routing protocols it may be harder to reach the broadcast primitives
compared to TinyOS or Contiki.

Overall RIOT aims to be much more developer friendly. This was an issue
with TinyOS and Contiki, as TinyOS required developers to use their custom nesC
language which was based on the C89 version of the C language and Contiki uses
macros to hide implementation details. By using Unix paradigms software developers
are used to, RIOT is much easier to work with. However, RIOT has no provided
simulator. This means that cycle accurate simulators like COOJA or Avrora [180]
would need to be used to simulate code. This comes with the same downsides as
using Contiki with COOJA, including low scalability and slow simulation speed.

3.7.4 Choice

A variety of other WSN simulators are available, such as OMNeT++ [182] and NS2
or NS33. However, these simulators are unable to have the same code run in both the

2github.com/contiki-os/mspsim/blob/47ae/se/sics/mspsim/core/MSP430Core.java#L455
3https://www.nsnam.org
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Figure 3.2: Source Corner for a size 7 grid network, with example wireless range of
one sensor node

simulator and on real hardware, thus were unsuitable. There was also a simulator
designed for experimenting with SLP protocols in WSNs [27], but as the source code
could not be found, it could not be evaluated.

The operating system chosen to implement this work using was TinyOS.
This was due to the operating system’s maturity and stability. Also important is
TOSSIM’s simulation scalability to a large number of nodes. This is because WSNs
will be deployed to monitor animals over a large area with a large number of nodes.
Also important is the ability for the same code to be simulated and run on real
hardware, as no errors will be introduced porting it from a simulator to hardware.

Previous experience with Contiki and COOJA had shown the simulator was
limited, both in terms of the size of the network that could be simulated and the
time it would take to simulate that network. However, as TOSSIM lacks the ability
to simulate TinyOS’ Low Power Listening layer, COOJA will be used to simulate
the network when this is necessary.

3.8 Simulation

In this section the simulation environment and protocol configurations that were used
to generate the results are described. A modified TOSSIM (version 2.1.2) simulation
environment was used for most experiments [95]. TOSSIM is a discrete event simu-
lator capable of accurately modelling sensor nodes and the modes of communications
between them. The modifications introduce no backwards incompatible changes.
The changes improve the performance of the simulations and add additional features.
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3.8.1 Simulation Environment and Network Configuration

A square grid network layout of size n × n was used in all TOSSIM experiments,
where n ∈ {7, 11, 15, 21, 25}, i.e., networks with 49, 121, 225, 441, and 625 nodes
respectively. In COOJA experiments a network size of n ∈ {7, 9, 11}, i.e., networks
with 49, 81, and 121 nodes respectively, were used instead due to the slow speed of the
simulator. These sizes were chosen because they are practical sizes for deployments.
Another consideration is to investigate smaller network sizes because they tend to be
harder to provide SLP for, as shown by previous results [78] where the capture ratio
tends to be higher for smaller networks. So it is important to validate developed
techniques on small networks to see how performance varies.

A single source node generated messages and a single sink node collected
messages. These nodes were assigned positions in the SourceCorner configuration
shown in Figure 3.2, where the source is in the top left corner and the sink at
the centre of the grid. This configuration was chosen as the networks that the
techniques developed are also expected to be deployed on relatively sparse networks,
in which every node can reach another node via multi-hop communications. The
techniques developed are not designed to require grid shaped network and are capable
of running on non-grid networks. The rate at which messages from the real source
were generated was varied at Psrc ∈ {2.0, 1.0, 0.5, 0.25} messages per second. In some
instances additional experiments were run for {8.0, 4.0} messages per second.

Nodes were assigned a unique integer identifier. The identifiers were allocated
randomly, so neighbouring nodes were unlikely to have an adjacent identifiers. Nodes
were located 4.5 m apart. The node separation distance in TOSSIM was determined
experimentally, based on observing the pattern of transmissions in the simulator.
This separation distance ensured that messages (i) pass through multiple nodes from
source to sink, (ii) can move only one hop at a time, and (iii) will usually only
be passed to horizontally or vertically adjacent nodes. However, there is a small
probability of diagonal links being present in the network.

3.8.2 TOSSIM Noise and Communication Model

The node neighbourhoods were generating using LinkLayerModel with the parameters
in Table 3.1. LinkLayerModel is a tool provided with TOSSIM that extrapolates
link strengths from node coordinates based on experimental data. These parameters
were chosen based on Football Field settings published online [198]. As animal
monitoring will occur in outdoor spaces these parameters are more representative of
that environment compared to settings discovered when indoors.

Two noise sample files are included with TOSSIM, meyer-heavy and casino-lab.
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Name Value
PATH_LOSS_EXPONENT 4.7
SHADOWING_STD_DEV 3.2
D0 1.0
PL_D0 55.4
NOISE_FLOOR -105

S

[
0.9 −0.7
−0.7 1.2

]
WHITE_GAUSSIAN_NOISE 4

Table 3.1: LinkLayerModel Parameters
for TOSSIM
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Figure 3.3: Box and whisker plot of noise
levels in meyer-heavy and casino-lab

The two noise models have different characteristics that represent noisy (meyer-heavy)
and quiet (casino-lab) conditions. As the focus of this work is with a WSN that is
deployed over a large outdoors area to monitor assets, noise levels are likely to be
low. Therefore, the casino-lab noise model is used to perform the simulations in
TOSSIM. The first 2500 lines from casino-lab were used in the simulations, because
including the entire file led to slower simulation speeds. The first 2500 lines of both
noise models are displayed in the box plots in Figure 3.3.

3.8.3 COOJA Communication Model

When the COOJA simulator is used to generate results, a unit disk graph model
(UDGM) represents the links between nodes. As nodes were positioned 4.5 m
away from each other the transmit range was set to 4.75 m to ensure nodes could
communicate and the interference range was also set to 4.75 m. This setup means
that each node has a link between the nodes above, below, left, and right of itself
(if they are present). There are no diagonal links present using this communication
model. Note that COOJA does not specify a noise model like TOSSIM does.

3.8.4 Safety Period

Following the definition of safety period in Section 3.4, the average time it takes an
attacker to capture the source under Protectionless flooding is calculated. These
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Network Source Period (seconds/message)
Size 2.0 1.0 0.5 0.25

ca
sin

o-
la

b

7× 7 17.60 8.81 4.61 2.55
11× 11 33.76 16.85 8.64 4.57
15× 15 50.32 25.14 12.80 6.64
21× 21 75.45 37.73 19.14 9.80
25× 25 92.79 46.26 23.37 11.89

Table 3.2: Safety Period (in seconds) for SourceCorner on TOSSIM.

Network Source Period (seconds/message)
Size 8.0 4.0 2.0 1.0 0.5 0.25
7× 7 78.13 39.06 19.53 9.77 5.03 2.70
9× 9 110.00 54.85 27.39 13.76 7.07 3.72

11× 11 140.63 70.31 35.16 17.58 9.01 4.65

Table 3.3: Safety Period (in seconds) for SourceCorner on COOJA.

values are then doubled due to the safety factor being set to 2, to obtain the safety
periods that are shown in Table 3.2 for TOSSIM and in Table 3.3 for COOJA. Two
extra source periods (8.0 and 4.0 seconds per message) are run for COOJA as the
results for this simulator use these extra values to demonstrate a trend in certain
results. The two simulators produced similar safety periods for the same parameters,
but COOJA tended to produce slightly higher values.

3.8.5 Simulation Experiments

An experiment constituted a single execution of the simulation environment using
a specified protocol configuration, network size and safety period. When routing
protocols that aim to provide SLP are run, if the attacker does not capture the
source within this safety period then it is considered to have failed to capture the
source. The simulation terminates when it has been running for a duration equal to
the safety period. If the attacker captures the source before the safety period has
been reached then it terminates immediately.

To ensure reliable results, a large number of repeats will need to be performed
for each parameter combination. Differences in simulation instances with different
seeds is expected due to randomness involved with the simulation from the noise
and communication models. Sufficient simulation repeats were performed for each
combination of parameters to obtain small confidence intervals which can be found
in Appendix E. Fewer repeats were performed for COOJA due to the simulator
being slower and limited cluster time available.
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Figure 3.4: A demonstration of the behaviour of the Protectionless algorithm and
how the attacker moves in response to the messages sent.

The results presented are an average of all the values produced from one set
of simulation parameters. One result, the capture ratio, is calculated differently. It
is defined by the number of simulation instances that led to a capture divided by
the total number of simulations executed. A large number of repeats are needed to
obtain a reliable capture ratio as the precision depends on the number of repeats.
For n repeats the capture ratio will have a resolution of 1/n.

3.8.6 Example Protectionless

The behaviour of the Protectionless Flooding routing protocol and the attacker’s
response to it is shown in Figure 3.4. Each event occurs on a specific node shown on
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the left y-axis. The circles indicate messages being sent, the squares indicate when a
node changed type. Nodes do not all become normal nodes at the same time because
they boot up at a random time between 0 and 1 second. In these figures the source
generated a 〈normal〉 message every 2 seconds (Psrc = 2), hence why there is a 2
second gap between waves of 〈normal〉 messages. The final wave did not flood the
entire network as the simulation terminated when the attacker reached the source.

Figure 3.4b shows the attacker’s movements and the messages that the
attacker eavesdropped. For example, at about 9 seconds the attacker failed to receive
a message, indicated by the lack of a blue 〈normal〉 message circle. All node change
events are included, but an attacker would not be aware of these. The attacker
position line shows how the attacker moves from node-to-node on its way to the
source. The line represents the attacker’s movement and where it intersects with
message broadcasts shows which messages it responded to. The source distance line
shows how the distance to the source changes over time. This graph makes it clear
what information is available to a local attacker present in the network during its
attempt to find the source. The attacker only has a small visibility, so few of the
total number of messages sent will ever be eavesdropped by it.

As these graphs provide a useful insight into the behaviour of the algorithm
and the attacker’s behaviour, they will be used to help analyse the protocols developed
in future chapters. Future protocols will include different types of nodes and messages,
which will be included in the legend in the messages sent graph.

3.9 Testbed

As wireless sensor networks have matured as a technology, testing techniques solely
using simulations have become insufficient. Therefore it is important to test developed
techniques on testbeds which are large deployments of real hardware. Testbeds have
a variety of features and vary in the hardware they offer, the metrics that can be
gathered about the software, what sensor network OSes are supported, and how jobs
are submitted to those testbeds. A number of testbeds were identified as candidates
to run experiments on. This section will detail the testbeds identified and explain
why FlockLab was selected to run experiments on.

Indriya [43] is a testbed whose infrastructure is designed to support TinyOS.
However, Indriya has no support for automation, making deploying jobs a tedious
manual task. TWIST [64] is another alternative. However, the testbed was un-
available for use due to construction work on the building the testbed was based in.
Both FlockLab [109] and FIT/IoT-LAB [2] supported automatic submission of jobs
and automatic retrieval of results. FlockLab has 27 TelosB nodes available across
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Figure 3.5: Link quality results for FlockLab.

a single floor. However, queued jobs cannot exceed 1 hour of queued testbed time.
FIT/IoT-LAB has a number of different sites with a large number of nodes present.
The only site compatible with TinyOS and capable of running data collection scripts
was Euratech. The Euratech site has over 200 custom MSP430 nodes.

Both FlockLab and FIT/IoT-LAB were selected to be used for experiments.
However, both networks had a very dense topology when using the default (maximum)
transmit power of the nodes. This transmit power was decreased to power level 7 to
decrease the topology density. However, even with this transmit power, FIT/IoT-
LAB had a very small diameter. So for testbed experiments only FlockLab was used
to test the developed algorithms under real world conditions.

To understand the results from the testbed the environment in which the
testbed exists must first be understood. Therefore, experiments were performed
to obtain the noise floor (when no node is broadcasting) and other experiments
performed to explore the quality of the wireless links between nodes. All experiments
were performed on the default CC2420 channel 26. As SLP techniques are expected
to be applied in large and sparse networks, the network degree needed to be reduced.
The CC2420 datasheet specifies the power levels that correspond to the transmit
power [177, sec 28] as shown in Table 3.5. By decreasing the power level the wireless
range of the sensor nodes decrease. With a lower range, fewer nodes will be connected
to one another, increasing the diameter of the network.
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Figure 3.6: The probability of a message being delivered along the links between
nodes on FlockLab with a broadcast power of 7

Source Period 0.5 1.0 2.0 8.0
Safety Period 4.44 8.82 17.02 76.18

Table 3.4: Safety Period (in seconds) for FlockLab.

The graphs in Figure 3.5 show the percentage of messages that a node received
directly from another node (PRR), the received signal strength indicator (RSSI),
and the link quality indicator (LQI). Higher transmit powers led to a much denser
network with a smaller diameter and lower transmit powers produced a sparser
network. The topology when the transmit power was set to 7 is shown in Figure 3.6.
This provides a multi-hop topology for the algorithms to be tested on. However, it
is still small compared to the networks SLP algorithms are expected to be used on.

An analysis of an instance the attacker’s behaviour in Figure 3.7 on Flocklab
for Protectionless flooding looks very similar to Protectionless on TOSSIM. The
attacker makes a step towards the source for each message it receives. The attacker
does not always move to nodes with lower identifiers because these nodes are on
its route to the source. Only four moves are needed for the attacker to capture the
source and no moves away from the source are made.
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Figure 3.7: A demonstration of the behaviour of the Protectionless algorithm and
how the attacker moves in response to the messages sent.

Power Level Output Power (dBm) Current Consumption (mA)
31 0 17.4
27 −1 16.5
23 −3 15.2
19 −5 13.9
15 −7 12.5
11 −10 11.2
7 −15 9.9
3 −25 8.5

Table 3.5: CC2420 Power levels [177, sec 28]
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Chapter 4

Analysing the Structure of
Source Location Privacy
Routing Protocols

There has been much work on providing SLP [40, 157] with many new techniques
having been developed, and the performance typically being evaluated through large-
scale simulations. Several works [6, 104, 123, 128, 141, 149, 195] have developed
models to analyse the privacy provided by their technique or protocol. Many of
which tend to be for SLP techniques that provide privacy against an attacker with
global visibility. There are two issues here, the first is that the modelling performed
is for a specific SLP protocol meaning that its results are not useful in analysing
other protocols. The second is that analyses that are more general are for SLP
techniques that defend against an attacker with global visibility of the network. This
means that there is a lack of analysis of arbitrary routing protocols against local
attackers who are present in the network.

To resolve this problem, in this chapter a novel approach based on entropy and
divergence is developed to analyse the properties of routing protocols. As this thesis
focuses on a distributed eavesdropper attacker that is present in the network, the
analysis will aim to quantify how much information is leaked to this kind of attacker.
The attacker’s position is modelled as a stochastic process (clear data time-series)
and its movement is modelled by a Markov chain which is obtained from another
Markov chain that specifies the behaviour of a routing protocol. Then, similar to
privacy-preserving data mining, an approach for perturbing the clear data time-series
to obtain a noisy time-series is developed. However, unlike in privacy-preserving data
mining where there is trade-off between information loss and privacy loss [16], no
such trade-off is required here. This means that information loss can be maximised,
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if possible, to minimize privacy loss.
A suitable definition of information loss is used together with entropy and

divergence of random variables to determine the properties of an SLP-aware routing
protocol. Specifically, a perturbation model is created such that the normal routing
protocol, which is not SLP-aware, is transformed into an SLP-aware routing protocol
whereby (i) a source can still do convergecast communication, and (ii) the attacker
cannot reach the source within a specified time limit (the safety period). In essence,
the SLP-aware routing protocol applies the perturbation technique to the clear time
series which generates a noisy time series. The perturbation occurs in such a way that
the attacker can learn little information about identifying the source from the noisy
time series. Such an approach is beneficial as (i) it does not make any assumptions
about the nature of the attacks, and (ii) it does not make any assumptions about
any particular protocol implementation.

Furthermore, a novel concept called proper competing paths is proposed that
captures the problem of whether the attacker can be stalled when moving towards
the source. Proper competing paths are central to the perturbation model proposed
in that (i) wherever proper competing paths exist there is an increased entropy at
that point, and (ii) noisy time series made up of proper competing paths are more
likely to have very small mutual information with the corresponding clear data time
series. The analysis approach developed will be applied to the techniques that are
presented in this thesis. The following contributions are made in this chapter:

• The design of an SLP-aware problem is formalised as a transformation problem.

• Using entropy and divergence, the requirements necessary to minimise the
amount of information leaked by a noisy time series is derived.

• The concept of proper competing paths is developed, which underpin the
perturbation model proposed.

• Two heuristics are proposed to (i) compute the set of proper perturbation
paths, and to (ii) transform a normal routing protocol into an SLP-aware
routing protocol.

The remainder of this chapter proceeds as follows: Section 4.1 contains a
description of the network, privacy and attacker models. Section 4.2 outlines the
problem statement and Section 4.3 details the analysis used to guide SLP protocol
development. The perturbation model is described in Section 4.4 and an example
case study is presented in Section 4.5. In Section 4.6 some of the issues raised with
the model is discussed and finally the chapter is concluded in Section 4.7.
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4.1 Additions to Models

In this section, a number of extra concepts based on those introduced in Chapter 3
are presented that are required specifically for this chapter.

4.1.1 System Model

A path is a finite sequence 〈n1 · n2 · · ·nj〉 of transitions, where each transition is
an ordered pair of nodes n = (n1, n2) ∈ V × V . For a path to be valid, it must
be the case that ni2 = ni+1

1 . A source-converging path is a path that ends at the
source, i.e., nj2 = s. In this chapter, unless specified otherwise, a path means a
source-converging path. A finite path can be converted into an infinite path through
the introduction of loops. For example, when a (finite) path terminates at a source,
it can be augmented through the infinite repetition of the final node, i.e., self-loop at
the source 〈n1 · n2 · · · (s, s) · (s, s) · (s, s) · · · 〉. For a given (finite) path p, the number
of transitions is denoted by |p|. The prefix of path p of length l is denoted by l ↑ p
(resp. the suffix of path p of length l by p ↑ l).

The nodes sense the environment, and when a node detects an event of interest
(i.e., the presence of an asset) the node broadcasts information about the event to
the network and is called a source node. This modelling focuses on the case where
there is only a single source node in the network (i.e., there is only a single asset
to protect). The source is denoted by s and it transmits a single message in every
source period Psrc time units. When a node transmits a new message, its neighbours
forward the message in the following time unit. This process is repeated until the
message is eventually collected at the sink. This implies that all nodes take exactly
one time unit to receive, process and forward a new message. The message is routed
towards the sink using a multi-hop routing protocol R. The routing protocol R is
modelled as a matrix, with Rij representing the probability that node j receives
a message from node i first, after the message is transmitted by the source. This
means that a node can only potentially receive a message first from a neighbour that
is closer to the source node. The reason to focus on the first new message is that in
real world scenarios the message will usually travel along the shortest path from the
source to the sink. Nodes will usually receive a message at least twice, once when it
is received for the first time and again by the subsequent node that is forwarding
it onwards. In this modelling, a node cannot receive a message first along a route
which is not the shortest path from the source to that node. A routing protocol that
provides little protection to the source location is called a normal routing protocol
RN .
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4.1.2 Attacker Model

Wherever the attacker is located, upon eavesdropping the first new message at
that location, the attacker moves to the neighbour who relayed the message. Thus,
when the attacker hears a new message, it makes a step towards the source. This
process can be repeated a number of times until the attacker reaches the source node,
whereby it captures the asset.

In this chapter the distributed eavesdropper attacker is memoryless due to
the way its movement is modelled as a Markov chain. This means the attacker does
not keep track of history information and it may revisit a node that it has previously
visited. Thus, the path an attacker takes to capture an asset may contain loops.
Also, since only one message is sent in a single time unit and SLP is being provided
within a time limit of the safety period Psafety, paths must contain at least P ′safety
transitions. P ′safety is the discrete version of Psafety which is obtained by rounding
Psafety up to the next integer. So, if a path ending at the source s has a length that
is less than P ′safety, it is extended to contain sufficient number of repetitions of (s, s)
until the path has a length of P ′safety.

4.2 Problem Statement

When an attacker is initially located at the sink and starts eavesdropping messages
along the route between the source and the sink, an important problem is to determine
the (maximum) probability that the attacker will be able to reach the source and
capture the asset within a specified maximum time bound. The attacker is assumed
to use the routing protocol to achieve its objective of reaching the source node. This
means that the attacker will not randomly choose moves to take that are not possible
as part of the routing protocol. Formally, the problem specification is as follows.
Given:

• A network G = (V,E),

• A distributed eavesdropping attacker A that is initially located at the sink q,

• A single source location s ∈ V ,

• A safety period Psafety,

• A maximum capture threshold δ that determines the SLP level required, and

• A normal routing protocol RN ,

The objective is to transform RN into RS such that:
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• There exists a path from the source s to the sink q using RS .

• A reaches s with probability of at most δ within Psafety using RS .

A routing matrix RS is called a Psafety-δ-SLP routing protocol (or simply an SLP-
aware routing protocol) if it prevents the attacker from finding the source within
Psafety moves with probability δ. Specifically, the objective is to understand the steps
required to transform a normal (non SLP-aware) routing protocol into an SLP-aware
routing protocol, i.e., to determine the properties that underpin a Psafety-δ-SLP
routing RS . Observe that RN and RS do not need to specify routing protocols with
similar transitions, with the exception that a source still needs to be able to send
messages to the sink.

One way towards solving this problem is to first develop a protocol and
then perform a performance analysis of the protocol to determine its efficiency, for
example [6]. Such an analysis identifies the level of SLP the algorithm is capable of
providing, and also allows the protocol under analysis to be refined based on the
results of the analysis. However, while this technique is effective in demonstrating
the performance of a specific technique, it is not suitable in investigating what an
optimal technique looks like.

Given that an attacker takes a step along a single hop within a given time
unit, its movement is modelled as a time series. This allows the SLP problem
to be analysed from the perspective of privacy protection of time-series data. By
structuring the analysis in this way, routing protocols can be abstractly considered
in order to determine the necessary properties to provide SLP. This chapter will
thus consider the problem of quantifying the protection of time-series data (the
routing protocol) which has been perturbed by some arbitrary perturbation model.
As the perturbation model is related to the transformation of RN into RS , this
then provides the ability to determine the development of a SLP routing protocol
that potentially minimises privacy loss, i.e., a Psafety-0-SLP routing protocol. The
remainder of this chapter will focus on the case of δ = 0.

4.3 Problem Analysis

This section will now analyse source location privacy routing protocols using entropy
and divergence.

4.3.1 Definitions

The notations and definitions used in the rest of the chapter will now be described
before the analysis of the routing matrix transformation required is subsequently
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presented.

• The discrete time domain is denoted by T .

• R is a |V | × |V | routing matrix, where Rij represents the probability node
j receives a message from i first. There are two variants, one for normal
protectionless routing RN and another for SLP-aware routing RS .

• The matrix that specifies the transitions an attacker could take is the transpose
of the routing matrix with transitions (n, n) added with probability 1 for each
node n when there are no edges that leave n in R. There is an attacker
transition matrix for both protectionless routing (RA

N ) and SLP-aware routing
(RA
S), the X indicates that this could be calculated for either RS or RN .

[
RA
X

]
ij

=


1 if i = j ∧ 0 = ∑

k∈V

[
R>X

]
ik[

R>X
]
ij

otherwise
(4.1)

• The set of all possible transitions an attacker could take is are a set of ordered
pairs of nodes Γ ⊆ V × V . The set of possible transitions that an attacker
could take in RA

N is ΓN = { (i, j) | (i, j) ∈ Γ ∧
[
RA
N

]
ij
> 0 } and the set of

possible transitions in RA
S is ΓS = { (i, j) | (i, j) ∈ Γ ∧

[
RA
S

]
ij
> 0 }.

• Nλ is a random variable of attacker transitions ΓN , that occur at time λ, under
a protectionless routing protocol RN .

• Sµ is a random variable of attacker transitions ΓS , that occur at time µ, under
an SLP routing protocol RS .

• The trace of clear time-series data of an attacker movement under a protection-
less routing RN is a stochastic process AN = {AN i}i∈T , where the AN i’s form
a sequence of random variables of attacker positions in the network (AN i ∈ V ).

• Thus, the trace of noisy time-series data generated by an SLP routing protocol
RS is a stochastic process AS = {AS i}i∈T , where the AS i’s form a sequence of
random variables of attacker positions in the network (AS i ∈ V ).

• There is a safety period Psafety which is the number of time units it takes the
attacker to reach a source (on average) from the time it first receives a normal
message under a protectionless routing protocol RN .

Note that these routing matrices are different to those in [6] which contain the
probability that the routing algorithm chooses the next node. The routing matrices
in this chapter instead contain the probability a message is received from a node.
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Thus, in this setting, the objective can be recast as follows: develop a trans-
formation ψ that transforms RN into RS such that, using a measure of dissimilarity,
the dissimilarity between RN and RS captures the SLP level imparted by ψ, which
implements the SLP-aware protocol.

4.3.2 Analysis

In this section, the characteristics of a routing protocol that can provide a high level
of SLP are identified. To do this, a measure of privacy is needed to evaluate the
level of SLP enhancement provided by a given solution. There are several potential
definitions for privacy metrics and [16] provides a survey of some of these metrics.
Initially, the entropy of a single random variable is focused on H(Xλ) and then the
divergence between two random variables Nλ and Sµ is used to understand how
the two routing protocols differ. Note that X can be replaced with N or S when
calculating entropy as it only deal with calculating information about one routing
protocol.

The entropy of a random variable H(Xλ) indicates the uncertainty of taking
transitions at time λ. In order to calculate the entropy the starting location q of the
attacker needs to be specified. This means that the entropy at λ will be different
depending on where the attacker starts.

H(Xλ | AX 0 = q) = −
∑
n∈Γ

Pr (Xλ = n | AX 0 = q) log2 Pr (Xλ = n | AX 0 = q) (4.2)

In order to calculate the entropy, the probability function is now defined. As the
attacker movement is represented as a Markov chain, the probabilities will be defined
based on Markov chain definitions. The probability that the attacker starting at
node i reaches j in exactly λ-steps is Pr (AX n+λ = j | AX n = i).

Pr (AX t+λ = j | AX t = i) =
[(
RA
X

)λ]
ij

(4.3)

The attacker is assumed to start at the sink, but this chapter will also look at
the attacker starting at different locations. Starting at locations with different
probabilities is not investigated, this chapter assumes that there is one starting
location with a probability of 1.

Pr (AX 0 = q) = 1 (4.4)

The probability that an attacker takes a transition n = (n1, n2) at time λ when its
starting location is q can be calculated as shown in Equation 4.5. The intuition is to
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calculate the probability the attacker reaches node n1 at time λ− 1 and then takes
the transition n at λ.

Pr (Xt+λ = n | AX t = q)

= Pr (AX t+λ = n2 | AX t+λ−1 = n1) Pr (AX t+λ−1 = n1 | AX t = q)

=
[(
RA
X

)]
n1n2

[(
RA
X

)λ−1
]
qn1

(4.5)

To measure how much RS diverges from RN a divergence measure can be
used. Measures such as the Kullback–Leibler (KL) divergence [91] cannot be used
as ∀n ∈ Γ : Pr (Sµ = n) = 0 =⇒ Pr (Nλ = n) = 0 does not hold in all cases
which is required to use KL divergence. Instead an alternative measure such as
the Jensen–Shannon (JS) divergence [110] can be used as it does not require this
property. The definition for JS divergence is shown in Equation 4.6 with Nλ and Sµ
weighted equally.

JSD(Nλ ‖ Sµ) = H

(Nλ + Sµ
2

)
−
(1

2H(Nλ) + 1
2H(Sµ)

)

= −
∑
n∈Γ

L

(Pr (Nλ = n) + Pr (Sλ = n)
2

)
−

−1
2
∑
n∈Γ

L (Pr (Nλ = n))− 1
2L (Pr (Sλ = n))


=
∑
n∈Γ

L (Pr (Nλ = n))
2 + L (Pr (Sλ = n))

2 − L
(Pr (Nλ = n) + Pr (Sλ = n)

2

)
(4.6)

Where: L(x) = x log2 x

Using the JS divergence indicates how effective the transformation ψ from RN to
RS is at specific points in time. As the log base used to calculate entropy is 2 and
the divergence is being calculated for two probability distributions, the divergence is
bounded as follows 0 ≤ JSD(Nλ ‖ Sµ) ≤ log2(2). This means that the upper bound
of the divergence is 1. A higher divergence means that there are more differences
between the two routing protocols. Ideally the JS divergence would equal 1 when
λ = µ for a sufficient number of transitions, indicating the two have fully diverged at
the same time instance.

Expected Capture Time

A useful application of Markov chains is the ability to calculate the expected hitting
time. This translates well to the SLP problem as it is useful to know the expected
capture time of a routing protocol. Using the hitting probability (hij) and expected
hitting time of a Markov Chain, the expected capture time t when the attacker starts
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at i and wants to end up at j can be calculated as E [AX t = j | AX 0 = i]. These
equations can be calculated for AN and AS .

hij =


1 if i = j∑
k∈V ∧j 6=i

[
RA
X

]
ik
hkj otherwise

(4.7)

E [AX t = j | AX 0 = i] = mij =



∞ if hij < 1

0 if i = j

1 + ∑
k∈V ∧j 6=i

[
RA
X

]
ik
mkj otherwise

(4.8)

The δ component of a Psafety-δ-SLP routing protocol can also be calculated. This is
the capture probability when the attacker starts at i and wants to reach j within
P ′safety hops.

δ
P ′
safety

ij =



1 if i = j

0 if i 6= j ∧ P ′safety = 0∑
k∈V ∧j 6=i

[
RA
X

]
ik
δ
P ′
safety−1

kj otherwise

(4.9)

Information Loss from Privacy Preserving Data Mining

While the Jensen-Shannon divergence works well for calculating the divergence at
specific time points, it doesn’t provide an overall summary. So a notion of dissimilarity
between RN and RS is needed such that the dissimilarity level is indicative of the
SLP level provided by RS . It was shown in [3] that the notion of information
loss varies inversely with privacy loss (see Figure 4.1 for examples representative of
different perturbation models), i.e., the higher the information that is lost or the
more perturbed the clear data time-series is, the less privacy is lost.

To this end, the following definition of information loss in Equation 4.10,
which is used in privacy-preserving data mining [15, 16] is adapted to suit the SLP
problem (see Equation 4.11). Here, DN and DS represent the clear and noisy domains
respectively, and fD(i) represents the frequency of the data item i in domain D.

IL(DN , DS) =
∑n
i=1|fDN (i)− fDS (i)|∑n

i=1 fDN (i) (4.10)

Since transitions do not contribute to information gain to the attacker after
the safety period has elapsed, the information loss definition is adapted to only
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Figure 4.1: Information Loss vs Privacy Loss representative of [3, Fig. 8] depending
on the perturbation model used.

include transitions in RS that occur before the safety period expires.

IL(DN , DS) =
∑n
i=1|fDN (i)− fDS (iP

′
safety)|∑n

i=1 fDN (i) (4.11)

Where FDN (i) and FDS (iP
′
safety) are defined as:

FDN (i) =

1 if transition i is used in RN ,

0 otherwise.
(4.12)

FDS (iP
′
safety) =

1 if i is not taken within P ′safety steps in RS ,

0 otherwise.
(4.13)

Equation 4.10 states that the more dissimilar the set of transitions taken
within Psafety time units are, the greater is the information loss, hence the lower the
privacy loss. If IL(DN , DS) = 1 (i.e., is maximum), then it implies that DN ∩DS = ∅.
In other words, to minimise privacy loss, RN and RS cannot share any transition.
More specifically, it means that, though RN and RS can share transitions, an
attacker cannot take some transition in RN under RS within P ′safety time units.
This then means that RN has to be transformed in such a way that for a certain
duration, for any transition (i, j) unique in RS , an attacker at location j needs to
receive a message from i first.
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sink i src

p2

p1
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j′

Figure 4.2: Demonstration of two paths p1 and p2 the attacker could take that
compete at node i.

4.4 Perturbation Model: Proper Competing Paths

To understand the transformation of RN into RS , i.e., to understand how RN
can perturbed into RS , the concept of competing paths will now be introduced. A
visualisation of Definition 1 is shown in Figure 4.2.

Definition 1 (Competing Paths) Given a network G = (V,E) and a protection-
less routing protocol RN , two distinct paths p1 and p2 under RN compete at a node
n ∈ V iff the following are satisfied:

• p1 and p2 are source-converging paths.

• ∃(i, j), (i, j′) ∈ E : (i, j) ∈ p1 ∧ (i, j′) ∈ p2 ∧ i = n

• ∀j, j′ ∈ V : j 6= j′ =⇒ [RN ]jn > 0 ∧ [RN ]j′n ≥ 0

Definition 2 (Junction Node) A node n is a junction node if multiple competing
paths compete at n.

The idea of competing paths is that if one path is part of the clear data time-series,
then the other can be used in the noisy data time-series. Specifically, it means that
if the attacker is more likely to follow a given path p1 under RN , then the attacker
can be made to follow path p2 under RS . In this definition the node n is called a
junction node, p1 is called a normal path, and p2 a perturbed path. The example in
Figure 4.3a can be considered. Since [RN ]2,5 = 0.5 and [RN ]4,5 = 0.5, then paths
〈(5, 2) · (2, 1)〉 and 〈(5, 4) · (4, 1)〉 compete at node 5. Observe that the notion of
competing paths increases the entropy at the node they are competing at.

However, not all competing paths are capable of preventing the attacker from
reaching the source within the required safety period. For example, in Figure 4.3a the
two paths both compete at node 5, but neither prevent the attacker from reaching
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(c) Junction Node at 4 and 5

Figure 4.3: Examples of competing paths and their junction nodes

the source. The notion of competing paths is thus strengthened to that of proper
competing paths.

Corollary 1 All source-converging paths compete at the sink.

Definition 3 (Proper Competing Paths) Given a network G = (V,E) and a
protectionless routing protocol RN , two distinct paths p1 and p2 under RN compete
properly at a node n ∈ V iff the following are satisfied:

• p1 and p2 are source-converging paths.

• ∃(i, j), (i, j′) ∈ E : (i, j) ∈ p1 ∧ (i, j′) ∈ p2 ∧ i = n

• ∀j, j′ ∈ V : j 6= j′ =⇒ [RN ]jn > 0 ∧ [RN ]j′n = 0

Definition 4 (Proper Junction Node) A node n is a proper junction node if
multiple proper competing paths properly compete at n.

Here, for two proper competing paths, the attacker cannot receive the message
first along one of these paths. Thus, path p1 should be perturbed into path p2 in
the noisy data time-series. The intuition is that the attacker, at a proper junction
node, has two distinct choices and one of those choices is one it would unlikely have
made under normal circumstances. As before, p1 is called a normal path and p2 a
properly perturbed path.

Lemma 1 Given a network G = (V,E), a protectionless routing protocol RN , an
attacker A that starts at the sink, safety period Psafety, and a path p1 under RN with
|p1| ≤ P ′safety, then there exists a path p2 with |p2| > P ′safety such that ∃n ∈ p1, p2

where p1 and p2 properly compete at n.
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Proof. It needs to be proven that along p1 there exists a node n such that p1 and
p2 properly compete at n and that |p2| > P ′safety.

This is proved by contradiction: First it is assumed that there exists no such
path p2. Consider a node i ∈ p1 and one of its neighbours j which is further from
the source. According to the assumption, 0 < [RN ]ij ≤ 1 holds. Since it is assumed
that no p2 exists that can properly compete with p1, i.e., no proper junction node
exists, ∀j, (i, j) ∈ E : 0 < [RN ]ij ≤ 1 holds. However, ∃k : (i, k) ∈ E is further from
the source than i, then [RN ]ki = 0, which is a contradiction. Thus, such a p2 exists
and the proper junction node is node j. Path p2 is also of length |p2| > P ′safety, by
repeating the transition (i, j) P ′safety times. �

The intuition is that p1 is a path that an attacker may follow under the
protectionless protocol RN to capture the asset, while p2 provides a diversion via a
path that the attacker will not normally follow. This path should be long enough
to adequately delay the attacker. Further, p2 also captures the fact that p1 can be
perturbed into p2 at the identified proper junction node. Such a path p2 will need to
be guaranteed to occur under a routing protocol.

Using Figures 4.3a and 4.3c, as an example, there are the following two paths
p1 and p2. Setting Psafety = 4 the paths are expanded out to p′1 and p′2. Notice that
the attacker reaches the asset at node 1 in p1 within Psafety steps but does not in p2.

p1 = 〈(5, 4) · (4, 1)〉

p′1 = 〈(5, 4) · (4, 1) · (1, 1) · (1, 1) · (1, 1) · (1, 1) · (1, 1)〉

p2 = 〈(5, 4) · (4, 5) · (5, 4) · (4, 5) · (5, 4) · (4, 1)〉

p′2 = 〈(5, 4) · (4, 5) · (5, 4) · (4, 5) · (5, 4) · (4, 1) · (1, 1)〉

At this point, a proper junction point needs to be selected. Since the attacker
starts at the sink, the sink is the first candidate to be considered as a proper junction
point. If the sink is not a proper junction point, normal paths are iteratively selected
under RN at random and proper junction points are identified. Once a proper
junction node is selected, a properly perturbed path needs to be selected to obtain
the routing matrix RS , i.e., choosing a set of properly perturbed paths.

Hence, the heuristic in Algorithm 1 is proposed to generate the set of properly
perturbed paths at a given proper junction node. The SLP-aware routing matrix RS
can then be generated using the perturbed time series as shown in Algorithm 2. Note
that the heuristic does not define certain methods (such as Choose) as different
definitions will lead to different SLP-aware routing protocols being produced. The
set of properly perturbed paths that Algorithm 1 generates is shown below, and the
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Algorithm 1 Generating set of properly perturbed paths with a length of at least
P ′safety hops. The safety factor is φ.

1: function ProperlyPerturbedPaths(RN , φ)
2: PPP ← ∅
3: NormalPaths ← set of all normal paths from sink q to source s in RA

N
4: T T ← E [AN t = s | AN 0 = q] . Expected capture time
5: P ′safety ← dT T × φe
6: for path ∈ NormalPaths do
7: used ← 〈〉
8: for (i, j) ∈ path do
9: if i = source then

10: break
. Find an unused node n to perturb p though

11: for n ∈ V :
[
RA
N

]
in

= 0 do
12: pp ← { p | generate path p from q to s where

(|used| ↑ p) = used ∧ . Path starts the same
p|used|+1 = (i, n) ∧ . Path goes via n
(dT T e ↑ p) 6∈ RN ∧ . Eliminate paths in RN
|p| > P ′safety } . Attacker does not reach s within P ′safety

13: pp ← {〈(n2, n1) | n ∈ reverse(p)〉 | p ∈ pp } . Reverse the path
14: PPP ← PPP ∪ pp
15: used ← used _ 〈(i, j)〉
16: return PPP

Choose function picks the fourth path in Algorithm 2 in the following examples.

{ 〈(1, 2) · (2, 3) · (3, 6) · (6, 9) · (9, 8) · (8, 5)〉,

〈(1, 2) · (2, 3) · (3, 6) · (6, 9) · (9, 8) · (8, 7) · (7, 4) · (4, 5)〉,

〈(1, 4) · (4, 7) · (7, 8) · (8, 9) · (9, 6) · (6, 3) · (3, 2) · (2, 5)〉,

〈(1, 4) · (4, 7) · (7, 8) · (8, 9) · (9, 6) · (6, 5)〉 }

Theorem 1 (Privacy Loss) Given, a network G = (V,E), a source location s ∈ V ,
a sink location q ∈ V , a distributed eavesdropper attacker A that is initially located
at the sink, a safety factor φ, and a normal routing protocol RN with expected time
to capture T T , then RS generated with Algorithm 2 (if such a routing matrix exists)
results in at least (φ− 1)T T + 2 steps where JSD(Nλ ‖ Sλ) = 1.

Lemma 2 At least (φ− 1)T T + 2 steps completely diverge in RS compared to RN .

Proof. By construction. As the paths generated must be longer than φT T
(the safety period), the minimum length of a properly perturbed path must be
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Algorithm 2 Generating SLP-aware routing matrix
. Generate a set of routing paths from the source s to the sink q for messages to
follow. The attacker follows the reverse of this path. The safety factor is φ.

1: function PerturbNormalRouting(RN , φ)
2: RS ← RN
3: PPP ← ProperlyPerturbedPaths(RN , φ)
4: p ← Choose(PPP) . Choose one path, fails if no paths available
5: for (i, j) ∈ p do
6: for k ∈ V \ {i} do
7: [RS ]kj ← 0 . Prevent j from receiving from any node except i
8: [RS ]ij ← 1 . Ensuring attacker follows chosen properly perturbed path

. Remove paths from source that no longer terminate at the sink
9: RS ← RemoveUnterminatingPaths(RS)

10: return RS

φT T + 1. The maximum number of overlapping steps the perturbed path can have
is T T − 1. So the minimum number of diverged steps that the path must have is
φT T + 1− (T T − 1) = (φ− 1)T T + 2. �

Lemma 3 When a transitions diverges at λ, for all n in Γ:

Pr (Sλ = n) = 1 =⇒ Pr (Nλ = n) = 0 (4.14)

Pr (Nλ = n) > 0 =⇒ Pr (Sλ = n) = 0 (4.15)

These properties lead to JSD(Nλ ‖ Sλ) = 1.

Proof. There are three cases that need to be considered:

• Case 1: Pr (Sλ = n) = 1, where it is also the case that Pr (Nλ = n) = 0 due to
the implication.

���
���

���:0
L (Pr (Nλ = n))

2 +
���

���
���:0

L (Pr (Sλ = n))
2 − L


��

���
���

���
���:

0.5
Pr (Nλ = n) + Pr (Sλ = n)

2


(4.16)

So when n is taken under RS the expression inside the sum has the value
−L (0.5) = 0.5.

• Case 2: Pr (Nλ = n) > 0, where it is also the case that Pr (Sλ = n) = 0 due to

69



the implication.

L (Pr (Nλ = n))
2 +

��
���

���
�:0

L (Pr (Sλ = n))
2 − L

Pr (Nλ = n) +����
���: 0

Pr (Sλ = n)
2


= L (Pr (Nλ = n))

2 − L
(Pr (Nλ = n)

2

)
= Pr (Nλ = n)

2 log2 Pr (Nλ = n)− Pr (Nλ = n)
2 log2

Pr (Nλ = n)
2

= Pr (Nλ = n)
2

(
log2 Pr (Nλ = n)− log2

Pr (Nλ = n)
2

)
= Pr (Nλ = n)

2 (log2 Pr (Nλ = n)− (log2 Pr (Nλ = n)− 1))

= Pr (Nλ = n)
2 (4.17)

As 1 = ∑
n∈Γ

Pr (Nλ = n) then 0.5 = ∑
n∈Γ

Pr(Nλ=n)
2

• Case 3: Pr (Nλ = n) = 0 ∧ Pr (Sλ = n) = 0

���
���

���:0
L (Pr (Nλ = n))

2 +
���

���
���:0

L (Pr (Sλ = n))
2 −

���
���

���
���

���
�:0

L

(Pr (Nλ = n) + Pr (Sλ = n)
2

)
(4.18)

This leaves the summation to obtain the Jensen-Shannon divergence as:

1 =
∑
n∈Γ


0.5 if Pr (Sλ = n) = 1
Pr(Nλ=n)

2 if Pr (Nλ = n) > 0

0 if Pr (Nλ = n) = 0 ∧ Pr (Sλ = n) = 0

(4.19)

�

4.5 A Case Study

In this section, a simple case study is presented to show the viability of this approach.
Using the network shown in Figure 4.4a for RN and Figure 4.5a for RS , with the
sink at the centre of the network and the source on the border of the network. For
example, [RN ]1,2 = 1 means that node 2 will receive a message first from node 1. On
the other hand, [RN ]2,5 = 0.5 means there is a 50% chance that node 5 will receive a
message first from node 2 (the other possibility is from 4). The set of normal paths
is given by {〈(5, 2) · (2, 1)〉, 〈(5, 4) · (4, 1)〉}. Here, the safety period P ′safety is 4 as
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1 0 1 0 1 0 0 0 0 0
2 0 0 1 0 0.5 0 0 0 0
3 0 0 0 0 0 0.5 0 0 0
4 0 0 0 0 0.5 0 1 0 0
5 0 0 0 0 0 0.5 0 0.5 0
6 0 0 0 0 0 0 0 0 0.5
7 0 0 0 0 0 0 0 0.5 0
8 0 0 0 0 0 0 0 0 0.5
9 0 0 0 0 0 0 0 0 0
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1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0.5 0 0.5 0 0 0 0 0
6 0 0 0.5 0 0.5 0 0 0 0
7 0 0 0 1 0 0 0 0 0
8 0 0 0 0 0.5 0 0.5 0 0
9 0 0 0 0 0 0.5 0 0.5 0
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(b) Attacker movement matrix RA
N

Figure 4.4: Protectionless flooding matrices

the expected capture time is 2 and the safety factor φ is 2.
Here, the first proper junction node is node 5, the sink. Any properly

perturbed path will start with transition (5, 6) or (5, 8). Applying the heuristic to
generate RS shows that (i) it is first required to reset the values of node 5 and
then set the value of the relevant transition to 1. This is shown in the matrix RS ,
where the old value is stricken off and replaced by the new value, shown in bold.
For example, it means that [RS ]6,5 needs to be set to 1 to ensure that the attacker
moves to node 6 from the sink, rather than move towards either node 2 or 4. This is
performed for each transition in one of the properly perturbed paths.

As can be observed, an attacker will now take the following path: 〈(5, 6) ·
(6, 9) · (9, 8) · (8, 7) · (7, 4) · (4, 1)〉, meaning that the attacker requires 6 transitions to
reach the source, which is more than the safety period. Hence, it means that the
attacker cannot catch the source before the safety period expires.

The information loss of RS compared to RN can be calculated using the
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1 2 3 4 5 6 7 8 9

1 0 �1 0 0 1 0 0 0 0 0
2 0 0 �1 0 0 ��0.5 0 0 0 0 0
3 0 0 0 0 0 ��0.5 0 0 0 0
4 0 0 0 0 ��0.5 0 0 1 0 0
5 0 0 0 0 0 ��0.5 0 0 ��0.5 0 0
6 0 0 0 0 �0 1 0 0 0 ��0.5 0
7 0 0 0 0 0 0 0 ��0.5 1 0
8 0 0 0 0 0 0 0 0 ��0.5 1
9 0 0 0 0 0 �0 1 0 0 0
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1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 1
7 0 0 0 1 0 0 0 0 0
8 0 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 0 1 0
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(b) Attacker movement matrix RA
S

Figure 4.5: Perturbed SLP matrices

equation in Equation 4.10. There are twelve transitions present in the domain of ΓN
shown in DN . There are six transitions in the domain of ΓS (shown in DS), of which
only four are reachable within the safety period (shown in D

P ′
safety

S ). Table 4.1 shows
which transitions are present in both DN and D

P ′
safety

S . Using this result, (where
7 is a 1 and 3 is a 0) the information loss can be calculated in Equation 4.23.

DN = {(1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 5),

(4, 7), (5, 6), (5, 8), (6, 9), (7, 8), (8, 9)}
(4.20)

DS = {(1, 4), (4, 7), (7, 8), (8, 9), (9, 6), (6, 5)} (4.21)

D
P ′
safety

S = {(7, 8), (8, 9), (9, 6), (6, 5)} (4.22)

72



1 2 3 4 5 6 7 8 9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1  2  3  4  5  6  7  8  9  10

H
(N

λ
)

λ

(a) Entropy of Nλ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1  2  3  4  5  6  7  8  9  10

H
(S

µ
)

µ

(b) Entropy of Sµ

Figure 4.6: Entropy at different times based on the attacker’s starting position

DN (1, 2) (1, 4) (2, 3) (2, 5) (3, 6) (4, 5) (4, 7) (5, 6) (5, 8) (6, 9) (7, 8) (8, 9)

D
P ′

safety

S 7 7 7 7 7 7 7 7 7 7 3 3

Table 4.1: Are the transitions from DN in D
P ′
safety

S ?

IL(DN , DS) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 + 0
12 = 10

12 = 5
6 (4.23)

These results show that the information loss from the attacker’s perspective is 83%,
meaning it can only observe 17% of the original routing matrix. By reducing the
amount of information the attacker can gain from the routing matrix, it can be
prevented from finding the source within the safety period.

4.5.1 Entropy and Divergence

As well as using the measure of information loss from privacy preserving data mining,
the entropy can be calculated for these two routing matrices RN and RS individually,
and then Jensen–Shannon divergence can be calculated to compare them. Figure 4.6
shows the entropy for the two example routing matrices in Figure 4.4a and Figure 4.5a.
Because there is only one path between the sink and source in RS , no matter where
the attacker starts it will always take the same path, hence the entropy is 0 for all
starting locations as there is no uncertainty in its actions. However, when there are
multiple paths to the source from the sink in RN the entropy is non-zero. When
there are more paths from the starting location to the sink the entropy is greater.
This is shown by the attacker starting at node 9 having a greater entropy than when
it starts at node 5.

So far the analysis has focused on the individual routing examples, to compare
RS to RN the Jensen–Shannon divergence (JSD) can be calculated. Figure 4.7
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Figure 4.7: Jensen–Shannon divergence between Nλ and Sλ at different starting
nodes

shows the JSD at the same times for the two attacker movement matrices, which
demonstrates a number of interesting aspects of the two routing matrices. First, is
that the actions the attacker takes when starting at 2 or 3 have completely diverged.
This is because no messages are routed through 2 or 3 in RS . Nodes 1, 4, and 7
have no divergence as the actions the attacker could take when starting at those
locations are the same for both routing matrices. The remaining starting points (5,
6, 8 and 9) diverge early on, but converge at a later time when the attacker reaches
the source. The most interesting of these four points is when the attacker starts
at node 5. The aim in transforming RN into RS was to prevent the attacker from
reaching the source within the safety period of 4 steps. Figure 4.7 shows that RN
and RS have fully diverged until the 7th step when the attacker under either routing
matrix would then be at the source.

Figure 4.8 shows the Jensen–Shannon divergence at different times in Nλ and
Sµ (rather than when λ = µ as previously shown) when the attacker starts at nodes
1 to 9. These graphs allow routing matrices to be compared in more detail at specific
time points. These figures show how diverged the actions an attacker could take in
RN at λ compared to the actions it could take in RS at µ. Where 1 means that the
actions have fully diverged and 0 means that the actions are the same. The height
of the bottom two rows in Figure 4.8e (when the attacker starts at 5) that diverge is
the same as the expected capture time in RN , and the width of the first 6 columns
is the same as the expected capture time in RS . This figure is not symmetric and
there is 0.3 divergence at (S6,N2) because at that point the attacker would take
the (4, 1) edge in both routing matrices, but full divergence at (S2,N6) because by
time 6 the attacker has captured the source in N , but at time 2 the attacker is at
node 9 in S. While the perturbation S works well for when the attacker starts at
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Figure 4.8: Jensen–Shannon divergence between Nλ and Sµ at different times

node 5, it does not increase the time to capture when the attacker starts at node 9.
This is a weakness of this example perturbation as the algorithm that performs the
perturbation focuses on a single starting location. Other SLP techniques may be
able to perturb a wider range of nodes sufficiently.

Finally, the expected capture times shown in Table 4.2 can be calculated
based on the equations that give the expected hitting time for a Markov Chain.
The results for when the attacker starts at the sink (node 5) in the two previous
examples is shown in bold font. If the attacker starts at nodes 2 or 3 in RS it would
never reach the source as there are no transitions in to either of those nodes that an
attacker could use to follow a message.
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Attacker Start Location (i) 1 2 3 4 5 6 7 8 9
E(AN t = 1 | AN 0 = i) 0 1 2 1 2 3 2 3 4
E(AS t = 1 | AS0 = i) 0 ∞ ∞ 1 6 5 2 3 4

Table 4.2: Expected capture time t of the source at node 1 for RN and RS with the
attacker starting at different nodes

4.6 Discussion

In this section, some issues raised by the methodology presented are discussed.

4.6.1 Maximal Information Loss

There are different ways to obtain the relevant proper perturbing paths. For example,
a path that contains no loop might be obtained by one method while another path
with loops might also be considered. Since the notion of paths captures source-
converging paths, it means that Equation 4.10 will never be a maximum as DS will
contain some elements of DN . However, minimizing the number of common elements
will result in high information loss. Specifically, it is better to introduce loops in
(the non-overlapping elements of) DS than in DN as this will reduce the number of
common elements.

4.6.2 Selecting Proper Junction Points

In this chapter a heuristic was proposed to select proper junction points to generate
the set of properly perturbed paths. This heuristic does not specify how to choose
which junction point should be used to generate the perturbed path. This is because
there may be several junction points that could potentially be used to perturb the
path, and some technique will need to be used to select them. Determining an
optimal selection of junction nodes is likely to be a difficult problem to solve as
each junction point could be used by multiple paths and produce multiple properly
perturbed paths. The perturbed paths generated would need to ensure that they do
not compete in a way that would lead the attacker towards the source. Future work
will aim to show that selecting proper junction points is an NP-complete problem, a
heuristic will also need to be developed to select near optimal proper junction points.

4.6.3 Unreliable Links

In this model, links have been assumed to be bidirectional and lossless, such that the
sum of each column that involves nodes that receive messages adds to 1. However,
when links become unidirectional or lossy (for example due to message collisions),
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the sum may be less than 1. This also means that the domain DS may be different
to when the links are bidirectional. In this case, some of the techniques proposed
will have to be adapted to specifically account for unidirectional links. On the
other hand, if the unidirectional nature of links is transient, i.e., is short-lived, the
current framework can still work if nodes are made to perform retransmissions (at
the link-layer level). However, this technique will not work if message collisions occur.
Most often, sensor nodes are not equipped with collision detectors and it is entirely
possible that the matrix RN is different to the one assumed, as a node j may receive
a message from node i first (in practice) rather than from node k (as specified by
[RN ]k,j = 1 and [RN ]i,j = 0).

4.6.4 Modelling Complex Routing Protocols

The framework proposed is independent of any routing protocol, which was a key aim
outlined at the start of this chapter. However, to provide SLP, a routing protocol
will need to provide guarantees that RS will be supported. The way the routing
matrices have been specified so far is that a single matrix applies to each message
sent. However, this does not capture the full range of combinations that can occur.
A more flexible view of routing protocol is to consider a sequence of routing matrices.
A single routing matrix can be viewed as an infinite sequence of that routing matrix.
Although only a selection of these routing matrices will be applicable to analysis, as
any beyond the safety period do not need to be considered.

Certain classes of protocols can be considered using this modelling of routing
matrices. As has been shown in this chapter, flooding and single-path routing can
both be specified. In Chapter 5 and Chapter 6 variants of these two types of routing
protocol will be demonstrated. Further routing protocols can be implemented by
considering sequences of routing matrices. For example, publish/subscribe proto-
cols [71, 92] can be implemented with separate routing matrices for the publisher,
subscriber, and broker (if present) and the different actions they would perform. A
limitation would be that the position of the sink, source and broker would need to
be specified in advance and not dynamically determined.

In some situations nodes may need to generate messages before they would
have received any to forward. In this case a possible implementation may require
control messages to be sent (independently of the routing protocol) to notify the
nodes to send the required messages. This means that the framework provides
indication of the requirements to provide high levels of SLP.
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4.7 Conclusion

In this chapter, the source location privacy problem in wireless sensor networks has
been addressed from an entropy and divergence viewpoint. One major advantage of
using such an approach is that it allows specific attacks and protocols to be abstracted
away, focusing instead on the amount of information that is leaked by the network,
lost by the attacker, or gained by attacker. While several other works have focused
on analysing specific routing protocols or privacy metrics, this approach focused
on understanding the basis of routing transformations to maximise the routing
divergence. The framework is novel in that it allows the SLP-aware routing matrix
to be configured in different ways, to give rise to potentially different SLP-aware
routing protocols. Overall, the technique is useful as it provides a way to reason
about the structure of arbitrary SLP-aware routing protocols against a local attacker,
which was previously lacking in the existing work.
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Chapter 5

Source Location Privacy Aware
Routing for Delay-Tolerant
Networks

A problem with modelling SLP routing protocols is that time is a difficult aspect
to factor in. But as time is a crucial part of providing SLP-aware routing protocols
it is important to consider. If the right events do not occur at the right time, then
the routing protocol will fail to keep the attacker away from the source. In the
previous chapter time is not modelled when using information theory to analyse the
information an attacker gains, and instead the spatial aspect of where messages are
routed is focused on. In this chapter SLP-aware routing will be modelled differently
to include an aspect of time.

To achieve this temporal modelling constraint programming (CP) will be
used. Constraint programming is a technique which applies a set of constraints to
decision variables (which represent the state space) with the aim to maximise or
minimise an objective function. Generic solvers then process all three parts and
output an optimal solution if one is possible. Many problems have been expressed as
constraint satisfaction problems (CSPs) such as (i) optimising sensor node deployment
locations [20], (ii) energy efficient routing [34], and (iii) others like scheduling and
planning [8]. Integer Linear Programming (ILP) is a subset of CP where the relations
in the constraints between the variables must be linear.

In this chapter the scheduling of messages being routed from the source to the
sink is modelled as an ILP problem. As modelling the time events occur continuously
leads to an increase in the complexity of the model, time will instead be discretised
into slots. A solver is then run offline to obtain an allocation of broadcast events
to those time slots. The moves the attacker takes will be calculated based on those
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broadcasts. By applying a suitable objective function that requires the broadcasts
to be scheduled in such a way that the attacker does not find the source, the solver
will produce an optimal SLP-aware broadcast schedule.

However, as the solution outputted by the model assumes network-wide
knowledge and is specific to the scenario provided to the solver, it unsuitable
for deployment on arbitrary WSNs. Therefore, a distributed algorithm — called
ILPRouting — is then developed based on the structure and behaviour observed in
the optimal solution. ILPRouting follows the same patterns observed in the model
output, but scales to larger networks and different topologies. The results show
that the protocol is near-optimal under certain parametrisations, independent of
network size and application parameters such as the period between the source
sending messages. The following three contributions are made in this chapter:

1. The SLP-aware routing protocol from a source to a sink is modelled as an ILP
optimisation problem. Allowing an optimal schedule of message broadcasts to
be obtained.

2. A novel distributed routing protocol — called ILPRouting — inspired from
the output of the ILP model that focuses on delaying messages is developed.

3. Simulations of the routing protocol are performed using TOSSIM and results
show that the protocol is near optimal in terms of privacy level, i.e., a low 1%
capture ratio for certain parametrisations.

The rest of this chapter is structured as follows. The ILP constraint satisfac-
tion model is specified in Section 5.1, the results of the model and how it influenced
the ILPRouting algorithm’s design is described in Section 5.2, and the routing pro-
tocol explained in Section 5.3. The routing protocol is then analysed using concepts
from Chapter 4 in Section 5.4. The results in are then presented in Section 5.5.
Implications are discussed in Section 5.6 and the chapter is finally concluded with a
summary in Section 5.7.

5.1 Constraint Programming Model

In this section the ILP model will be described, including the rationale for certain
constraints. The ILP model is written in IBM’s Optimisation Programming Language
(OPL) and a solver present in IBM ILOG CPLEX version 12.6.3 was used to generate
an optimal output. There are two ILP solvers provided with ILOG CPLEX. The CP
solver was used as it was able to produce optimal results faster and it also scaled to
larger network sizes compared to the CPLEX solver. The CP solver proves optimality
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Symbol Description
|V | The number of nodes
W The communication range of the nodes
S A set of node ids that send messages (sources)
sink The sink id
C A mapping between node ids and their 2D coordinates
Astart The id of the node the attacker starts at
WA The eavesdropping range of the attacker
Psrc The time between the source sending messages
Psafety The maximum simulation time
Ω How many slots a second is divided into

Table 5.1: Integer Linear Programming Model Parameters

by showing that no better solution can be found, while the CPLEX solver obtains a
lower bound proof using cuts and linear relaxation.1

The network was modelled as a directed graph G = (V,A) where V is the set
of nodes and A is the set of arcs. An arc is a 2-tuple (u, v) where u is the origin and
v is the target. Each node in V was assigned a 2D coordinate C : V → R× R where
the x and y coordinate of i can be accessed by C(i).x and C(i).y respectively. The
euclidean distance D : V ×V → R was calculated between each node. If the distance
between two different nodes was less than or equal to the communication range W
of the sensor nodes, then that arc is present in A. By using a directional graph
more complex networks can be modelled (such as when links become unidirectional),
however, in this work if (u, v) ∈ A =⇒ (v, u) ∈ A due to the way range is used to
calculate connectivity. The paths that messages can travel along is defined by the
arcs in A. The paths the attacker can move along is modelled as a directed graph
GA = (V,AA) rooted at the node with id Astart where the attacker starts. If the
distance between two nodes is less than the attacker’s eavesdropping range WA then
AA contains that arc, this also means the attacker can move along that arc. As the
attacker graph is unidirectional there are two 1-hop neighbour functions that either
return the neighbours reachable when following out edges from a node i by←−NA(i), or
the nodes that can reach i when following in edges by −→NA(i). Once the attacker finds
the source it will remain at that location, so the attacker cannot move along arcs
which start at the source. As the attacker moves through the network, it can only
move to be co-located with another node. In this work, the attacker’s eavesdropping
range is set to be equal to the sensor node’s transmission range (W =WA).

The sink is a special node to which messages are routed and the sources (S)
are nodes that generate one message every source period (Psrc). It is assumed that

1ibm.com/software/integration/optimization/cplex-cp-optimizer/mp-cp
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there is a single sink and source. The model supports investigating multiple sources
but only results for a single source will be presented.

There is an upper bound on the duration of the model (Psafety), within which
routing and attacker movement is considered. Time (T ) is discretised by dividing
it into slots, there are Ω slots per second. Each node can send a single message in
each slot. A node may choose to send no messages in a given slot. The attacker can
therefore either move in response to a single message or not move at all in a given
slot. To ensure the attacker could reach the source, the attacker’s starting position
was never set so its distance in hops from the source was greater than Psrc · Ω. As
otherwise the safety period may be reached before the attacker has a chance to
capture the source. The attacker can respond to a message a neighbour sends in a
time slot if that message had not been previously responded to. If no messages are
sent by a neighbour the attacker must remain where it is.

Time 0 is special as it is used to set the attacker’s position, no messages are
sent at this time. After time 0 when a node broadcasts a message it is assumed
network links are perfect and all neighbours receive the message, even if multiple
nodes broadcast in that time slot. In this case a collision detection and retransmission
strategy is assumed to be used to ensure message delivery.

Messages (M) that are generated by a source are represented by a unique
2-tuple where the first element (src) is the identifier of the source that generated
the message and the second element (seq) is the message number.

P̂safety = dΩ · Psafetye (5.1)

P̂src = dΩ · Psrce (5.2)

T = 0..P̂safety (5.3)

T1 = 1..P̂safety (5.4)

M = { (src, seq) | src ∈ S, seq ∈ 1..dPsafety · Psrce } (5.5)

D(i, j) =
√

(C(i).x− C(j).x)2 + (C(i).y − C(j).y)2 (5.6)

A = { (u, v) | u, v ∈ V, D(u, v) ≤ W ∧ u 6= v } (5.7)
−→
N (i) = { j | (j, i) ∈ A, i 6= j } (5.8)
←−
N (i) = { j | (i, j) ∈ A, i 6= j } (5.9)

AA = { (u, v) | u, v ∈ V, D(u, v) ≤ WA } \

{ (s, v) | s ∈ S, v ∈ V, s 6= v }
(5.10)

−→
NA(i) = { j | (j, i) ∈ AA, i 6= j } (5.11)
←−
NA(i) = { j | (i, j) ∈ AA, i 6= j } (5.12)
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5.1.1 Objective Function

Two decision variables are used to capture the output of the model. These decision
variables will have their values set by the ILP model solver during its execution.
The first variable is the broadcasts performed, which is a three dimensional array of
booleans with the node ids, message and time as the dimensions (B : V ×M×T → B).
This variable is intended to capture whether a node sends a message at a given
time. The other decision variable is the attacker path, which is a two dimensional
array of booleans with time and the arcs an attacker can take as the dimensions
(PA : T × AA → B). This variable captures whether at a given time an attacker
moves along an arc.

The objective function for this model is to maximise the distance between the
attacker’s final position and the source(s) in the network. As the aim in providing
SLP is to prevent the attacker from reaching the source, the further the attacker is
from the source the better SLP has been provided within the safety period.

maximise
∑
s∈S
e∈AA

PA(P̂safety, e) ·D(s, e.v)

subject to Routing Constraints ctR1 to ctR6,

Attacker Constraints ctA1 to ctA7.

(5.13)

5.1.2 Routing Constraints

Here, the constraints on how messages are generated by the source and how they are
routed in the network are described.

ctR1 At t = 0, no messages are broadcasted.

ctR2 From t > 0, each source node generates a message every Psrc until the safety
period is reached.

ctR3 No node can broadcast more than a single message concurrently. This means
that in a given time slot a node must send one message or no messages.

ctR4 Once a message is broadcasted by a node it is not broadcasted by that node
again.

ctR5 A node can only forward a message after a neighbour broadcasted that message
in a previous time slot.

ctR6 All messages sent by the sources must reach the sink. This is satisfied when
every message is broadcasted by at least one neighbour of the sink.
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∀n ∈ V • ∀m ∈M • B(n,m, 0) = 0 (ctR1)

∀n ∈ S • ∀m ∈M : m.src = n • B(n,m, (m.seq − 1) · P̂src + 1) (ctR2)

∀τ ∈ T1 • ∀n ∈ V • 1 ≥
∑
m∈M

B(n,m, τ) (ctR3)

∀m ∈M • ∀n ∈ V • ∀τ1 ∈ T1 • B(n,m, τ1) =⇒ 0 =
∑

τ2∈T , τ2>τ1

B(n,m, τ2) (ctR4)

∀n ∈ (V \ S) • ∀m ∈M • ∀τ1 ∈ T1 • B(n,m, τ1) =⇒ 1 ≤
∑

n′∈
−→
N (n)

τ2∈T , 0<τ2<τ1

B(n′,m, τ2)
(ctR5)

∀m ∈M • 1 ≤
∑

n∈
−→
N (sink)
τ∈T1

B(n,m, τ) (ctR6)

5.1.3 Attacker Constraints

This section details the constraints regarding how the attacker moves through the
network. These constraints have been constructed so the attacker will follow the
messages it receives. If the attacker was allowed to move independently of messages
then it would move away from the source due to the objective function. Therefore,
it is required that (i) the attacker only moves in response to messages (ctA4, ctA7)
and (ii) the attacker will only consider a message once as otherwise it might follow
that message as it moves away from the source (ctA5, ctA6).

To simplify attacker constraints four predicates about the attacker’s movement
are defined. AM2A checks if the attacker moved to n at time τ . AM2NA checks if the
attacker moved to a neighbour of n at τ . ASM checks if the attacker remained where
it was at τ . AMBA checks if an attacker moved because of a message m at τ .

AM2A(n, τ) = 1 =
∑

e∈AA, e.v=n
PA(τ, e) (5.14)

AM2NA(n, τ) = 1 =
∑

n′∈
−→
N A(n)

AM2A(n′, τ) (5.15)

ASM(τ) = 1 =
∑

e∈AA, e.u=e.v
PA(τ, e) (5.16)

AMBA(m, τ) = 1 =
∑

e∈AA, e.u 6=e.v
PA(τ, e) ∧B(e.v,m, τ) (5.17)

ctA1 At t = 0 the attacker moves from the attacker’s starting position to that same
position.

ctA2 The attacker makes exactly one move each time slot. If no message is received
then the attacker moves from its current location n to n (stays still).
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ctA3 A move must be from the attacker’s current location.

ctA4 If the attacker moves to n from m at time τ , then it must be because at time
τ the node n broadcasted a message.

ctA5 If the attacker receives a message that it has not previously moved in response
to, then the attacker moves in response to that message.

ctA6 If the attacker moved in response to a message at time τ , then at no time
τ ′ > τ will the attacker move in response to that message again.

ctA7 If the attacker is at node n and no neighbours send a message, then the
attacker moves along the (n, n) edge.

PA(0, (Astart,Astart)) = 1 (ctA1)

∀τ ∈ T • 1 =
∑
e∈AA

PA(τ, e) (ctA2)

∀τ ∈ T1 • 1 =
∑

e1,e2∈AA, e1.v=e2.u

PA(τ − 1, e1) ∧PA(τ, e2) (ctA3)

∀n ∈ V • ∀τ ∈ T1 • 1 =
∑

e∈AA, e.v=n∧e.u 6=e.v
PA(τ, e) =⇒ 1 =

∑
m∈M

B(n,m, τ) (ctA4)

∀n ∈ V • ∀m ∈M • ∀τ ∈ T1•

B(n,m, τ) ∧ AM2NA(n, τ − 1) ∧ 0 =
∑

t2∈T , 0<τ2<τ

AMBA(m, τ2) =⇒ AM2A(n, τ) (ctA5)

∀τ1 ∈ T1 • ∀m ∈M • AMBA(m, τ1) =⇒ 0 =
∑

τ2∈T , τ2>τ1

AMBA(m, τ2) (ctA6)

∀τ ∈ T1 • ∀e ∈ AA • PA(τ − 1, e) ∧ 0 =
∑

n∈
−→
N A(e.v)
m∈M

B(n,m, τ) =⇒ ASM(τ)
(ctA7)

5.2 Model Results

This section describes the output from the ILP model for one combination of
parameters. The model was run for a variety of different parameters including 3x3,
4x4 and 5x5 grids with the sink and source at different locations. Larger networks
became infeasible to run due to the large amount of memory required. The results
in Figure 5.1 show a 5x5 network with the source in the top left corner and the
attacker starting at the sink which was positioned in the centre. This configuration
was chosen as it is similar to the SourceCorner configuration and allowed the state
space of the model to be small enough for a solution to be found within a reasonable
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time. Figures 5.1a to 5.1g show the pattern of broadcasts and Figure 5.1h shows
how the distance of the attacker from the source changes over time. From the results
four major trends were observed:

1. The routing path should go around the sink and approach from the opposite
direction to the source.

2. Some routes should take the shortest path from the source to the sink.

3. Messages should be delayed so multiple messages are grouped together.

4. Messages should be delayed as late as possible with respect to the safety period.

The contributions of these trends are to achieve the following:

• To obscure the direction in which the source that is sending messages is (trends
1 and 2).

• To reduce the number of moves the attacker is able to make towards the source
by grouping messages and delaying sending messages as late as possible (trends
3 and 4).

Some of these observations have been used in previous work, while others
have not. For example, having the route approach the sink from a direction other
than the one the source is in has been used in Phantom Routing [81] and Ring-based
Routing [196]. There are also some algorithms whose routes occasionally take the
shortest path [60]. However, delaying and grouping messages has not been previously
used in providing SLP. By delaying and grouping messages the attacker should
end up with less time to make moves towards the sink within the safety period
as shown by Figure 5.1h, where the attacker moves mainly near the end of the
simulation (towards the top of the graph). By grouping and allowing messages to
be delivered out-of-order the attacker is also forced to require a larger memory to
ensure previously received messages are ignored in the future.

The ILP modelling of SLP has assumed that links are reliable and bidirectional
and that there are also no message collisions. As the routing protocol indicated takes a
single path, message retransmissions will need to be performed in the implementation
to increase the reliability of delivering a message to the sink. These are two issues
this causes: (i) retransmissions will alter the way messages are delayed and grouped,
and (ii) messages may need to take an alternate route if a link is unavailable for a
period of time. These two issues will be addressed during in the next section which
details the implementation of ILPRouting.
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Figure 5.1: An output of the ILP model for a 5x5 network with node 1 sending 7
messages to the sink at node 13 with Psrc = 1 and Ω = 9. The attacker starts at
node 13. Message broadcasts are represented by arrows from the sending node to the
receiving nodes, the arrows are labelled with the time slot of the broadcast. Lines in
(h) are labelled with the message number the attacker responded to and the location
of the attacker is shown above the point.

5.3 Routing Algorithm

In this section the implementation of the ILPRouting algorithm is described. This
algorithm is inspired from analysing the model output. It is not expected to behave
optimally, but is intended to be more generic and not restricted to a specific topology.
There are four stages:

1. AvoidSink: In this first stage, messages are routed around the sink.

2. Backtrack: Messages may end up attempting to go towards the sink and not
having any valid routes, so they need to backtrack.

3. ToSink: Once a message has finished routing to avoid the sink it needs to be
delivered to the sink.

4. FromSink: Finally, the message is sent in a starburst from the sink.

5.3.1 Stage 1: Avoid Sink

In order to provide SLP the most important task that needs to be achieved is to
be able to route messages reliably around the sink and have them approach it from
the opposite direction that the source is in. This requires every node to be aware
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of its neighbours, as one will be chosen to be the next in the path. Every node n
also needs to know its distance to the sink ∆sink(n), its distance from the source
∆src(n), and the distance between the sink and source ∆ss. These values are found
by the landmark nodes (sink/source) flooding the network in a setup phase. Every
node should know these values for each node in its 1-hop neighbourhood.

There is a parameter called message group size which specifies how many
messages to group together. By grouping together, the algorithm will delay the
messages each hop so that the messages reach ∆ss hops travelled at the same time.
Messages sent earlier in the group will be delayed longer. The delay is specified
in Equation 5.18, where i is the position in the message group, Psrc is the source
period and α is the time it takes a message to send from one node to another. This
is calculated at the source when the message is sent.

delay(i) = i · Psrc + α ·∆ss

∆ss
(5.18)

Retransmissions are used to ensure reliability along the route. If retrans-
missions to a target fail a fixed number of times, then that target is blacklisted
and another node will attempt to be used. If further retransmissions fail, then a
〈poll〉 message is sent which asks neighbours to broadcast their information. This is
performed to ensure that the most up-to-date information is being used to make the
routing decisions. Retransmissions are stopped when an acknowledgement packet
is received or the maximum number of retransmissions have been sent. Even if
retransmissions cause extra delay or messages need to take a different path (due to
an unavailable link), these delays for a single link are bounded by how nodes decide
to stop sending along the unavailable link and try another. This means that even
with performing these extra measure to provide reliability, messages will be in a
similar area when they have travelled ∆ss hops.

5.3.2 Stage 2: Backtrack

There is the possibility that a message may reach a node which has no further
neighbours to choose from, for example node 20 in Figure 5.2. In this case the
message backtracks to a node that is further from the sink that was not the previous
hop in the route. The next hop is then chosen using the avoid sink logic. This should
allow a message to avoid the area of nodes that should not be used in the routing
path (highlighted in grey in Figure 5.2). Backtracking is only done on node n when
∆src(n) < ∆ss as this node would otherwise lead the message closer to the sink.

c(n,m) = ∆src(m) > ∆src(n) ∧ (∆sink(n) > ∆ss/2 ∨∆sink(m) ≥ ∆sink(n)) (5.19)
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Figure 5.2: Showing the links a node n has between each m neighbour in its one hop
neighbourhood iff c(n,m) from Equation 5.19. Nodes that have no neighbours are
marked in gray. The source is a pentagon and the sink is a hexagon.

5.3.3 Stage 3: To Sink

When a node’s ∆src(n) ≥ ∆ss then the message has passed the area that would lead
it towards the source. When this message has reached a node with no neighbours
that are further from the sink, the message is at a local maxima for the sink distance,
so the message is routed back towards the sink. When a message reaches a certain
number of hops travelled it is routed back to the sink. This is to ensure bounded
message latency and to prevent the message going too far on very large networks. As
with routing to avoid the sink, retransmissions and blacklisting are used to provide a
reliable message transmission to the sink.

5.3.4 Stage 4: From Sink

Finally, once the message reaches the sink, it is broadcasted in a starburst pattern
away from the sink in all directions for a limited number of hops. Model results
where the sink was the furthest point required this behaviour to ensure that the
attacker is lured to the furthest location from the source. This behaviour was also
observed in Figure 5.1g.

5.4 Competing Paths Analysis

In this section the ILPRouting protocol will be analysed in terms of competing paths
and information loss. The structure of ILPRouting aims to have messages travel
around the sink and approach from behind. In the grid network there is a chance

89



�

� ��

�

��

��

	 ���

� �

� �

���

(a) ILPRouting route 1

� � ��

�

��

��

	 ���

�

�

�

�

���

(b) ILPRouting route 2

Figure 5.3: The different representations of ILPRouting routing paths.

for it to go one of two ways around the sink. As nodes 2 and 4 shown in Figure 5.3
both have the same sink and source distance the protocol would randomly choose
between sending messages between the two nodes. Therefore, the protocol would be
represented as an infinite sequence of routing matrices where each matrix is randomly
chosen between the two examples.

There are three advantages ILPRouting has, the first is that by alternating
between the two different routes, the attacker has the potential to miss receiving
messages. The second, is that similar to the example given in Chapter 4, the route
an attacker would follow has the potential to be longer than the safety period. The
third, is that the two paths compete at a number of nodes behind the sink (5, 6, 8,
and 9), which allows the attacker to be pulled back and forth in this area.

The information loss compared to Protectionless flooding can be calculated
as follows. With DN representing the transitions under Protectionless and the two
ILPRouting matrix transitions by DS1 and DS2 . A safety period of 4 is used as
that is twice the distance it would take an attacker to capture the source under
Protectionless. None of these sets of paths change with a safety period of 4. The
information loss is then calculated at 75% for both path variants, however, the
information loss will be greater if the attacker is at a location that will not eavesdrop
a transition from the other path. This means that ILPRouting is effective in reducing
the information leaked to an attacker.
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D
P ′
safety

N = DN =
{ (1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 5),

(4, 7), (5, 6), (5, 8), (6, 9), (7, 8), (8, 9) }
(5.20)

D
P ′
safety

S1
= DS1= { (1, 4), (4, 7), (6, 5), (7, 8), (8, 5), (8, 9), (9, 6) } (5.21)

D
P ′
safety

S2
= DS2= { (1, 2), (2, 3), (3, 6), (6, 5), (6, 9), (8, 5), (9, 8) } (5.22)

D
P ′

safety

N (1, 2) (1, 4) (2, 3) (2, 5) (3, 6) (4, 5) (4, 7) (5, 6) (5, 8) (6, 9) (7, 8) (8, 9)

D
P ′

safety

S1
7 3 7 7 7 7 3 7 7 7 3 3

D
P ′

safety

S2
3 7 3 7 3 7 7 7 7 3 7 7

Table 5.2: Are the transitions from DN in D
P ′
safety

S1
and D

P ′
safety

S2
?

IL(DN , DS1) = 1 + 0 + 1 + 1 + 1 + 1 + 0 + 1 + 1 + 1 + 0 + 0
12 = 8

12 = 3
4 (5.23)

IL(DN , DS2) = 0 + 1 + 0 + 1 + 0 + 1 + 1 + 1 + 1 + 0 + 1 + 1
12 = 8

12 = 3
4 (5.24)

5.5 Results

The results presented in this section were generated by running experiments in
TOSSIM as outlined by the experimental setup in Chapter 3. The algorithm being
tested has four parameters: the maximum walk length, the buffer size, the number of
messages to group and the probability the message is sent directly to the sink. The
maximum walk length provides a finite bound of the length of the path 〈normal〉
messages take in large networks, it was set to 100 hops. The buffer size is the amount
of space reserved to hold messages that are being delayed, it was set to 15 messages
no more than 15 concurrent messages are being sent in the network at one time. The
number of messages to group was varied between {1, 2, 3, 4}. Finally, the probability
of sending a message directly to the sink was varied between {0, 0.1, 0.2, 0.3, 0.4,
0.5}. As part of these results six key metrics are analysed:

1. Broadcast and Attacker Behaviour — This is the patten in which messages
are sent and the path the attacker takes in response.

2. Received Ratio — This is the percentage of messages that were sent by the
source and received by the sink.
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3. Capture Ratio — This is the percentage of runs in which the attacker reaches
the location of the source, i.e., captures the source.

4. Messages Sent Per Second — This is the average number of messages sent
by all nodes in the network per second.

5. Latency — This is the average time it takes a message sent by the source to
be received at the sink.

6. Attacker Distance — This is the average attacker distance from the source
recorded at the end of a run.

All results shown in this section are for when the probability that a message
is sent directly to the sink is 20%. Lower probabilities gave similar, but slightly
worse results and higher probabilities produced much worse results. Therefore, in
this section only the results for when the probably of the message being sent directly
to the sink was 20%. Graphs demonstrating results for different probabilities are be
presented in Appendix D.

Testbed results are not presented for this algorithm as the FlockLab topology
does not meet the assumptions made about the layout of the network assumed. The
issue is that there is insufficient space for messages to travel around the sink to
approach from behind. In a network deployed for asset monitoring a large number
of nodes are expected to be deployed over a large area. These nodes are expected to
be relatively uniformly distributed. The FlockLab topology is more linear than grid
shaped, which leads to the lack of space around the sink. As no other testbed was
suitable, no testbed results are presented.

5.5.1 Behaviour

In Figure 5.4 the events that occur when ILPRouting is running is shown. The
message group size is set to 3 and the 〈normal〉 messages are coloured to indicate
what group they are in. Figure 5.4a shows how the messages group together. By
looking around the source at node 0, messages can be seen to be delayed and join
up with the main line of message transmissions. In Figure 5.4b rather than moving
in response to a message every second (the source period), the attacker only moves
once every three seconds. So delaying messages to group them together is successful
in reducing the number of moves an attacker will make.

5.5.2 Receive Ratio

A high receive ratio between 75% and 95% is observed in Figure 5.5. Fewer messages
were delivered with larger networks and larger messages group sizes. This suggests
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Figure 5.4: A demonstration of the behaviour of the ILPRouting algorithm and how
the attacker moves in response to the messages sent.

that the attacker had the opportunity to eavesdrop most of the 〈normal〉 messages,
meaning that the privacy level imparted by the algorithm is due to the efficiency of
the protocol and not due to the unreliability of the network.

Because of the way the simulations terminate (when the safety period is
reached or the attacker captures the source), it is possible that some messages
may still be in the process of being routed to the sink. As these messages have
not yet reached the sink they are not counted as received, even if they would be
delivered successfully in the future. The delivery ratio of messages for ILPRouting
will therefore be under-reported, especially when the group size is large as this means
a larger wait time is used. The Dynamic and DynamicSPR techniques that will be
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Figure 5.5: ILPRouting results showing the receive ratio.

presented in Chapter 6 are less susceptible to this problem as 〈normal〉 messages
have a low latency in those strategies. However, (as will be explained) ILPRouting
uses a high latency to impart SLP.

5.5.3 Capture Ratio

There is a less than 10% probability of the attacker capturing the source within
the safety period for these parameter combinations shown in Figure 5.6. However,
as more messages are grouped together, the capture ratio falls lower to 1%. This
matches with the intuition that a greater number of messages grouped together would
give the attacker fewer chances to respond to messages within the safety period. On
the other hand, with messages being grouped together, it suggests that the message
delivery latency may be increased. When the size of the message group is high, the
protocol delivers near optimal privacy level.

5.5.4 Messages Sent per Second

As the different network sizes being varied each have a different safety period, the
number of messages sent has been normalised with respect to the simulation length
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Figure 5.6: ILPRouting results showing the capture ratio.
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Figure 5.7: ILPRouting results showing the messages sent per second.
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Figure 5.8: ILPRouting results showing the message latency.

to allow the results to be compared across different safety periods. Note that it would
not be suitable to also normalise with respect to the number of nodes in the network
as ILPRouting does not expect each node to send a similar number of messages.

The main observation of the results in Figure 5.7 is that lower source periods
(faster message rates) send more messages per second. The results show that the
number of messages sent per second does not vary greatly for different message
grouped sizes. Larger message group sizes appear to require slightly fewer messages
sent per second. This is because larger group sizes have a lower delivery ratio which
causes more messages to still be in transit when the safety period expires. So not
all these messages will have finished reaching the source. This means that larger
group sizes will have a slightly higher number of messages sent than reported in these
results, which is expected to be similar to the results for lower messages group sizes.

5.5.5 Latency

As shown in Figure 5.8, the longer the time between messages, the larger the latency
between a source sending the message and the sink receiving the message. This
is because messages are delayed to make sure that a certain number requested (as
specified by the message group size) reach the sink-source distance at a similar time.
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Figure 5.9: ILPRouting results showing the attacker distance.

When there are multiple messages the per hop delay needs to be longer. These
results indicate that there is a trade-off between latency and capture ratio, to obtain
a better capture ratio using ILPRouting a larger latency will need to be incurred.
For many applications a latency of this magnitude will be acceptable. For example,
tracking the location of a slow moving panda will not be adversely affected. But in
scenarios where very low latency is important, such as on a battlefield, this technique
may be less suitable.

5.5.6 Attacker Distance

As the objective function for ILPRouting was to maximise the attacker’s distance
from the source, it is important to analyse if the aim was achieved. The results are
presented in Figure 5.9, As the network size increases, the attacker’s average distance
from the source also increases. This is because there is more space for the attacker
to be pulled further away with larger networks. Larger message group sizes also
improve the distance the attacker is from the source, but only by a small amount.
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5.6 Discussion

In this section some issues and alternative approaches to using integer linear pro-
gramming to develop solutions to SLP are discussed.

5.6.1 Integer Linear Programming Complexity

Computing an optimal solution to the ILP formulation in this chapter is an expensive
procedure, because obtaining an optimal solution to an Integer Linear Programming
problem is NP-complete [55]. Due to this complexity and the large state space that
needed to be explored it was only feasible to run the IBM ILOG CPLEX solver
for 5 × 5 grid networks over a short time period. To obtain a solution the solver
consumed a large quantity of both CPU and RAM resources (2 days of compute
time and over 100 GB of memory). This meant that the solver could not be run on
larger network sizes, the consequence of this is that certain kinds of techniques might
not have been able to be computed (e.g., Fog Routing [44]) due to the inability to
explore the spatial redundancy those kinds of techniques require. This may be why
this modelling produced a technique that used temporal redundancy to provide SLP.

5.6.2 Other Objective Functions

The objective function chosen aimed to ensure that the attacker ended up as far from
the source nodes as possible. However, this is stricter than the actual requirement of
SLP which is that the attacker must not capture (i.e., be co-located) with a source
within the safety period. Attempting to optimise this model for other objective
functions such as minimising latency or the total number of messages sent might
produce different output indicating other kinds of routing that would provide SLP.

5.6.3 Impact of Grouping Messages

One of the downsides of delaying messages to group them at similar distances from
the source is an increase in collisions. The likelihood of these collisions is lower when
there are multiple paths around the sink. Another downside is that the way messages
are being routed around the sink means ILPRouting is more susceptible to areas of
poor reliability and is less able to reroute the path, like a protocol such as CTP [57]
would be able to do so. One potential solution to the increase in collisions would be
to merge packets if they are buffered on one node. This would reduce the number of
transmissions being performed in the area of the network where messages meet.
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Figure 5.10: An output of the ILP model for a 4x4 network with node 1 sending 7
messages to the sink at node 16 where the attacker starts at node 16 with Psrc = 1
and Ω = 7. Message broadcasts are represented by arrows from the sending node to
the receiving nodes, the arrows are labelled with the time of the broadcast. Lines in
(h) show the message number the attacker responded to, the location of the attacker
is above the point.

5.6.4 Alternate Configurations

In this chapter only one configuration that matches the SourceCorner configuration
was focused on. There are other configurations of the sink and source location that
might need to be considered. For example, Figure 5.10 shows results for a 4x4
network with the source in the bottom left corner and the attacker and sink in the
top right corner. An important difference between this 4x4 configuration and the 5x5
configuration used earlier is that the attacker starts at the furthest point so there
is no room for it to move further away. Because the attacker starts at the furthest
node in the 4x4 configuration it is interesting to see how the attacker is allowed to
come closer before being pulled back.

When the attacker and sink were the node furthest from the source the
following observations were made:

1. The messages should lure the attacker closer to the source initially.

2. Messages should be routed around that position.

3. The attacker should finally be drawn back to the sink, this includes the sink
sending messages.
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These observations are different to the pattern previously seen. This is mostly
because there is no space behind the sink, so it would be impossible to route
messages to approach the sink from a direction further from the source. Instead
messages must first lead the attacker to a different area of the network, so that
they can subsequently use another area of the network. This would have caused
the attacker to miss messages for a small time, but because the model is trying to
maximise attacker distance the attacker needs to be pulled back to the sink. This is
done by messages deliberately being routed in such a way that the attacker would
receive them from the direction in which the sink is in.

While this works well in the ILP model result it is unlikely that it would
work well in a real world scenario. This is because it would be hard to estimate the
attackers exact location such that messages would lure it towards the sink and not
towards the source. However, luring the attacker to a certain area of the network and
then avoiding that area is a valid strategy to delay the attacker by causing it to miss
receiving messages. This shows that modelling the SLP problem using constraint
programming can provide some solutions that are impractical to deploy, but can
provide useful insight into ways to provide SLP.

5.7 Conclusion

In this chapter a formalisation of SLP-aware routing as an ILP constraint satisfaction
problem has been presented. This model produced optimal routes computed based on
global network knowledge for small networks with a specific topology, making these
routes unamenable to deployment. Using the concepts provided by the model’s output,
a distributed routing protocol inspired by the optimal solution called ILPRouting
was developed. This technique uses delay to group messages together to reduce the
progress an attacker can make towards the source by causing it to miss messages.
Large scale simulations were performed to judge the performance. The results show
that low capture ratios (high levels of SLP) can be obtained with the trade-off being
a higher delivery latency.
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Chapter 6

Dynamic Determination of Fake
Source Parameters

A consequence of using ILPRouting is that source location privacy is provided by
delaying messages. For time-sensitive scenarios the latency needs to be as minimal
as possible (e.g., real-time tracking), which indicates that 〈normal〉 messages should
travel along the shortest path from the source to the sink. One class of techniques
in which shortest path routing is used for routing 〈normal〉 message are fake source
techniques that have been previously shown to be effective in providing source
location privacy [75, 78]. The idea behind them is to allocate fake sources at certain
locations in the network which then broadcast 〈fake〉 messages. These 〈fake〉 messages
are encrypted and padded so an attacker is unable to distinguish between 〈normal〉
and 〈fake〉 messages. This means the attacker responds when receiving either of the
message types. Fake sources use these 〈fake〉 messages to lure the attacker to their
location instead of the location of the real source.

As the Fake Source Selection Problem (FSSP) has been proved to be NP-
complete [78] it is hard to decide when, where, and for how long nodes should
generate 〈fake〉 messages. Previous work has assumed parameters that are fixed
when a protocol is deployed on the network [78]. This assumption prevents the
protocol from being able to adapt to changing network conditions.

In this chapter, two heuristics that adapt to changing network conditions will
be presented, called Dynamic and DynamicSPR. These heuristics will determine the
values of parameters online during execution using equations derived from a timing
analysis of events. As these two heuristics use parameters identified as important
by [78] a comparison will be performed against this heuristic called Static. Results
show that these two techniques are capable of providing high levels of SLP.
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6.1 Problem Statement

Given a network G = (V,E), a distributed eavesdropping attacker A that is initially
located at the sink q, a source s ∈ S, a safety period Psafety, a routing algorithm R,
the problem is to select a set of fake sources F ⊆ V such that ∀f ∈ F , assign a tuple
(n, p, d) to f , where n is either a temporary or permanent fake source, p is the fake
message period and d is the duration over which f sends fake messages such that A
does not reach s within Psafety when A is following the movement rules defined in
Section 3.5. The fake source selection problem (assigning the tuple (n, p, d)) is an
NP-complete problem [78], so there is a need for heuristics to calculate good values
that provide high levels of SLP whilst using as little energy as possible.

As Protectionless flooding provides no SLP, it will be used as the routing
protocol R for 〈normal〉 messages. Flooding is the worst case protocol as it provides
the most information to the attacker, as the attacker should never miss receiving a
message. Dynamic and DynamicSPR will be shown to provide SLP by having low
capture ratios even when flooding is used to route 〈normal〉 messages.

6.2 Static Overview

A heuristic called Static was initially proposed in [78] that the on-line heuristics
Dynamic and DynamicSPR will improve upon. Static is first previewed, before
Dynamic and DynamicSPR are presented. Static is based on three main parameters,
which capture the trade-offs involved between SLP and energy usage:

• the temporary fake source (TFS) duration (DTFS)

• the temporary fake source period (PTFS)

• the permanent fake source (PFS) period (PPFS)

A number of additional parameters were investigated in Static that proved not to be
interesting in terms of algorithm performance:

• the probability of a node becoming a temporary fake source

• the probability of a node becoming a permanent fake source

These two parameters will not be dynamically determined and will be fixed at 100%.
So when a node has the option to become a fake source it will always become a fake
source.

The Static algorithm works as follows:
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1. The sink initially floods the network with 〈away〉 messages (A) to inform nodes
of their sink distance.

2. When the source detects an asset it sends a 〈notify〉 message (NO) to the sink.

3. The source node repeatedly sends a 〈normal〉 message Ni with a time period
between messages of Psrc, beginning with N1.

4. When the sink receives NO it then broadcasts a 〈choose〉 message C to its
1-hop neighbours.

5. When a neighbour of the sink receives C it becomes a TFS.

6. A TFS broadcasts a 〈fake〉 message Fi with period PTFS for a duration of
DTFS , before becoming a normal node and broadcasting a 〈choose〉 message C.

7. When a normal node receives C it becomes a PFS if the node believes itself to
be the furthest node in the network from the sink, otherwise it will become a
TFS. A PFS broadcasts a 〈fake〉 message Fi with period PPFS .

• When a node receives a previously unencountered A, NO, Ni or Fi it updates
its last seen sequence number for that message and rebroadcasts the message.

• When a node receives a previously unencountered C it updates its last seen
sequence number for that message.

The authors of [78] performed a large-scale simulation to show the high levels
of SLP achievable by Static, when varying the values of the main variables, i.e.,
DTFS , PTFS and PPFS . The Static scheme has fake sources initially selected close
to the sink, that slowly move away to positions further from the sink and the source.
This allows the attacker to be slowly pulled away from the source and was been
informed by one of the results of [78] which showed that a higher TFS duration
improved SLP.

The problem is that if Static is deployed, DTFS , PTFS , and PPFS must be
fixed at compile time, making Static susceptible to poor performance under changing
network conditions or incorrect parameters chosen at compile-time. Making these
decisions correctly requires precise understanding of the environment where the
network is being deployed. Therefore, in the next section a novel heuristic — called
Dynamic — that determines these parameter values at runtime is presented. This
heuristic uses a timing analysis of events that occur to calculate values needed for
certain parameters. By doing so this analysis obviates the need to set parameters at
compile time based on estimations of the network.
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Source Sink TFS

(a) The source floods the net-
work with 〈normal〉 messages,
repeating every Psrc seconds.
Nodes record their ∆src.

Source Sink TFS

(b) After the sink receives
the first 〈normal〉 message it
waits ω seconds then floods an
〈away〉 message to start the
fake source allocation.

Source Sink TFS

(c) All nodes 1-hop from
the source that receive the
〈choose〉 become TFSs. This
diagram only shows 1 for sim-
plicity.

Source Sink TFS

(d) The 〈away〉 flood contin-
ues, allowing nodes to record
∆ss and ∆sink(j).

Source Sink TFS

(e) The TFS starts sending
〈fake〉 messages, for the dura-
tion of the fake source.

Source Sink TFS

(f) The 〈fake〉 message flood
should lure the attacker away
from the source.

Figure 6.1: The common actions for the Static and Dynamic algorithms.

6.3 Dynamic: Estimating Parameters Online

Three types of information are required for the online evaluation of DTFS , PTFS ,
and PPFS : (i) parameters fixed at compile time of the firmware that are known to all
nodes, (ii) information needed to derive the parameters that is not required during
network execution, and (iii) information that must be calculated during network
execution and passed on to other nodes in the network.

The first piece of information required is the source period (Psrc), which is
fixed at compile time. The second required piece of information is the delivery delay
(α), which is the time taken for a message sent by one node to be received at a
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Source Sink TFS

(a) Choose next fake source by
broadcasting a 〈choose〉 mes-
sage.

Source Sink TFS

(b) Nodes further from the
source than the original TFS
become fake sources.

Source Sink TFS

(c) The fake sources continue
sending 〈fake〉 messages.

Figure 6.2: Spread of fake sources under Static or Dynamic after a TFS duration
expires.

Source Sink TFS

(a) Choose next fake source
by unicasting a 〈choose〉 mes-
sage.

Source Sink TFS TailFS

(b) Original TFS becomes a
TailFS until it detects a fur-
ther TFS.

Source Sink TFS

(c) TailFS detects further TFS
and becomes normal again.

Figure 6.3: Spread of fake sources under DynamicSPR after a TFS duration expires.

neighbour. This delay has been the subject of research as it is an important value
to take into account during clock synchronisation [114, 190]. Typically, α will be
very small compared to the source period Psrc, which means that its impact may
be negligible on the final values. Finally, three pieces of network information are
computed during execution: (i) the sink-source distance (∆ss), (ii) the sink distance
for node n (∆sink(n)) and (iii) the source distance for node n (∆src(n)). All distances
are calculated in hops. With this information, the three important parameters of
Static can be calculated.

To develop the framework for calculating the parameters, the fake source
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strategy of luring an attacker away from a source is viewed through an analogy with
tug-of-war. In tug-of-war, two teams are pulling on either end of a rope, the team
that pulls a marker on the rope over a certain point wins. In SLP, sending messages
can be thought of as pulling on the rope, the source is on one side and the fake
sources are on the other. The attacker is the marker that will cause one team to
lose, i.e., A captures the source because the pull from the source is greater than the
pull from the fake sources. The pull of the source or of the fake sources will often be
referred to during this chapter. This analogy is also used in determining the values
of parameters of Dynamic at runtime. To provide SLP, the fake sources need to
exert a bigger pull on the attacker than the source. A smaller pull means that the
attacker would instead be led to the source.

For this analysis the following notation is used. The current time will be
denoted by t, at t = 0 the source node sends the first 〈Normal〉 message. The 1-hop
neighbourhood of a node j is denoted by 1HopN(j). ⊥ is used to represent variables
that have not been initialised, or whose value is unknown. For example, if a node
does not know their distance to another node it will be set to ⊥. A function max⊥
that finds the maximum of all arguments that are not ⊥ is also defined.

6.3.1 Message Timings

This analysis assumes that the source routes messages to the sink via a shortest path.
This is the optimal case for Protectionless flooding, but messages can occasionally take
longer routes if links are unreliable, messages collide, or there are other reliability
issues. Assuming that the shortest paths are used is best from the attacker’s
perspective (when Protectionless is used) because it is the scenario that allows them
to find the source fastest. Alternative routing protocols, such as the Collection Tree
Protocol [57], would also guarantee this. Thus,

• The ith 〈normal〉 message is sent by the source at time Ssrc(Ni):

Ssrc(Ni) = (i− 1)Psrc (6.1)

• In the worst case (from the defender’s perspective) when no SLP is provided,
an attacker will receive N1 at t = α∆ss and will have moved to be at ∆ss − 1
hops from the source. For the ith 〈normal〉 message the attacker receives, the
distance between the attacker and the source (∆as) will be:

∆as(Ni) = max(0,∆ss − i) (6.2)
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• An attacker will receive the ith 〈normal〉 message at time RA(Ni):

RA(Ni) = Ssrc(Ni) + α∆as(Ni−1) (6.3)

The rest of the analysis will detail how fake sources are allocated and how
〈fake〉 messages are sent. As flooding will be used to route the 〈fake〉 messages
(because flooding is used for routing the 〈normal〉 messages), the impact of collisions
and unreliable links is small. This is because there is a large amount of redundancy
as many other links are involved with the routing of 〈fake〉 messages.

To allocate fake sources, 〈Choose〉 messages will be sent and received at these
earliest times:

• The 〈choose〉 message C is sent by the sink at time Ssink(C). Once the sink
receives a 〈notify〉 message (NO) it will send a 〈choose〉 message to start the
fake source allocation process.

Ssink(C) = Ssrc(NO) + α∆ss (6.4)

• A node j where j ∈ 1HopN(sink), will receive C from the sink at the earliest
at the time Rj(C).

Rj(C) = Ssink(C) + α (6.5)

• Subsequent 〈choose〉 messages will be received at times described in the next
section.

When node j receives a 〈choose〉 message C, the node becomes a TFS and starts
broadcasting 〈fake〉 messages. The time at which j becomes a TFS is τTFS(j), where:

τTFS(j) =

Rj(C) if j ∈ 1HopN(sink)

τTFS(k) +DTFS(k) + α if k ∈ 1HopN(j) ∧∆sink(k) < ∆sink(j)
(6.6)

The number of N messages sent between t = 0 and t = τTFS(j) is Σj(N ):

Σj(N ) =
⌈
τTFS(j)
Psrc

⌉
(6.7)
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6.3.2 Calculating TFS Duration

Intuition

When a node is selected as a TFS, the period at which it generates 〈fake〉 messages
defines the pull it exerts on the attacker. Since the node knows the pull exerted
by the source (defined by Psrc), it can estimate the duration over which the fake
source needs to apply its greater pull to drag the attacker away from the source. The
derivation will consider the time cost of sending messages through the network.

Derivation

To calculate DTFS , the duration is set to be the difference in time between when
the TFS is created and when the attacker receives the next 〈normal〉 message, less
the time it takes to send the next 〈choose〉 message:

DTFS(j) = RA(NΣj(N )+1)− τTFS(j)− α (6.8)

The next step is to calculate the duration for nodes that are n-hops away from the
sink. In this case the attacker has now received Nn and the duration of this TFS is
to last until Nn+1 is received. The knowledge about a node k that is (n− 1)-hops
from the sink, can be used to calculate when the node j that is n-hops from the sink
becomes a TFS at τTFS(j).

τTFS(j) = τTFS(k) +DTFS(k) + α

= τTFS(k) + (RA(Nn)− τTFS(k)− α) + α

= RA(Nn)

= (n− 1)Psrc + α(∆ss − (n− 1))

(6.9)

RA(Nn+1) = Ssrc(Nn+1) + α∆as(Nn+1−1)

= nPsrc + α∆as(Nn+1−1)

= nPsrc + α(∆ss − n)

(6.10)

Therefore the duration is given by:

DTFS(j) = RA(Nn+1)− τTFS(j)− α = Psrc − 2α (6.11)

As α is not available to the nodes during runtime and because α is expected to be
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very small relative to Psrc, α is ignored in the final result.

DTFS(j) = Psrc (6.12)

Once the duration expires a 〈choose〉 message will be sent. So for the TFS j it will
send a 〈choose〉 message at Sj(C) and a neighbour k with ∆sink(j) < ∆sink(k) will
receive it at Rk(C).

Sj(C) = τTFS(k) +DTFS(k) (6.13)

Rk(C) = Sj(C) + α (6.14)

6.3.3 Calculating Number of Fake Messages to Send

Intuition

There exists a relation between the TFS duration, the TFS period, and the number
of messages that are sent in that period. Either the number of messages to be sent
can be defined in terms of the duration and period, or the period can be defined
in terms of the duration and number of messages. The latter is chose, as shown
in Equation 6.16, as this allows the algorithm to make its decisions based on the
number of 〈normal〉 messages sent during the TFS duration.

#F (j) = DTFS(j)
PTFS(j) (6.15) PTFS(j) = DTFS(j)

#F (j) (6.16)

Derivation

Three approaches are provided to calculate the number of 〈fake〉 messages to send.1

Pull Fixed 1 (Fixed1):

#F (j) = 1 (6.17)

This approach aims to keep the attacker where it is. By sending 1 〈fake〉 message
each period the attacker should be pulled towards a fake source, then pulled towards
a real source.

1In previously published works [24, 25] different strategies were used to calculate #F (j). These
strategies sent a much larger number of messages. The implementation of Dynamic has since been
modified to improve error handling that would otherwise have led to lost messages. These old
strategies are presented in Appendix C as they have significantly higher energy usage than the
approaches presented here.

109



Pull Fixed 2 (Fixed2):

#F (j) = 2 (6.18)

If 〈fake〉 messages are lost due to noise or collisions then it is possible that an attacker
may miss being lured by a 〈fake〉 message under the previous strategy. So rather
than zigzagging back and forth, the attacker will be led closer to the source. By
sending multiple messages in a TFS period the chance of this happening is reduced.

Pull Random (Rnd):

#F (j) = rand(1, 2) (6.19)

However, sending two messages each period should be twice as expensive as sending
one message each period. By randomly sending one or two messages each TFS period
the energy cost of Fixed2 should be reduced. There will also be a chance to send an
extra message to assist in pulling back the attacker in the case of lost messages.

6.3.4 Calculating TFS Period

Intuition

The TFS period of a fake source defines how fast 〈fake〉 messages are sent by the
node, i.e., it captures the strength of the pull of the fake source. A TFS must send
at least 1 〈fake〉 message to keep parity with the number of 〈normal〉 messages sent.
c > 1 messages need to be sent to ensure that at least one 〈fake〉 message reaches
the attacker when collisions occur. To pull an attacker back h hops, h× c different
〈fake〉 messages need to be sent.

Derivation

Using the TFS duration DTFS(j) and the number of 〈fake〉 messages to send #F (j)
the TFS period is obtained by dividing them. The PTFS can not be allowed to
go below 3α as collisions would then occur between the current and the previously
broadcast 〈fake〉 message. Again as α is unavailable, PTFS(j) is finally defined
without it. This requires #F (j) to be defined in such a way that it does not lead to
PTFS(j) being set to 3α or less.

PTFS(j) = max
(

3α, DTFS(j)
#F (j)

)
(6.20) PTFS(j) = DTFS(j)

#F (j) (6.21)
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6.3.5 Calculating PFS Period

Intuition

By the time a PFS has been created, many TFSs should have been pulling the
attacker away from the source. This means the PFS should not need to send as
many 〈fake〉 messages as a TFS. It will need to send at least 1 〈fake〉 message for
each 〈normal〉 message sent by the source, plus some extra to consider collisions.

Derivation

If an attacker can be guaranteed to have been moved far enough from the source
by TFSs, then having PPFS(j) = Psrc would be preferable. However, the attacker’s
position should not be relied upon to be far enough away from the source’s, meaning
the algorithm requires PPFS(j) < Psrc, such that any PFSs retain the ability to pull
back the attacker and cope with collisions of 〈fake〉 messages.

A lower bound on the period PPFS(j) ≥ α exists, as the PFS cannot physically
send messages more often than that. There also exists an upper bound of PPFS(j) <
Psrc as the PFS should not broadcast slower than the source.

The technique used here is to set the PFS period to the source period mul-
tiplied by the receive ratio of 〈fake〉 messages at the source (ψsrc(F)). This is
justified because it means for every 〈normal〉 message sent the PFS should send
enough 〈fake〉 messages for the attacker to receive at least one 〈fake〉 message.

PPFS(j) = max (Psrc × ψsrc(F), 3α) (6.22) PPFS(j) = Psrc × ψsrc(F) (6.23)

In order to calculate this receive ratio, the source node needs to keep a record of
the number of 〈fake〉 messages sent and received. The sequence number records
the overall number sent and an additional counter records the number of times the
sequence number was updated as the number received. This information must be
transmitted back to the PFS, where it is needed, using 〈normal〉 messages. This is
best effort as a PFS may not receive every 〈normal〉 message sent.

ψsrc(F) = fake messages received + 1
fake sequence number + 1 (6.24)

6.3.6 Summary

These derivations allow the Dynamic algorithm to determine the three main paramet-
ers online and adapt to changes in the network. The diagram shown in Figure 6.4a
depicts how node types can change during the execution of Dynamic and an ideal
spread of fake sources for Dynamic is shown in Figure 6.5a. However, as the number
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of messages sent is high for this technique there is a desire to optimise it.

6.4 DynamicSPR: Fake Source Allocation Strategy

The Dynamic heuristic (and thus Static) works in such a way that fake sources
spread out across part of the network. Nodes close to the source are prevented
from becoming fake sources and nodes that are believed to be the furthest from the
source become a PFS (see Figure 6.5a). The downside is that the many fake sources
cause a high message overhead (i.e., use a large amount of energy) and may often
undo the work of other fake sources or induce a high proportion of collisions. To
circumvent this problem, an alternative technique for fake source selection — called
DynamicSPR (dynamic single path routing algorithm) — will now be presented that
makes use of the directed random walk technique from phantom routing. The routing
protocol for 〈normal〉 messages remains unchanged for DynamicSPR, instead the
directed random walk is used in fake source allocation. The benefit of the directed
random walk is that it allocates a node far from the source, which is a good location
for a PFS to be. Intuitively, the use of a directed random walk should prevent
multiple competing fake sources from being created, allowing high levels of SLP to
be provided whilst using fewer messages.

6.4.1 DynamicSPR Overview

Initially a wave of 〈away〉 messages are sent to inform nodes of their sink distance.
When the sink receives a 〈notify〉 from the source, a 〈choose〉 message will be sent to
start the fake source allocation. At the end of a fake node’s duration the node then
chooses a neighbour that has the furthest source distance and sends them a 〈choose〉
message. If there are multiple candidates, the next fake node will be chosen randomly
from them. This is the main difference between DynamicSPR and Dynamic, because
in Dynamic all neighbours would become fake sources. Along the walk TFSs will be
created to pull the attacker away hop-by-hop. The walk will end when no neighbours
are further from the source than the current node, this node will be a PFS. The
state machine for DynamicSPR is depicted in Figure 6.4b. A typical execution of
DynamicSPR will result in a fake source selection shown in Figure 6.5b.

6.4.2 Ensuring Reliability

It is unrealistic to assume that links between sensor nodes are reliable or that the links
remain bi-directional [11]. Unreliable links become problematic when considering
delivery of messages along single path routes, because if one message is lost it can
prevent the single-path route from reaching its target. If a 〈choose〉 message fails to
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(b) DynamicSPR

Figure 6.4: The conditions under which nodes transition from one type to another.

be delivered then the directed walk could terminate prematurely and no more SLP
protection would be allocated. To ensure the walk is continued, a 〈choose〉 message
needs to be retransmitted until it is acknowledged. However, if the fake source only
sent 〈choose〉 messages until they are acknowledged, SLP will not be provided for a
time as no 〈fake〉 messages are flooded through the network. To resolve this problem
a new type of fake source — tail fake sources (TailFS) — will be created along the
directed walk to continue providing SLP.

A TFS becomes a TailFS after its duration expires. While it is a TailFS,
both 〈choose〉 and 〈fake〉 messages are sent periodically. As soon as a 〈fake〉 mes-
sage is received from a fake source that is further from the real source than the
TailFS is, the TailFS reverts to being a normal node and ceases sending 〈choose〉
and 〈fake〉 messages. In this case the 〈fake〉 message acts as an acknowledge-
ment packet. Using this technique pairs of fake sources will be created along
a walk, a TFS and a TailFS that is one-hop close to the source than the TFS
is. As a TailFS needs to pull the attacker to its position while no TFSs exist,
the fake broadcast period is set to be those used for TFSs2. The 〈choose〉 mes-
sage is repeated every TFS duration until the TailFS becomes a Normal node.

PTailFS(j) = PTFS(j) (6.25) DTailFS(j) = DTFS(j) (6.26)
2Note that in previously published work [25] the period at which TailFSs broadcasted 〈Fake〉

messages was set to the PFS period PPFS(j). This was changed to the TFS period for performance
reasons and also timing reasons which will be elaborated on in Chapter 7.

113



������ ���	 
�� ���

(a) Static and Dynamic

������ ���	 
�� ���������

(b) DynamicSPR

Figure 6.5: Best-case spread of fake sources for three different fake source algorithms.

6.4.3 Choosing The Next Fake Source

In order to choose the next fake node from the 1-hop neighbourhood, nodes need
to keep their neighbour’s updated. To do this every node periodically broadcasts a
message informing neighbours of their id as well as important distance information
that is used to make a decision on the next fake source. The next fake node in the
directed random walk is chosen randomly from the set defined in Equation 6.27 and
is allowed to have the same source distance as the current fake source. By reducing
the strictness of the distance decision, the directed walk is allowed to go along a path
of same-distance nodes which could potentially help the walk reach further from the
source.

CanBeFake(j) = {n | n ∈ 1HopN(j) ∧∆src(n) ≥ ∆src(j) ∧ n 6= sink } (6.27)

6.4.4 Unchanged Settings

The way DTFS , PTFS , PPFS and #F (j) are calculated in DynamicSPR has not been
changed from the Dynamic algorithm. In one sense, DynamicSPR can be considered
a special instance of Dynamic where only a single path in the flood of fake nodes is
active.
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1 2 3 4 5 6 7 8 9

1 0 1 0 1 0 0 0 0 0
2 0 0 1 0 0.5 0 0 0 0
3 0 0 0 0 0 0.5 0 0 0
4 0 0 0 0 0.5 0 1 0 0
5 0 0 0 0 0 0.5 0 0.5 0
6 0 0 0 0 0 0 0 0 0.5
7 0 0 0 0 0 0 0 0.5 0
8 0 0 0 0 0 0 0 0 0.5
9 0 0 0 0 0 0 0 0 0


(6.28)

RDynamic
F1

Se
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in
g

N
od

e

Receiving Nodes



1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0
2 0.5 0 0 0 0 0 0 0 0
3 0 0.5 0 0 0 0 0 0 0
4 0.5 0 0 0 0 0 0 0 0
5 0 0.5 0 0.5 0 0 0 0 0
6 0 0 1 0 0.5 0 0 0 0.5
7 0 0 0 0.5 0 0 0 0 0
8 0 0 0 0 0.5 0 1 0 0.5
9 0 0 0 0 0 0 0 0 0


(6.29)

RDynamicSPR
F1
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e

Receiving Nodes



1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0
2 0.5 0 0 0 0 0 0 0 0
3 0 0.5 0 0 0 0 0 0 0
4 0.5 0 0 0 0 0 0.5 0 0
5 0 0.5 0 1 0 0 0 0.5 0
6 0 0 1 0 0.5 0 0 0 0.5
7 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0.5 0 0
9 0 0 0 0 0 0 0 0.5 0


(6.30)

RF2
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e

Receiving Nodes



1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0
2 0.5 0 0 0 0 0 0 0 0
3 0 0.5 0 0 0 0 0 0 0
4 0.5 0 0 0 0 0 0 0 0
5 0 0.5 0 0.5 0 0 0 0 0
6 0 0 1 0 0.5 0 0 0 0
7 0 0 0 0.5 0 0 0 0 0
8 0 0 0 0 0.5 0 1 0 0
9 0 0 0 0 0 1 0 1 0


(6.31)

Figure 6.6: Routing matrices of Protectionless flooding and Dynamic’s two fake
source positions

6.5 Competing Paths Analysis

Dynamic and DynamicSPR have an interesting structure when considered in terms
of competing paths because rather than perturbing the original routing matrix
additional routing matrices are added. So a sequence of routing matrices is used to
model the routing protocol for Dynamic and DynamicSPR. The first routing matrix
will represent flooding 〈normal〉 messages from the source node. Depending on the
approach there will either be one, two or randomly one or two entries in the sequence
of routing matrices that represent the flood of 〈fake〉 messages. This pattern will
repeat with the routing matrices for 〈fake〉 messages changing as the fake sources
change location.

An example of the sequence of routing matrices with the approach set to
Fixed1 where 1 〈fake〉 message is sent per source period is shown in Equation 6.32.
Another example when the approach is Fixed2 where 2 〈fake〉 messages are sent per
source period is shown in Equation 6.33. While these routing matrices are infinite in
length only the finite number of entries before the safety period would be considered
in the analysis. This would be the first 2P ′safety entries for Fixed1 and 3P ′safety for
Fixed2. The reason for this is that 2 routing matrices (one normal and one fake)
would occur within the source period for Fixed1 and 3 would occur for Fixed2 (one
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(b) Dynamic 1: Equation 6.29
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(c) DynamicSPR 1: Equation 6.30
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(d) Dynamic 2: Equation 6.31

Figure 6.7: Graphical representation of the Protectionless and two Dynamic and
DynamicSPR routing matrices. With fake sources shown in red.

normal and two fake).

R1 = [RN ,RF1 ,RN ,RF2 , . . . ,RN ,RF2 ] (6.32)

R2 = [RN ,RF1 ,RF1 ,RN ,RF2 ,RF2 , . . . ,RN ,RF2 ,RF2 ] (6.33)

In terms of competing paths, an advantage of Dynamic and DynamicSPR is
that the two fake routing matrices compete at all nodes that an attacker is likely to
be located at when considering the normal routing protocol. This means that there
is a large number of opportunities for the attacker to be pulled away from the real
source.

The information loss of this sequence of routing protocols is calculated below.
In this example the safety period is 4, for the same reason in Chapter 4, because the
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attacker would capture the source within 2 moves under Protectionless flooding RN
and the safety factor is set to 2. The set of transitions remains the same when a safety
period of 4 is used. As flooding is used as the base routing protocol it leaks maximal
information to the attacker when 〈normal〉 messages are sent. This is because this
matrix is exactly the same as the Protectionless routing matrix. However, the first
and second 〈fake〉 message routing matrices provide high information loss of 75%
and 100% respectively, as very few paths are shared with Protectionless flooding.

D
P ′
safety

N = DN =
{ (1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 5),

(4, 7), (5, 6), (5, 8), (6, 9), (7, 8), (8, 9) }
(6.34)

D
P ′
safety

F1
= DF1=

{ (2, 1), (3, 2), (4, 1), (4, 7), (5, 2), (5, 4),

(6, 3), (6, 5), (6, 9), (8, 5), (8, 7), (8, 9) }
(6.35)

D
P ′
safety

F2
= DF2=

{ (2, 1), (3, 2), (4, 1), (5, 2), (5, 4), (6, 3),

(6, 5), (7, 4), (8, 5), (8, 7), (9, 6), (9, 8) }
(6.36)

D
P ′

safety

N (1, 2) (1, 4) (2, 3) (2, 5) (3, 6) (4, 5) (4, 7) (5, 6) (5, 8) (6, 9) (7, 8) (8, 9)

D
P ′

safety

N 3 3 3 3 3 3 3 3 3 3 3 3

D
P ′

safety

F1
7 7 7 7 7 7 3 7 7 3 7 3

D
P ′

safety

F2
7 7 7 7 7 7 7 7 7 7 7 7

Table 6.1: Are the transitions from DN in D
P ′
safety

N , D
P ′
safety

F1
and D

P ′
safety

F2
?

IL(DN , DN ) = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
12 = 0 (6.37)

IL(DN , DF1) = 1 + 1 + 1 + 1 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 0
12 = 9

12 = 3
4 (6.38)

IL(DN , DF2) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
12 = 12

12 = 1 (6.39)

6.6 Results

In this section the results of the DynamicSPR protocol will be examined via a
comparison between the Dynamic and Static SLP protocols plus the Protectionless
protocol. The results presented were generated by experiments performed using
the experimental setup outlined in Chapter 3. The Dynamic and DynamicSPR
algorithms both have one parameter which is the approach it takes regarding the
number of 〈fake〉 message sent per period, simulations for Fixed1, Fixed2 and Rnd
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are run. From the simulations various metrics about the performance of the Dynamic
and DynamicSPR protocols were collected. The following metrics will be analysed
in this section:

1. Broadcast and Attacker Behaviour — This is the patten in which messages
are sent and the path the attacker takes in response.

2. Received Ratio — This is the percentage of messages that were sent by the
source and received by the sink.

3. Capture Ratio — This is the percentage of runs in which the attacker reaches
the location of the source, i.e., captures the source.

4. Average Number of Fake Messages Sent — This is the average number
of 〈fake〉 messages sent across all nodes.

5. Attacker Distance — This is the average attacker distance from the source
recorded at the end of a run.

6. Latency — This is the average time it takes a message sent by the source to
be received at the sink.

Several graphs include values for Baseline results which are the results for Protec-
tionless flooding under the same conditions as the results when SLP is provided.
These results are included to put the overhead of running the fake source protocols
into perspective.

The results for Static are also included for some graphs to situate the per-
formance of Dynamic and DynamicSPR. These simulation include all the parameter
combinations that were used in [78]. These results are not an exhaustive search of the
parameter space, but include values likely to be good. Conversely, these parameters
also produced results that demonstrated poor performance.

6.6.1 Behaviour

A demonstration for one execution of the Dynamic and DynamicSPR protocols are
shown in Figure 6.8 and Figure 6.9 respectively. Both are run using the Fixed1

approach, where 1 〈fake〉 message is sent over the TFS’s duration. Both executions
manage to pull the attacker away to a far location. In Figure 6.8a there is a large
number of 〈fake〉 messages sent by the initial wave of fake sources in Dynamic. As
the simulation progresses the 〈fake〉 messages sent reduces as permanent fake sources
are allocated. This large block of 〈fake〉 messages is not presented in Figure 6.9a for
DynamicSPR as fewer fake sources are present. The reduction in fake sources can be
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Figure 6.8: A demonstration of the behaviour of the Dynamic algorithm and how
the attacker moves in response to the messages sent.

observed by comparing Figure 6.8b and Figure 6.9b, where DynamicSPR allocates
fewer TFSs compared to Dynamic. This means that DynamicSPR has achieved its
aim of allocating fewer fake sources compared to Dynamic in these two instances.

6.6.2 Received Ratio

The graphs in Figure 6.10 show that for slower broadcast rates (Figures 6.10a and
6.10b) the received ratio is at or near 100% for Dynamic and DynamicSPR. Static
performs poorly in the worst cases due to a bad combination of parameters.

As the period between messages decreases (the 〈normal〉 message broadcast
rate increases) the delivery ratio drops. Protectionless tends to outperform Dynam-
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Figure 6.9: A demonstration of the behaviour of the DynamicSPR algorithm and
how the attacker moves in response to the messages sent.

icSPR and DynamicSPR which tends to outperform Dynamic. This is due to an
increase in collisions, as more 〈normal〉 messages are being sent for lower source
periods which requires more 〈fake〉 messages to be sent. The increase in network
traffic leads to more message collisions.

As the network size increases two trends can be observed. For Protectionless
the delivery ratio tends to increase. This is due to the increase in links available to
carry the message to the sink. However, for Dynamic and DynamicSPR, delivery
ratio tends to decrease for larger network sizes. In these situations the availability of
more links is not sufficient to account for the increased unreliability of transmission
over the longer distance between source and sink.
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Figure 6.10: Results showing the percentage of 〈normal〉 messages received at sink.

6.6.3 Capture Ratio

Figure 6.11 shows the capture ratio for the three configurations of the Dynamic and
DynamicSPR protocols, as well as the best and worst Static protocol results. The
capture ratio for the baseline case is not visible because it is 100% for all network
sizes, and has been hidden by the scale of the graph. DynamicSPR provides a
lower capture ratio compared to Dynamic across the four different source periods.
On larger networks the capture ratio tends towards the optimal of 0%. This is a
behaviour that has been previously observed [78] because larger networks have more
space between the sink and source which gives the fake source algorithms chance to
pull the attacker back if it makes headway towards the source. The results for Static
show that good parameterisation can lead to very low capture ratios. But this is
traded off with very high energy usage (in terms of the number of 〈fake〉 messages
sent). DynamicSPR manages to achieve low capture ratios that approach Static
for larger networks whilst requiring fewer 〈fake〉 messages to be sent as will now be
shown.
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Figure 6.11: Results showing the capture ratio.

6.6.4 Average Number of Fake Messages Sent

The purpose of DynamicSPR was to reduce the message overhead of Dynamic.
As sending and receiving messages tend to be among the most energy expensive
activities performed by a WSN [118], the number of messages sent will be used as a
proxy for energy consumption. The number of messages sent per node per second
is used because these techniques tend to cause each node to send a similar number
of messages over the safety period. However, different network sizes and different
source periods have different safety periods, so the results are better compared by
the number of messages sent per node per second.

The graphs in Figures 6.12 and 6.13 show that the DynamicSPR protocol
tends to perform better than the Dynamic and Static protocols with respect to the
number of messages sent per node per second. This reduction is due to DynamicSPR
using a reliable directed random walk to allocate fewer fake sources compared to the
Dynamic protocol that uses a controlled flooding approach. For smaller networks
and faster source periods Static and Dynamic can perform better. But because of
lower safety periods in these cases, DynamicSPR’s fake source allocation strategy is
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Figure 6.12: Results showing the average number of 〈fake〉 messages sent per node
per second.

performed for less time, so the benefit of it is reduced.
There are some differences between the three Dynamic and DynamicSPR

configurations. In both Fixed2 causes more messages to be sent than Fixed1,
however, Rnd sends nearly as many messages as Fixed2 under DynamicSPR and
actually sends more under Dynamic. This outcome for Rnd was unexpected, as it was
expected to be in the middle of Fixed1 and Fixed2. The reason for this behaviour
is that different random numbers of 〈fake〉 messages to send causes different periods
between the messages. This prevents the messages from interfering with each other,
leading to fewer collisions and increasing the number of messages that propagate
further. There is a higher impact for Dynamic as a large number of fake sources may
be allocated. This greater number of messages sent is also reflected in the capture
ratio which is lower for Rnd then Fixed2 for Dynamic.
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Figure 6.13: Results showing the average number of messages sent per node per
second.

6.6.5 Attacker Distance

The attacker distance metric quantifies how good the SLP protocol is at pulling an
attacker away from the source. Figure 6.14 shows that the Dynamic protocol is better
able to pull the attacker further from the source compared to DynamicSPR. There
is little difference between the different techniques used in the protocols. Although
DynamicSPR’s Fixed1 performs worse than the other two approaches. By only
sending 1 〈fake〉 message per 〈normal〉 message Dynamic is not capable of pulling
the attacker away from the source, but can only keep the attacker at its current
distance.

Both protocols perform better than baseline protectionless which failed to
prevent the attacker from finding the source. The cause of the difference is that
Dynamic is capable of allocating a PFS at a node further from the source than
DynamicSPR. This is because Dynamic uses a controlled flooding of the network
with TFSs which allows it to reach all nodes. In comparison, DynamicSPR uses a
directed walk along the source distance gradient, which allows a local source distance
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Figure 6.14: Results showing the attacker’s distance from the source.

maxima to be found, but not necessarily the global maxima.

6.6.6 Normal Latency

The latency of 〈normal〉 messages (the time it takes to reach the sink after being
broadcasted by the source) is shown in Figure 6.15. The latency is low, but increases
as network size increases because the sink and source become further from each
other. This is because the 〈normal〉 messages are sent via flooding and roughly
follow the shortest path to the sink. Messages do not always follow the shortest
path, as collisions or noise could mean a node does not receive a message. This
is demonstrated by Protectionless having the lowest latency and the different fake
source based SLP algorithms having higher latency. As the 〈fake〉 messages collide
with 〈normal〉 messages the flood of 〈normal〉 messages cannot always continue along
the shortest path. However, overall the latency is very low.
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Figure 6.15: Results showing the time it took a normal message to reach the sink.

6.7 Testbed Results

This section will present the results gathered for DynamicSPR while running on
the FlockLab testbed. Results are also included for Protectionless flooding. Only 8
repeats were performed for each parameter combination for DynamicSPR and 12 for
Protectionless due to the time cost of obtaining the results. This means that the
resolution of the capture ratio in Figure 6.16a is very low (1/8 = 12.5%) compared to
the sub-1% obtained by the larger number of repeats performed for the simulations.
The implication of this is that the capture ratio may be higher than 0%, but will not
be higher than 12.5%.

The received ratio in Figure 6.16c increases with longer source periods due
to fewer collisions. Both Fixed1 and Fixed2 demonstrate similar received ratios.
The different approaches were capable of pulling the attacker away from the source
as shown in Figure 6.16b. Fixed2 performed better in all cases as expected, due
to the larger number of 〈fake〉 messages sent. In terms of latency, Figure 6.16d
shows Fixed1 performed better than Fixed2 for fast message rates. The latency
converged for smaller message rates. As shown in Figures 6.16e and 6.16f Fixed1
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Figure 6.16: FlockLab testbed results for DynamicSPR.

sends fewer messages than Fixed2 and this number is also lower for longer source
periods. Power and energy consumption are obtained from sensors on the testbed. A
mostly flat power consumption is observed in Figure 6.16h. The energy consumption
in Figure 6.16h increases with larger source periods as the experiment lasted longer
and consumed more energy. These energy measurements will be analysed in more
detail in Chapter 7. So overall the testbed results show very similar results to those
obtained via simulations. This validates the performance results obtained from
simulations of DynamicSPR, which showed that DynamicSPR is capable of providing
near optimal levels of SLP.

6.8 Discussion

In this section implications of some of the assumptions made and their impact will
be discussed.
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6.8.1 Assumption of Link Directionality and Reliability

In the timing analysis presented in this chapter it is assumed that messages travel
along the shortest path. This assumption will not always hold as links may become
unidirectional, collisions may occur, or other link failures may occur which require
either retransmission or route redirection. However, depending on the network
topology, the difference in the time it takes a message to travel from source to
sink is likely to be very small when link failures occur (as will be demonstrated
in Figure 7.1). As the source period will be orders of magnitude greater than this
travel time difference, its impact on how often to send messages will be small. In
this timing analysis, the time taken to send a message α is disregarded due to its
small relative size, so the small time variance caused by link failures can also be
disregarded.

6.8.2 Application to Other Fake Source Techniques

This chapter focused on comparing Dynamic and DynamicSPR against Static, due to
them using similar fake source allocation strategies to Static. However, performing a
timing analysis is applicable to other fake source techniques to determine parameters
because the three key parameters (permanent fake source period, temporary fake
source period, fake source duration) investigated here are parameters that other
techniques (such as [44, 115, 117]) will want to set. By determining what values they
should use based on an analysis similar to the one presented in this chapter, these
protocols can be made adaptive to changes in the network.

6.8.3 Application to Alternate Routing Protocols

One of the key assumptions in this chapter is the usage of a hop-based routing
protocol. This is in contrast to other routing protocols based on the expected number
of transmission [57], routing for maximum network lifetime [34], or geographical
routing [29]. The reason for not routing based on the energy cost is because the
physical location through which messages are transmitted is important for SLP-aware
routing. As the transmission range is assumed to be similar, hop-based routing
provides an approximation of geographical routing without needing GNSS hardware.

The equations that calculate parameters could use distance to derive the
values, but as it ends up being eliminated, the dynamically determined parameters
are applicable to energy or link-based routing protocols. However, the issue of where
to allocate the fake sources and in which direction they should spread remains. For
geographic routing, the location knowledge is available to allocate the fake sources
in the correct direction. For energy and link-based routing, an option might be to
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have nodes record if they have been involved with sending messages recently and
then having fake sources avoid going near these paths. Such an allocation is unlikely
to be as good as when considering distance or geographical location. Future work
should investigate using such routing protocols.

6.9 Alternate Fake Source Movement Techniques

In this chapter both fake source techniques aim to provide SLP by luring the attacker
to another part of the network that is away from the real source. To do this the
fake sources either spread out in a wave or as part of a directed random walk away
from the sink. These fake sources may wish to move in an alternate pattern. For
example, the fake source may wish to mimic the paths that assets take. In [123]
Source Simulation was proposed in which multiple fake traces of asset movement
were created in the network. The movement performed aimed to simulate that of
a real asset in order to provide SLP against an attacker with global visibility. The
SLP provided is suboptimal for a global attacker on purpose as a way to trade-off
lower SLP provision for lower energy usage.

If DynamicSPR’s fake source allocation strategy was changed from moving
away from the sink to following a path that simulates the movement of the asset,
then it could be used as a way to dynamically determine the parameters for Source
Simulation. If multiple traces can be created then, DynamicSPR would also be able
to provide some level of SLP against a global attacker as well as a local attacker.
This means that Source Simulation can be viewed as an instantiation of DynamicSPR
augmented with a fake source movement strategy. The advantage of this is that the
timing analysis performed for DynamicSPR, can also be used for Source Simulation.

6.10 Conclusion

In this chapter two online fake source-based protocols have been presented, namely
Dynamic and DynamicSPR, that provide SLP. These protocols are based on the
Static heuristic, which was proposed to address the intractable nature of SLP. A
timing analysis framework for estimating SLP-relevant parameters has been developed
for fake-source based techniques. Dynamic was shown to provide high levels of SLP at
the expense of a high message overhead. To circumvent this problem, DynamicSPR
was developed to allocate fewer fakes sources by using a directed random walk. The
results show that, in general, the SLP levels provided by DynamicSPR are low like
those of Static and Dynamic, whilst being more energy efficient. This makes Dynamic
and DynamicSPR scalable and suitable for WSN deployments that require SLP.
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Chapter 7

Duty Cycling for Fake Source
Routing

Throughout this thesis there has been much emphasis on reducing the number of
messages sent as a proxy for reducing the energy usage of the protocol. This is useful
as sending and receiving messages tend to be the most expensive tasks performed by
a sensor node [118]. However, a fixed energy cost per send or receive action does not
take into account the cost of leaving the radio on all the time (and the CPU along
with the radio) in order to listen to messages sent by neighbouring nodes. To save
energy sensor nodes tend to spend the majority of their lifetime asleep [65] and only
periodically wakeup, a technique known as duty cycling. This technique is important
enough to justify preventing attacks that prevent nodes from entering sleep [26]. An
issue with duty cycling is that while a node is asleep it cannot receive messages, this
means that there is a need for a wakeup strategy to ensure it is ready to receive
messages. When providing SLP using specific messages that are depended upon to
lure the attacker away from the source, special care needs to be made to ensure these
message are not missed due to the node being asleep.

This chapter will present the first investigation into duty cycling the radio to
save energy, whilst ensuring a high level of SLP being provided by the previously
developed protocols. To achieve this the timing analysis performed in Chapter 6
for DynamicSPR will be extended to apply to when messages are expected to be
sent and received. This information will then be used on a per node basis to predict
when future messages will be sent by neighbours. To achieve reliability the nodes
will wake up early and go to sleep late around the time a message is expected to be
receive. 〈Fake〉 messages are prioritised by having a larger wakeup period. Simulation
results show that a wakeup strategy based on this timing analysis can lead to large
reductions in the time network nodes spend awake and performing idle listening.
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A duty cycle of 45% is achievable for the fast message rate of 1 message every 0.5
seconds. Longer source periods produce lower duty cycles, with 10% achievable when
1 message is sent every 8 seconds. This lower duty cycle leads to a reduction in
the energy cost of the DynamicSPR routing protocol, making it more practical for
deployment.

7.1 Duty Cycle Timing Analysis

A problem with asynchronous duty cycle approaches (such as TinyOS’s LPL) is
that they require the routing protocols to retransmit messages if acknowledgements
are not received. Because DynamicSPR does not use retransmissions to provide
reliability (and instead relies on the extra paths provided via flooding) duty cycle
techniques that use retransmissions are not suitable. So in order to reduce the energy
cost of using DynamicSPR a synchronous duty cycle technique will be developed
based on extending the timing analysis developed in Chapter 6. By allowing nodes
to predict when their neighbours will send messages they can then schedule their
wakeups accordingly. There are two components that need to be implemented, one
that focuses on the 〈Normal〉 messages and another that focuses on the protection
provided with 〈Fake〉 and 〈Choose〉 messages.

An important caveat is that all of these timings need to be deterministic.
This means that some previous definitions of DynamicSPR that were left unspecified
now need to be defined. Also, other parameters that involve a random component
cannot be used. For example, the number of 〈fake〉 messages to send #F (j) under
the Rnd strategy (1 or 2 messages per the TFS duration), cannot be used.

Another important aspect of this timing analysis is that it will occur locally
to each node. This means that there is no need for time synchronisation across the
network and no need for extra protocol messages to disseminate timing information.
It is critical that this analysis does not add much computation overhead, otherwise
the expected broadcast times will not match the actual broadcast times which will
cause the duty cycle to go out of sync.

7.1.1 〈Normal〉 Message Timings

This section details when a node should wakeup and to go sleep to ensure delivery of
〈normal〉 messages. This timing analysis is based on the one performed in Chapter 6,
certain aspects of it will be repeated here for clarity.

131



2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Distance From Source (hops)

0

20

40

60

80
Tr

av
el

 T
im

e 
(m

s)

(a) Size 11× 11

0 10 20 30 40 50
Distance From Source (hops)

0

25

50

75

100

125

150

175

Tr
av

el
 T

im
e 

(m
s)

(b) Size 25× 25

Figure 7.1: The time it takes 〈normal〉 messages to travel from the source to various
nodes under Protectionless flooding on TOSSIM in the SourceCorner configuration

• A node j will receive Ni at the time Rj(Ni).

Rj(Ni) = Ssrc(Ni) + α∆src(j) (7.1)

• The time between a node j receiving Ni and Ni+1 is R̂j(Ni):

R̂j(Ni) = Rj(Ni+1)−Rj(Ni)

= (Ssrc(Ni+1) + α∆src(j))− (Ssrc(Ni) + α∆src(j))

= Ssrc(Ni+1)− Ssrc(Ni)

= (i+ 1− 1)Psrc − (i− 1)Psrc
= Psrc

(7.2)

Due to unreliability in the network, messages will not always arrive exactly at this
time. Figure 7.1 shows the spread in the amount of time it takes a 〈normal〉 message
to travel from the source to an arbitrary node in the network a specific number
of hops away from it. In some cases there can be up to 80 ms difference in the
time it takes a node to receive a message. Therefore, it is important to wake up
early We(N ) and sleep later Wl(N ) around the expected delivery time of the next
〈normal〉 message. The times that the node j is asleep and awake are defined by:

awake(N1) =

from 0
to Rj(N1) +Wl(N )

(7.3)

awake(Ni) =

from end(asleep(Ni−1))
to end(asleep(Ni−1)) +We(N ) +Wl(N ))

(7.4)
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Figure 7.2: Timing of a source src sending 〈Normal〉 messages Nn to node j.

asleep(Ni) =

from end(awake(Ni))
to end(awake(Ni)) + R̂j(Ni)−We(N )−Wl(N ))

(7.5)

A diagram of the timing of events when sending 〈normal〉 messages is shown
in Figure 7.2. The source node is seen to send 〈normal〉 messages to the normal
node j every Psrc. The blue arrows from the green source node to the light blue
normal node represent the 〈normal〉 messages being sent. Node j will receive a
〈normal〉 message α∆(src, j) time units after it is sent, as this is the amount of time
it takes messages to travel through the network. Once node j receives a 〈normal〉
message m at Rj(Nm) it knows that the next 〈normal〉 message m+ 1 will arrive at
Rj(Nm) + Psrc. Between this time node j can sleep.

7.1.2 〈Fake〉 and 〈Choose〉 Timings

For 〈fake〉 and 〈choose〉 messages, there is additional complexity to consider compared
to 〈normal〉 messages that needs to be handled. After a node becomes a fake source
there is a short delay before it starts to send messages ITFS(j) to help space the 〈fake〉
messages out. This value was previously undefined for Dynamic and DynamicSPR,
but now needs to be be deterministically specified. To simplify the implementation
it is assumed to be the same constant for all nodes.

ITFS(j) = PTFS(j)
4 (7.6)

• A TFS j will send its nth 〈fake〉 message FTFSjn during its duration at the
following times:

STFSj (F
TFSj
n ) = τTFS(j) + ITFS(j) + (n− 1)PTFS(j) (7.7)
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• The set of all times 〈fake〉 messages will be sent by TFS j is:

STFSj (FTFSj ) =
{
STFSj (F

TFSj
n ) | n ∈ 1..#TFS(j)

}
(7.8)

• Thus a node k is expected to receive 〈fake〉 messages from the TFS at node j
at the following times:

Rk(FTFSj ) =
{
t+ α∆(k, j) | t ∈ STFSj (FTFSj )

}
(7.9)

• The time between two fake nodes j and k sending their first 〈fake〉 message,
where j precedes k will be:

B(j, k) = Sj(FTFSk1 )− Si(F
TFSj
1 )

= (τTFS(k) + ITFS(k) + (1− 1)PTFS(k))−

(τTFS(j) + ITFS(j) + (1− 1)PTFS(j))

= τTFS(k) + ITFS(k)− τTFS(j)− ITFS(j)

= (τTFS(j) +DTFS(j) + α) + ITFS(k)− τTFS(j)− ITFS(j)

= DTFS(j) + α+ ITFS(k)− ITFS(j)

(7.10)

As a TFS at j moves to k its distance in hops with respect to another node i can
change. This change will be mostly positive with respect to the source as the fake
sources move away from the real source during the directed random walk, and there
will be no change once a PFS has been allocated. However, the fake sources will get
closer to other nodes in the network as they move away from the source. This means
that the duty cycling needs to be able to handle messages arriving earlier and later
than at the expected arrival time.

∆i(TFSk)−∆i(TFSj) = −1 or 0 or + 1 (7.11)

TailFS Timings

A TFS j becomes a TailFS after its duration expires to ensure a reliable progression
of fake sources.

τTailFS(j) = τTFS(j) +DTFS(j) (7.12)

A TailFS will send a 〈fake〉 message with same period and duration as a TFS after
the same initial start delay. Essentially a TailFS is a TFS, but without a fixed
duration. Once the duration period expires it will send another 〈choose〉 message
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to try to select the next TFS, but will remain a TailFS. Once a TailFS receives a
message from a further TailFS or PFS, it will cease broadcasting 〈fake〉 messages
and return to being a normal node.

DTailFS(j) = DTFS(j) (7.13)

PTailFS(j) = PTFS(j) (7.14)

ITailFS(j) = ITFS(j) (7.15)

PFS Timings

• The time at which the TFS j hands off to a PFS k is shown in Equation 7.16.
The α component represents the time cost of sending a 〈choose〉 message from
TFS j to the node k that becomes the PFS.

τPFS(k) = τTFS(j) +DTFS(j) + α (7.16)

• The PFS k also has an initial start delay IPFS(k). To simplify the implement-
ation this is set to the same constant used by both TFSs and TailFSs:

IPFS(k) = ITailFS(k) = ITFS(k) = PTFS(k)
4 (7.17)

• A PFS k will send its nth 〈fake〉 message FPFSkn at the following times:

SPFSk(FPFSkn ) = τPFS(k) + IPFS(k) + (n− 1)PPFS(k) (7.18)

• As the duration of a PFS is potentially unbounded, the set of all 〈fake〉 messages
that the PFS k could send is:

SPFSk(FPFSk) =
{
SPFSk(FPFSkn ) | n ∈ N1

}
(7.19)

The time between each 〈fake〉 message from a PFS is its period PTFS(k). An issue
is that the PFS period adjusts itself based on the ratio of 〈fake〉 messages the source
has received (ψsrc(F)). The network is not expected to know when this change will
occur or what the new period will be set to. Instead the change in the PFS period is
required to occur slowly over time in order to allow the duty cycle to catch a 〈fake〉
message sent using the new period.
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Sleep Schedule

Using these timings a sleep schedule can be developed for 〈fake〉 and 〈choose〉
messages. As with 〈normal〉 messages the nodes will wake up earlier and sleep later
for both message types. This early and late wakeup will also help account for the
changing PFS period. The early and late wakeups for 〈choose〉 messages will be
represented as We(C) and Wl(C). The early and late wakeups for 〈fake〉 messages
will be represented as We(F) and Wl(F). There are four timing aspects that need
to be kept track of:

1. When the next 〈fake〉 message for the same TFS will be sent (considers the
TFS period)

2. When the next TFS will send its first 〈fake〉 message (considers the TFS
duration)

3. When a neighbouring TFS will send its 〈choose〉 message (considers the TFS
duration)

4. When a PFS will send its next 〈fake〉 message (considers the PFS period)

After receiving the nth 〈fake〉 message from j at node k the following knowledge
about future message receives is known:

• The next 〈fake〉 message n+ 1 will be received at

Rk(F
TFSj
n+1 ) = Rk(F

TFSj
n ) + PTFS(j) (7.20)

and every subsequent 〈fake〉 message from this TFS each PTFS(j) after.

• If the node did not receive the first 〈fake〉 message from a TFS for some reason,
the time it should have been received can be calculated by:

Rk(F
TFSj
1 ) = Rk(F

TFSj
n )− (n− 1)PTFS(j) (7.21)

• The 〈choose〉 from TFS j at:

Rk(C) = Rk(F
TFSj
1 ) +DTFS(j)− ITFS(j) (7.22)

• The first 〈fake〉 message from the next TFS q is received at k at:

Rk(FTFSq1 ) = Rk(F
TFSj
1 ) +DTFS(j)− ITFS(q) + ITFS(j) + α (7.23)
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Figure 7.3: Timing of events for two TFS q and r when #TFS(j) = #TFS(k) = 3

As the initial delay is assumed to be a constant and ITFS(q) = ITFS(j), this
simplifies to:

Rk(FTFSq1 ) = Rk(F
TFSj
1 ) +DTFS(j) + α (7.24)

7.1.3 Timing Demonstration

To aid understanding the times at which events can occur, this section will explain a
number of timing diagrams. These diagrams aim to show the standard cases that
can occur, plus error cases and how the protocol handles these.

In Figure 7.3 the timing of events for when a TFS q hands off to a TFS r

is shown. The subsequent conversion of TFS q into TailFS q is omitted to keep
the diagram simpler. The diagram shows how 〈fake〉 messages are sent periodically
after some initial start delay (ITFS(q)). The 〈fake〉 messages are represented by red
arrows from the TFS q or TFS r (in yellow) to the normal node j (in light blue).
The normal node j will receive messages from TFS q with the same period between
the messages (α∆(j, q)). However, there is a gap when transitioning from TFS q

sending, to TFS r. This is down to the time cost of sending the 〈choose〉 message
(α) plus the initial start delay (ITFS(r)). Node j works out when to wake up for
TFS r’s 〈fake〉 messages by considering the TFS duration.

The diagram in Figure 7.4 is very similar to Figure 7.3 except that TFS
q hands off to a PFS r via the 〈choose〉 message in green. Node j can still work
out when to expect PFS r’s first message using the duration of TFS q because
ITFS(q) = IPFS(r).

The timing diagram in Figure 7.5 includes TFS q becoming a TailFS and
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Figure 7.5: Timing of events for a TFS q that becomes a TailFS q when #TFS(q) = 2
and q fails to receive any 〈fake〉 messages from r until its second duration

shows how it remains a TailFS until it detects a 〈fake〉 message from a further node
r. In this case there are 2 〈fake〉 messages sent per period. In the first period of TFS
r the two messages get lost, perhaps due to collisions, high noise, or some other error.
These lost messages are represented by lines that terminate with a circle. When TFS
r becomes a TailFS it continues broadcasting at the same period after the initial
start delay because PTFS(q) = PTailFS(q). TailFS q then receives this message and
becomes a normal node as it has detected a further TailFS to take over its role. In
this case the second round of 〈fake〉 messages are sent slightly earlier as there is no
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Figure 7.6: Receive time difference from the expected receive time when the early
and late wakeups are large.

delay from sending a 〈choose〉 message. As this time is expected to be small it will
be handled by the early and late wakeups for 〈fake〉 messages. Note that in this
scenario a second 〈choose〉 message was sent by TailFS q as at that point it did not
believe that a further fake node had been created.

7.2 Algorithm

This section will describe how the DynamicSPR algorithm was adjusted to implement
duty cycling. An important aspect of these changes are the early and late wakeups
for 〈normal〉, 〈fake〉 and 〈choose〉 messages and what values should be used. So
before the algorithm implementation is described, the values these wakeups should
take are analysed. An investigation into the spread of when messages are received
will now be performed.

7.2.1 Early and Late Wakeups

It is to be expected that there will be some difference with respect to when messages
are expected to be received. For example, messages may not take the shortest
path through the network due to collisions, or computation on one node may take
longer than expected leading to a delay in broadcasting the message. This is why
early wakeup (We(M)) and late wakeup (Wl(M)) times are used. Different wakeup
times can be specified for 〈normal〉 message (N ), 〈fake〉 messages (F), and 〈choose〉
messages (C).

Figure 7.1 shows how long it takes a 〈normal〉 messages to travel to various
nodes at specific hop distance from the source under Protectionless with no duty
cycle. Each point represents the travel time of a single message. Note that at a given
hop distance there is a arrival difference between 20 ms and 40 ms. This difference is
difficult to precisely predict as the route the messages take is unspecified.
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To gain a better understanding of what good early and late wakeup values
will be for the DynamicSPR duty cycle, simulations were run using large values for
the early and late wakeup times. A sample of these results is shown in Figure 7.6,
with a normal distribution of mean and variance calculated from the data also shown.
Ideally the majority of messages should be received around a difference of 0 ms as
that means the message was received in the middle of the early and late wakeup
periods. While there is a large peak around this point, many messages are also
received both early and late. This means there will need to be a trade-off between
smaller early and late wakeups (increased power savings) and the number of messages
received and forwarded. So a way of determining these values is required.

In Figure 7.7 the probability that another message will be received within
some time bound of another message is shown for different time bounds. These
results were calculated as shown in Equation 7.25 by taking the weighted average
of the ratio of messages received at a given latency x multiplied by the ratio of
messages that would be received a ms before or after x. Where, X is the set of
integer latencies that messages were received after. C : X → N maps a latency in
milliseconds to the number of messages that were received with that latency. |R| is
the total number of messages that was received. For simplicity the early and late
wakeups were set to be the same.

Pr (x− a ≤ X ≤ x+ a | X = x) =
∑
x∈X

(
C(x)
|R|

x+a∑
t=x−a

C(t)
|R|

)
(7.25)

These graphs are intended to provide an approximate insight into how chan-
ging the wakeup intervals affect the receive probability. It was expected that the
delivery probability within a certain time bound would decrease as the distance from
the source increases. However, this graph shows that the receive probability actually
increases. The reason for this is that fewer messages are received at those higher
source distances, making this probability value less accurate. A limitation of this
graph is that it shows the probability for nodes at different distances from the source,
but does not take into account how a lower probability for nodes closer to the source
would effect the receive probability at those further from the source. Nevertheless,
it is still a useful tool at estimating what early and late wakeup intervals to use.
One of the main points to take away is that smaller wakeup intervals produce lower
receive probabilities for 〈fake〉 messages compared to 〈normal〉 messages, so 〈fake〉
messages will need larger wakeup intervals compared to 〈normal〉 message wakeup
intervals. The other point is that there is diminishing returns in terms of increasing
receive probability when increasing the wakeup intervals.
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Figure 7.7: Examples of the probability of receiving a message within a specific time
bound from the previously received message at different distances from the source.
When early and late wakeups were set to large values.

Algorithm 3 Duty Cycling Control
. Always start the radio when requested to

1: event StartRadio() →
2: signal StartRadioHardware()

. Only stop the radio if all components are not using it

. The sink node never duty cycles

. The source node ignores turn off rules for 〈normal〉 messages
3: event StopRadio() →
4: if ¬IsSinkNode()∧(IsSourceNode()∨NormalCanTurnOff())∧FakeCanTurnOff()∧
¬sending then

5: signal StopRadioHardware()

7.2.2 Implementation

The implementation for DynamicSPR with duty cycling has one minor change to
the way the algorithm works. In DynamicSPR, when a 〈fake〉 message is sent, the
protocol will retry to send it until it is successful. This is not performed when duty
cycling is enabled, as it causes 〈fake〉 messages to go out of sync with their expected
time. If a node was to receive one of these delayed 〈fake〉 messages, it would expect
to receive future 〈fake〉 messages at later times than they would actually be delivered.

The way the radio hardware is controlled is shown in Algorithm 3. Rather
than maintain a large state machine that tracks all components and whether any is
using the radio or not, when one component is finished using the radio it signals for
the radio to be switched off. Only if no components are then using the radio is it
actually switched off. When any component asks for the radio to be switched on it
is always switched on. When a node is sending a message it requests the radio to
turn on and leaves it on until sending is complete as shown in Algorithm 4.
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Algorithm 4 Send Duty Cycling
sending ← 0

1: event Send(msg) →
2: signal StartRadio()
3: SendOnRadio(msg)
4: sending ← 1

5: event SendDone() →
6: sending ← 0
7: signal StopRadio()

Duty cycling for 〈normal〉 messages in Algorithm 5 follows the Equations 7.3,
7.4, and 7.5. The usage of Equation 7.3 can be seen in StartOffTimerFromMes-
sage(), Equation 7.4 can be seen in StartOffTimer(), and Equation 7.5 in
StartOnTimer(). The duty cycling starts when a 〈normal〉 message is received.
The time at which the radio received the message is recorded. It is important to use
this time because the WSN needs the duty cycle to be anchored to when messages
are actually received instead of when they are processed. If the current node time
was used then the duty cycling may go out-of-sync with respect to the source node
sending messages.

When a 〈normal〉 message is received the OffTimer is started which times
until the node should turn the radio off. When the OffTimer fires, the OnTimer is
started which will turn the radio back on when it fires. As one 〈normal〉 message
is expected to be received each time the radio is on, once that message has been
received the radio can be turned off. When the radio is turned off in OffTimer the
offEarly flag is reset. The radio can only turn off when OnTimer is running and
OffTimer is not running because the node is waiting to turn on and not waiting to
turn off, or when the radio can be turned off early.

The duty cycling for 〈fake〉 and 〈choose〉 messages is shown in Algorithm 6.
The algorithm is event triggered when the first new 〈fake〉 message is received. If
the 〈fake〉 message arrives from a TFS or TailFS then the TempOff timer is started
to turn the radio off, the DurationOn timer is started (if not already running) which
turns the radio on to receive a 〈fake〉 message from the next fake node, and the
ChooseOn timer is started (if the node is adjacent to the fake source) to wake the
node up to receive the 〈choose〉 message from the fake source. If the 〈fake〉 message
arrives from a PFS then the PermOff timer is started. The offEarly flag is also set to
allow the radio to turn off immediately and the radio is signalled to stop. This can
be done as no other 〈fake〉 message from a PFS is expected. Starting the PermOff
timer will lead to the PermOn timer being fired after the PFS period.

When receiving a 〈fake〉 message if the message has not come from a TFS or
TailFS then the counter TempNoReceive is incremented, if the message has come
from a TFS or TailFS then it is reset. If three rounds of 〈fake〉 messages are missed
from TFSs or TailFSs, then both the TempOff and TempOn timers are stopped. The
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Algorithm 5 〈Normal〉 Duty Cycling
offEarly ← 0
OnTimer, OffTimer ← ⊥, ⊥

1: receive Normal
〈
. . .
〉
→

2: now ← MessageReceiveTime()
3: if isNew() then
4: offEarly ← 1 . Turn off radio after receiving message
5: signal StopRadio()
6: StartOffTimerFromMessage(now)

7: timeout (OnTimer) at now →
8: signal StartRadio()
9: StartOffTimer(now)

10: timeout (OffTimer) at now →
11: offEarly ← 0
12: signal StopRadio()
13: StartOnTimer(now)

14: function StartOnTimer(now)
15: if ¬IsRunning(OnTimer) then
16: StartAt(OnTimer, now, Psrc −We(N )−Wl(N ))

17: function StartOffTimer(now)
18: if ¬IsRunning(OffTimer) then
19: StartAt(OffTimer, now, We(N ) + Wl(N ))

20: function StartOffTimerFromMessage(now)
21: if ¬IsRunning(OffTimer) then
22: StartAt(OffTimer, now, Wl(N ))

23: function NormalCanTurnOff
24: return (IsRunning(OnTimer) ∧ ¬IsRunning(OffTimer)) ∨ offEarly

reason for this is that once a PFS has been allocated, TFSs and TailFSs should revert
to being normal nodes. To save energy the awake periods reserved for 〈fake〉 messages
from TFSs and TailFSs are no longer needed, so these timers (which perform the
wakeups) can be stopped.

The radio can be turned off for this component when all the following are
true: (i) it is not the receive window for a 〈fake〉 message from a TFS or TailFS or
receiving a 〈fake〉 message from these node types is disabled, (ii) it is not the receive
window for a 〈fake〉 message from a PFS or the radio can turn off early as this 〈fake〉
has been received, and (iii) it is not the receive window for a 〈choose〉 message.
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Algorithm 6 〈Fake〉 and 〈Choose〉 Duty Cycling
offEarly ← 0
tempDisabled, tempNoReceive ← 0, 0
. Timers are initialised to not fire at any time
ChooseOn, ChooseOff ← ⊥, ⊥
TempOn, TempOff ← ⊥, ⊥
PermOn, PermOff ← ⊥, ⊥
DurationOn, DurationOff ← ⊥, ⊥

1: function ReceiveFromTempOrTail(now, ult fake count)
2: if isNew() then
3: StartTempOffTimerFromMessage(now)
4: nth msg delay ← PTFS × ult fake count . ult fake count is 0 for the first 〈fake〉 message
5: if ¬IsRunning(DurationOn) then
6: StartAt(DurationOn, now, DTFS − nth msg delay−We(F))
7: if isAdjacent() ∧ ¬IsRunning(ChooseOn) then
8: StartAt(ChooseOn, now, DTFS − ITFS − nth msg delay−We(C))

9: function ReceiveFromPerm(now)
10: if isNew() then
11: StartPermOffTimerFromMessage(now)
12: offEarly ← 1 . Turn off radio after receiving message
13: signal StopRadio()

14: receive Fake
〈
src type, ult fake count, . . .

〉
→

15: now ← MessageReceiveTime()
16: if src type ∈ {TempFake, TailFake } then
17: ReceiveFromTempOrTail(now, ult fake count)
18: else if src type ∈ {PermFake } then
19: ReceiveFromPerm(now)
20: if ¬tempDisabled then
21: if IsRunning(TempOff) ∧ ¬IsRunning(TempOn) then
22: tempNoReceive ← 0
23: else
24: tempNoReceive ← tempNoReceive + 1
25: if tempNoReceive ≥ 3 then
26: tempDisabled ← 1
27: Stop(TempOff)
28: Stop(TempOn)

7.3 Results

This section will detail the results for the DynamicSPR duty cycle algorithm. The
COOJA simulator was used for all simulated experiments as TOSSIM cannot simulate
the duty cycle or MAC layers. Only the Fixed1 and Fixed2 approaches were
simulated and not the Rnd approach. This is because the DynamicSPR duty cycle
algorithm only supports deterministic approaches.

Results are shown for different wakeup intervals in the form of this 6-tuple:
(We(N ),Wl(N ),We(F),Wl(F),We(C),Wl(C)), which includes the early and late
wakeup intervals for 〈normal〉 messages (N ), 〈fake〉 messages (F), and 〈choose〉
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Algorithm 6 〈Fake〉 and 〈Choose〉 Duty Cycling: On and Off Timers
29: timeout (DurationOn) at now →
30: signal StartRadio()
31: StartAt(DurationOff, now, We(F) + Wl(F))

32: timeout (TempOn) at now →
33: signal StartRadio()
34: StartTempOffTimer(now)

35: timeout (PermOn) at now →
36: signal StartRadio()
37: StartPermOffTimer(now)

38: timeout (ChooseOn) at now →
39: signal StartRadio()
40: StartAt(ChooseOn, now, We(C) + Wl(C))

41: timeout (DurationOff) at now →
42: signal StopRadio()
43: Stop(TempOn)
44: StartTempOn(now)

45: timeout (TempOff) at now →
46: signal StopRadio()
47: StartTempOn(now)

48: timeout (PermOff) at now →
49: offEarly ← 0
50: signal StopRadio()
51: StartPermOn(now)

52: timeout (ChooseOff) →
53: signal StopRadio()

We(N ) Wl(N ) We(F) Wl(F) We(C) Wl(C)
1 200 200 250 250 75 75
2 80 80 120 130 5 50
3 40 40 120 130 5 50
4 35 35 100 100 5 50
5 35 35 60 60 5 50
6 200 200 120 130 75 75

Table 7.1: Wakeup intervals for DynamicSPR in milliseconds

messages (C). Five different sets of wakeup intervals are simulated (1–5 shown in
Table 7.1), including one with large wakeup intervals, to test the effects of different
duty cycles on the selected metrics. The graphs also include a baseline result, which
is DynamicSPR running on COOJA without duty cycling turned on. This is included
to situate any performance differences that may occur due to including duty cycling.
The graphs also show a comparison with using TinyOS LPL with the parameters
shown in Table 7.2. This is to demonstrate the performance difference between the
developed sleep schedule and TinyOS’s existing sleep schedule.

From the simulations various metrics about the performance of DynamicSPR
were collected. The following metrics will be analysed in this section:

1. Broadcast and Attacker Behaviour — This is the patten in which messages
are sent and the path the attacker takes in response.

2. Duty Cycle — This is the average percentage of time that the radio was on.

3. Received Ratio — This is the percentage of messages that were sent by the
source and received by the sink.
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Algorithm 6 〈Fake〉 and 〈Choose〉 Duty Cycling
54: function StartTempOn(now)
55: if ¬IsRunning(TempOn) then
56: StartAt(TempOn, now, PTFS −We(F)−Wl(F))

57: function StartTempOffTimer(now)
58: if ¬IsRunning(TempOff) then
59: StartAt(TempOff, now, We(F) + Wl(F))

60: function StartTempOffTimerFromMessage(now)
61: if ¬IsRunning(TempOff) then
62: StartAt(TempOff, now, Wl(F))

63: function StartPermOffTimer(now)
64: if ¬IsRunning(PermOff) then
65: StartAt(PermOff, now, We(F) + Wl(F))

66: function StartPermOffTimerFromMessage(now)
67: if ¬IsRunning(PermOff) then
68: StartAt(PermOff, now, Wl(F))

69: function FakeCanTurnOff
70: return ((IsRunning(TempOn) ∧ ¬IsRunning(TempOff)) ∨ tempDisabled) ∧ (offEarly ∨
¬IsRunning(PermOff)) ∧ ¬IsRunning(ChooseOff)

ts (ms) ttx (ms) td (ms) cca

1 50 50 10 1150
2 50 50 100 400
3 75 75 10 1150
4 75 75 10 2300
5 75 75 100 400

Table 7.2: Parameters for TinyOS LPL

4. Average Number of Fake Messages Sent — This is the average number
of 〈fake〉 messages sent across all nodes.

5. Latency — This is the average time it takes a message sent by the source to
be received at the sink.

6. Attacker Distance — This is the average attacker distance from the source
recorded at the end of a run.

7. Capture Ratio — This is the percentage of runs in which the attacker reaches
the location of the source, i.e., captures the source.
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Figure 7.8: A demonstration of the behaviour of the DynamicSPR Duty Cycle
algorithm and how the attacker moves in response to the messages sent.

7.3.1 Behaviour

The diagram shown in Figure 7.8 displays an example execution of DynamicSPR
with duty cycling on a 7× 7 network. 〈Normal〉 messages are sent with a Psrc of 2.0
seconds and the Fixed2 approach was used, so two 〈fake〉 messages are sent each
Psrc. This can be seen by the two columns of red 〈fake〉 messages between each
column of blue 〈normal〉 messages. Some 〈fake〉 messages were delivered but not
forwarded onwards early in the algorithm’s execution, because the radio encountered
an error. No retransmissions of these messages occurred to prevent 〈fake〉 messages
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(b) Fixed2 Approach for 7× 7, 9× 9 and 11× 11 sized networks

Figure 7.9: Results showing the Average Duty Cycle for different wakeup intervals.

being sent at unexpected times.
When the background is green it means that the radio is on and when the

background is grey the radio is off. The radios are all off until the nodes boot before
the 1 second mark. Once booted the nodes will remain on until a 〈normal〉 and
〈fake〉 message have been received. The sink remains on for the entire simulation as
it is assumed to be run at a base station connected to main power, so there is no
need for duty cycling to save energy.

The attacker initially makes moves closer to the source before being pulled
strongly away from it. Beyond 16 seconds only two fake nodes remain, the PFS at
node 45 remains and a TailFS at node 23. Usually the TailFS would detect the PFS
and become a normal node, however that has not happened in this case. This is
caused by the PFS and TailFS using the same sequence numbers for their 〈fake〉
messages, which prevents the PFS’s 〈fake〉 messages from reaching the TailFS and
informing it to stop forwarding 〈fake〉 messages. This means that 2 messages continue
to be sent from node 23 causing the attacker to cycle between moving closer to the
source then back to node 23.

7.3.2 Duty Cycle

The graphs in Figure 7.9 show that the duty cycle technique for DynamicSPR does
reduce the amount of time that the radio is left on for. Smaller wakeup intervals
lead to a lower duty cycle. Decreasing the 〈fake〉 message wakeup intervals led to
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(b) Fixed2 Approach for 7× 7, 9× 9 and 11× 11 sized networks

Figure 7.10: Results showing the Received Ratio for different wakeup intervals.

a larger decrease as more 〈fake〉 messages are sent than 〈normal〉 messages. The
baseline result shows a duty cycle of 100% because the radio is left on permanently
as no duty cycling is performed.

A larger source period led to smaller duty cycles because this duty cycle
technique has a fixed wakeup for messages. When fewer messages are sent it means
that there is a reduction in the number of radio wakeups that need to be performed.
Because fewer absolute wakeups are performed over the same period of time, the
ratio of awake time to asleep time decreases.

Using TinyOS LPL can produce a lower duty cycle than the one developed
here under some parametrisations. When the source period is low (the message send
rate is high) TinyOS LPL perform well. However, as the source period increases the
DynamicSPR duty cycle tends to perform better than TinyOS LPL. This is because
it takes advantage of knowledge of when to wake up, which TinyOS LPL does not.

7.3.3 Received Ratio

The received ratio shown in Figure 7.10 is above 80%. The received ratio increases
for slower source periods, as fewer messages are sent over the same period of time
thus reducing the chance of message losses due to collisions. Larger network sizes
also lead to a higher receive ratio. Because of the increase in the number of paths
available for messages to travel, a collision has less effect in these larger networks.

The baseline results for DynamicSPR have a higher received ratio compared
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(a) Fixed1 Approach for 7× 7, 9× 9 and 11× 11 sized networks
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(b) Fixed2 Approach for 7× 7, 9× 9 and 11× 11 sized networks

Figure 7.11: Results showing the 〈Fake〉 messages sent per node per second for
different wakeup intervals.

to when duty cycling is enabled. This is because there is no chance for a 〈normal〉
message to be lost because a node’s radio is off. Smaller wakeup intervals have a
lower received ratio for the opposite reason, as there is a greater chance for messages
to be missed because the radio is off for longer.

The TinyOS LPL results show a lower receive ratio when the source period is
low, but the receive ratio increases as the source period increases. This means that
TinyOS LPL is really impractical for deploying with DynamicSPR, because when
TinyOS LPL outperforms DynamicSPR’s duty cycle the receive ratio is low and
when TinyOS LPL has a high receive ratio, DynamicSPR’s duty cycle outperforms
it in terms of a lower duty cycle.

7.3.4 Messages Sent

In both Figure 7.11 and Figure 7.12 it can be seen that fewer messages are sent
when duty cycling is enabled compared to when it is disabled. This is because when
duty cycling is enabled there is the possibility that a message might be sent outside
the of time the target node is awake. The reason that there appears to be a large
difference between when duty cycling is enabled and when it is disabled, is because if
a message is lost early in its path then it will not be received to be forwarded later.

Lower wakeup intervals lead to a lower number of messages sent. As there is
less time when a node is awake, the probability of it receiving a message is lower.
However, there only tends to be a small difference in the quantity of messages sent
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(a) Fixed1 Approach for 7× 7, 9× 9 and 11× 11 sized networks
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(b) Fixed2 Approach for 7× 7, 9× 9 and 11× 11 sized networks

Figure 7.12: Results showing the total messages sent per node per second for
different wakeup intervals.

between the different wakeup interval parameters.

7.3.5 Normal Latency

The latency of 〈normal〉 messages when duty cycling is enabled is increased compared
to baseline DynamicSPR where duty cycling is not enabled, as shown in Figure 7.13.
This occurs for all network sizes and source periods investigated. The increase in
latency is typically about 40 ms to 50 ms.

An increase in this latency indicates that 〈normal〉 messages are not travelling
along the shortest path from source to sink. It was expected that this latency would
be similar to the case when no duty cycle technique is used, as the duty cycle only
has nodes wakeup when a message should have arrived normally. So messages should
have travelled along the shortest path. However, this result indicates that the wakeup
intervals are causing 〈normal〉 messages to miss being forwarded to some nodes on
the shortest path and are instead taking a slightly longer path from source to sink.

The latency is very similar for both Fixed1 and Fixed2, meaning that the
〈fake〉 message rate does not have a large impact. This was expected as at maximum
only one set of 〈fake〉 messages could be scheduled at a similar time to 〈normal〉
messages.
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(a) Fixed1 Approach for 7× 7, 9× 9 and 11× 11 sized networks
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(b) Fixed2 Approach for 7× 7, 9× 9 and 11× 11 sized networks

Figure 7.13: Results showing the Normal Latency for different wakeup intervals.

7.3.6 Attacker Distance

The Fixed2 approach is better at pulling the attacker away compared to Fixed1.
The issue with Fixed1 is that it is only capable of keeping the attacker at the
same distance it is from the source and does not send enough messages to pull the
attacker further away. The Fixed2 approach performs much better compared to
Fixed1 because it sends 2 messages each period, meaning it is much more tolerant
to message losses.

Enabling duty cycling leads to a reduction in the ability to pull an attacker
further from the source, as shown in Figure 7.14. With fewer messages being sent
and received it means that fewer 〈fake〉 messages are reaching the attacker to pull it
further from the source.

7.3.7 Captured

The final metric that will be investigated is the capture ratio shown in Figure 7.15.
When enabling duty cycling it will lead to a higher capture ratio. Different levels of
increase are observed for different parametrisations. It was expected that smaller
networks would experience a larger capture ratio compared to the larger networks,
as this pattern was observed previously. However, the small size 7× 7 network when
using the Fixed1 approach has a much higher capture ratio than expected. The
problem is that under the Fixed1 approach only 1 〈fake〉 message is sent for each
〈normal〉 message. When there is the chance that some of these messages will not
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(a) Fixed1 Approach for 7× 7, 9× 9 and 11× 11 sized networks
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(b) Fixed2 Approach for 7× 7, 9× 9 and 11× 11 sized networks

Figure 7.14: Results showing the Attacker Distance for different wakeup intervals.

reach the attacker, Fixed1 is no longer capable of keeping the attacker at a certain
distance from the source. As has already been discussed, the smaller wakeup intervals
lead to a lower chance of a message being forwarded. This can be seen in the graph
for the 7 × 7 in Figure 7.15a, where smaller wakeup periods have larger than 5%
capture ratio for most of the source periods. Larger network sizes perform better,
because the attacker has more space to cover before it gets close to the source. This
reduces the impact of lost 〈fake〉 messages, as Fixed1 can hold the attacker at a
certain distance that is closer to the source. When the distance between the sink
and source is larger it provides extra space for DynamicSPR to recover and pull the
attacker back if it makes moves towards the source.

The Fixed2 approach performs better than Fixed1 because rather than trying
to hold the attacker at a certain distance, sending two messages each source period
tried to pull the attacker to the fake source’s location. By sending two messages in a
period, DynamicSPR is better able to tolerate lost messages. Fixed2 still has poor
performance on 7× 7 networks compared to the two larger networks for the same
reason that Fixed1 performed poorly on that network size.

In most cases, when the duty cycle had larger duty cycle intervals, the results
show that the capture ratio is lower. This means that there is a trade-off to be
made between energy cost and SLP. To provide better reliability when forwarding a
message and thus a lower capture ratio, a node needs to wakeup for a longer period.
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(b) Fixed2 Approach for 7× 7, 9× 9 and 11× 11 sized networks

Figure 7.15: Results showing the Capture Ratio for different wakeup intervals.

7.4 Testbed Results

The results for DynamicSPR with duty cycling is shown in Figure 7.16 for the
Fixed1 approach and in Figure 7.17 for the Fixed2 approach. The results for
metrics previously investigated using the COOJA simulator show similar trends to
the testbed results obtained. The key results introduced here are the actual energy
and power measurements obtained from the testbed experiments. Figure 7.16g and
Figure 7.17g show the average power consumption of the nodes in milliamps, and
Figure 7.16h and Figure 7.17h shows the average energy consumed over the duration
of testbed experiment, from the start to when either the source was captured or the
safety period expired. These graphs show that using DynamicSPR with duty cycling
can reduce the power consumption of the sensor nodes by more than 75% when a
source period of 8 s is used. An interesting point is in Figure 7.17g where the average
power consumption for a tuple of short wakeups is larger than results that use longer
wakeups. The reason for this is that the duty cycle is actually higher (as shown
in Figure 7.17f), which is caused by the algorithm lacking sufficient information to
know when to sleep leading the radio to remain on.

7.5 Discussion

During the development of this duty cycle a major issue that was encountered was
that under certain parametrisations the duty cycle went out of sync. This meant that
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Figure 7.16: FlockLab testbed results for DynamicSPR with duty cycling and
approach Fixed1.

nodes were waking up when there were no messages to receive and sending messages
when no nodes were awake to receive the messages. One of the main changes that was
performed set a TailFS to use parameters from a TFS. In previous work [25] TailFSs
used the parameters from a PFS because TailFSs have a potentially unbounded
duration. However, this parametrisation did not work for this duty cycle because
the PFS period changes depending on the percentage of 〈fake〉 messages received at
the source. These TailFSs led the duty cycle to go out of sync. By changing TailFSs
to use TFS parameters this issue was fixed. There are also a number of other issues
that can lead the duty cycle to go out of sync which will now be described.
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Figure 7.17: FlockLab testbed results for DynamicSPR with duty cycling and
approach Fixed2.

7.5.1 Handling Clock Drift

Over time a sensor node’s clock will drift. This is due to the crystal oscillator (which
is used to generate a series of clock pulses) not always oscillating at the desired
frequency. Due to environmental effects the clock may run faster or slower. For a
32.768 kHz oscillator with a clock stability of ±20ppm, time could drift 52.7 ms a
day. This drift is slow enough to not be an issue over a small number of messages as
each node has a large wakeup period to allow it to handle differences in the time
it takes a message to reach the node. However, over time this drift could cause
issues to which there are two solutions. The first is to perform some form of clock
synchronisation (such as FTSP [121]), however this would add an extra energy cost
when running DynamicSPR.

An alternate approach would be to periodically reset the time from which
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subsequent wakeups are computed relative to. In this implementation all wakeups are
computed relative to the time the first 〈normal〉 and 〈fake〉 received. An alternative
would be to periodically reset the wakeup calculation from a different message, for
example, once every hour. Another way to mitigate the effect of clock drift might be
to use an alternate way to calculate the time to sleep. For example, the early and
late wakeups could be adjusted per message, with the aim to keep the next message’s
arrival time in the middle of the wakeup period. This would be able to adjust for
latency changes as well as clock drift changes. The per message adjustment could
be performed using an exponential weighted moving average of the latencies. The
weights would need to be set to ensure that there are no wild swings in the early
and late wakeups and that the majority of messages arrive at the end of the early
wakeup.

7.5.2 Non-deterministic Parameters

The implementation of DynamicSPR’s duty cycle requires that parameters are
deterministic. The reason is that a node cannot know when to wakeup if another
node is determining when to send messages randomly. However, there are ways to
support randomised parameters. One example, for the Rnd approach that sends 1 or
2 messages over the source period, is to have all nodes in the network wakeup for
both cases. The cost here is the extra wakeups during which no messages will be
received. This situation works because Rnd has a small state space, but would be
unsuitable for randomly sending a much larger number of messages.

Randomising other parameters such as the initial start delay could be handled
by increasing the early and late wakeup periods. These periods would need to
be increased such that the range of values that could be used for the initial start
delay are covered. Parameters such as the duration would need to remain fixed and
deterministic. If the duration had a random range then the duty cycle would go out
of sync after some time. This means that there is a trade-off between increasing
randomness of events (which increases the attacker’s uncertainty) and the time nodes
are awake and listening for messages.

7.5.3 Other Issues

There are also a number of other issues that could lead this duty cycle to go out of
sync. So in future work the duty cycle should be extended to detect and correct these
kinds of issues. One way would be to increase the wakeup windows when messages
are missed. Once a message is received the early and late wakeups could be reset
to centre the expected arrival time around the arrival time of that message. This
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duty cycle did not aim to be able to handle error conditions as the focus was on
developing a working technique with minimum protocol overhead. But these kinds
of issues will need to be handled for the duty cycle to be fully usable in practice.

7.5.4 When to use TinyOS LPL?

One of the assumptions made in the development of this duty cycle is that data
will be periodically set at a predetermined rate. Using that knowledge and the
understanding of how the fake source allocation occurs, a low duty cycle with good
performance in other metrics can be achieved using the synchronous duty cycle
presented in this chapter. However, if the transmissions do not occur periodically
then this style of duty cycling would not work. Instead, an asynchronous [30] duty
cycle such as TinyOS Low Power Listening which wakes the radio up periodically
would be required. As has been shown with the results presented in this chapter,
TinyOS’s LPL does not perform well for low source periods as the delivery ratio
is low. Alternate asynchronous duty cycles should be investigated to try to obtain
better performance with DynamicSPR.

7.6 Conclusion

In this chapter the timing analysis of DynamicSPR has been extended to support
calculating the times that nodes should wakeup to process a message. Different
early and late wakeup intervals have been investigated for the three main messages
involved with SLP provision: 〈normal〉, 〈fake〉, and 〈choose〉. Longer intervals were
used for 〈fake〉 messages as there is greater uncertainty regarding when a node should
expect to receive and forward these messages onwards. It is important to ensure
high reliability of 〈fake〉 message delivery as they are crucial for SLP provision.

Capture ratios are up to 7 percentage points higher in the worst case when
using a duty cycle with a source period of 1 second per message. A longer source
period leads to a lower duty cycle, as the wakeup intervals are fixed periods of
time, and a longer source period means fewer wakeups. With a source period of 8
seconds per message, a duty cycle of 10% is possible. This helps to offset the cost of
broadcasting 〈fake〉 messages by allowing the radio and CPU to sleep for up to 90%
of the time.
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Chapter 8

Discussion

Throughout the work that has been performed a number of common patterns have
been observed, even across very different techniques. These commonalities convey
certain practices, issues, and ideas that can be applied to SLP-aware routing as
a whole. This chapter will investigate these common patterns and explain their
wider importance. Also in this chapter, a comparison between the three SLP-aware
routing protocols Dynamic, DynamicSPR, and ILPRouting will be performed. This
comparison is important because the different types of SLP-aware routing make
different trade-offs, so it is important to situate the performance differences.

8.1 A Comparison of Techniques

In this thesis three different techniques have been presented, two using fake sources
(Dynamic and DynamicSPR) and another that groups and delays messages (IL-
PRouting). These techniques perform very differently and will perform better in
different scenarios. This section will compare the three techniques across the metrics
previously analysed. Only results for the two source periods 2.0 seconds and 0.25
seconds will be presented for brevity.

Other techniques such as Phantom Routing [81, 192] were implemented and
simulated, however, they performed very poorly. The reason behind this is that the
TOSSIM simulator simulates noise and the possibility of links becoming unidirectional.
However, the Phantom Routing techniques do not specify any retransmission strategy
to handle this, causing all messages to fail to reach the sink. They are not included
in this comparison because a 0% capture ratio was achieved by providing a near 0%
delivery ratio.

In terms of the receive ratio, Dynamic and DynamicSPR tend to outperform
ILPRouting. This was unexpected as Dynamic and DynamicSPR rely on the multiple
paths from flooding to provide reliability and ILPRouting provides reliability via
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Figure 8.1: Results showing the percentage of 〈normal〉 messages received at sink.
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Figure 8.2: Results showing the capture ratio.

retransmissions. As was explained in Chapter 5 ILPRouting has a lower receive ratio
due to some delayed messages not reaching the sink before the safety period expires
and thus being counted as lost. So overall, the two protocols are expected to have a
similar message delivery reliability.

The results for the capture ratio show that depending on the parametrisation
of the technique ILPRouting, Dynamic, and DynamicSPR are all capable of achieving
near optimal levels of SLP. However, achieving these levels of SLP require different
trade-offs. For Dynamic and DynamicSPR this trade-off is in terms of the number of
messages sent and received. This cost is caused by using flooding for both sending
〈normal〉 messages as well as sending the 〈fake〉 messages that provide SLP. While
this cost can be offset by using the duty cycle schedule to ensure that the radio is
turned off when not needed, there will still be a high cost in terms of energy usage
to send and receive these messages.

On the other hand, ILPRouting sends a small number of messages. The
amount sent is lower than Protectionless flooding as single path routing is used,
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Figure 8.3: Results showing the average number of messages sent per second.
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Figure 8.4: Results showing the time it took a normal message to reach the sink.

meaning that not all nodes in the network are involved with sending and receiving
messages. But there is still a trade-off, as a large average latency is required to
provide these levels of SLP. Dynamic and DynamicSPR have a very small latency as
〈normal〉 messages travel along the shortest path.

Finally, in terms of ability to pull the attacker further from the source Dynamic
performs the best. This comes at a high cost, as it also sends the largest number of
messages. DynamicSPR provides the next best ability to pull the attacker further
from the source and finally ILPRouting performs the worst out of the SLP routing
protocols. This result is interesting because the objective function of the ILP model
that led to ILPRouting was to maximise the attacker’s distance from the source.
This means that the ILPRouting algorithm is incapable of achieving the model’s
aims, but manages to instead optimise the number of messages sent instead. In
Section 9.2 ways to alter the model will be discussed that may allow it to output a
different result that indicates an alternate way to provide SLP.

In summary, these results show that Dynamic, DynamicSPR, and ILPRouting
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Figure 8.5: Results showing the attacker’s distance from the source.

are all useful in providing different objectives, but in doing so require different costs.
Dynamic is the best a pulling an attacker to a far away location, but the cost to do is
a large number of messages sent. DynamicSPR reduces the energy cost of Dynamic,
but isn’t as capable of pulling the attacker as far away. Finally, ILPRouting sends
the lowest number of messages, but its trade-offs are a high latency and worse ability
to pull an attacker away from the source.

This means that these techniques have certain properties that may make
them unsuitable for certain applications. For example, in terms of animal monitoring
a latency of a few seconds will not impact the ability to track the animals. In fact
the minimum interval of location reporting seen from real deployments is every
15 minutes. But as the cost of the network is high, it is important to maximise
its lifetime to ensure good value for money. This means that ILPRouting would
be a suitable technique for this scenario. On the other hand, under a battlefield
scenario the cost of hardware and lifetime (in terms of months) may be an aspect
that deployers are willing to trade for more confusion regarding the location of assets.
However, a latency of a few seconds would be impractical as real-time communication
with minimum delay is required. This means that Dynamic or DynamicSPR are
techniques more suited to these conditions. Selecting the technique to use for different
scenarios is still an open problem. However, there is existing work that uses decision
theory to select the dominating SLP routing protocol according to metrics (gathered
from simulation) important for a specific scenario. These techniques have been
applied to the DynamicSPR and ILPRouting algorithms presented in this thesis
in [61].
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8.2 Impact of Network Configuration

When analysing the results for the three algorithms presented in this work, one result
that stood out was that larger network sizes provided a better level of source location
privacy (as shown in Figure 8.2). The reason behind this is that the larger networks
investigated had a larger distance between the sink and the source, which provides
additional time for the SLP routing protocols to recover from poor situations. For
example, if the attacker has made moves towards the sink due to collisions or noise
that prevented 〈fake〉 messages from reaching it, then Dynamic or DynamicSPR has
more opportunities to pull the attacker back to where it should be if the attacker
has a greater distance to travel. An important consideration to take away from
this is that when designing a network to monitor assets it is better to use many
devices with a very short wireless range than it is to use few devices with a very
large wireless range. This increases the number of hops that the attacker will need
to travel, and decreases the range in which it will receive information. On one hand,
this is beneficial to the network deployer as the energy cost of transmitting with a
lower power output is less than a high power output, meaning the network’s lifetime
will be longer. The downside is that there is a higher monetary cost in purchasing
the hardware and higher administration cost in maintaining it.

Another important aspect is the rate at which messages are sent from the
source. This is a factor that was previously identified to lead to better performance
when the rate is low (the source period between messages is high) [179], and has
also been confirmed by the results presented in this work. The reason for this is
that fewer collisions occur between messages, allowing SLP-aware routing to perform
better. A less busy network will provide a greater level of SLP, but the frequency of
updates from the network will be lower. Therefore, network maintainers will need
to consider the frequency of reports and other network traffic, because there is a
trade-off between the frequency of event reporting and the SLP provided.

So while the algorithms presented have their own trade-offs (between messages
sent for Dynamic and DynamicSPR, and latency for ILPRouting) there is also a
trade-off in the way in which the WSN is set up and used. More nodes with a shorter
range will perform better than fewer nodes with a longer range, and less network
traffic will allow higher SLP provision than high network traffic.

8.3 Impact of Bursty Network Traffic

The techniques developed in this thesis are developed around the idea that an
application will need to periodically report information about an asset to some
observers. In Section 8.1 it was stated that the techniques developed are useful in
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different scenarios, either when the network is delay tolerance (ILPRouting should be
used) or when the network is delay intolerant (in which Dynamic and DynamicSPR
should be used). If the assumption of periodic messages generation is relaxed and
alternate message generation patterns occur (such as bursty traffic) then changes
would need to be made in some instances. ILPRouting would not need changes due
to it routing messages from the source. But Dynamic and DynamicSPR would need
to have the way 〈fake〉 messages are generated as 〈normal〉 messages travel along
the shortest path. One possibility is to obtain the probability distribution which
represents the interval between bursts of messages and use this to generate 〈fake〉
message bursts at intervals produced by the distribution. It is likely that parts of the
timing analysis derivation would need to be altered. The duty cycle for DynamicSPR
would need to be reconsidered due to the probabilistic generation of messages and
the uncertain interval between messages.

8.4 Categorisation of Techniques

In [74] it was proposed that SLP techniques could be decomposed into three com-
ponents: (i) decoy selection, (ii) control message routing, and (ii) decoy message
routing. Each of these components either had a temporal or spatial aspect. The
Dynamic algorithm was used as an example of spatial selection as the fake sources
attempt to lure the attacker to a different location in the network. DynamicSPR
remains a spatial approach as it uses the same fundamental approach as Dynamic
does, but uses an alternate fake source allocation approach.

Two examples were given for a temporal approach: Phantom Routing and a
tree-based technique. These two were categorised as temporal because they provided
SLP by taking different routes, meaning an attacker failed to receive that message.
In this sense the attacker was delayed along its route to the source. The ILPRouting
protocol takes a similar approach to these techniques, as it delays messages so they
are grouped together. In doing so the attacker can make fewer good moves towards
the source over some period of time. However, a better categorisation of these
techniques is that they are a hybrid of spacial and temporal, since they involve both
delay and spatially separate message paths to delay the attacker.

What this means for Dynamic, DynamicSPR and ILPRouting is that enough
redundancy needs to be provided either in terms of space or time. Spatial redundancy
can simply be in the form of over-provisioning a WSN by deploying a larger than
needed network. Temporal redundancy will be the network maintainer’s ability
to accept delay in message reception. These two forms of redundancy indicate
what sorts of applications these protocols may be better suited to. For example,
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animal monitoring will be tolerant of high latencies, so ILPRouting would be suitable.
However, a WSN deployment in a battlefield scenario (where the valuable assets
are military personnel) would not be able to tolerate a high latency, so Dynamic or
DynamicSPR would be the preferred protocol.

The lack of spatial redundancy was observed when attempting to run experi-
ments for ILPRouting on the FlockLab testbed. The topology of the testbed meant
that there was insufficient space around the sink for messages to be routed. Due to
the lack of space ILPRouting performed poorly, as one of its assumptions is that
there is sufficient spatial redundancy for messages to be routed around the sink.

8.5 Alternative Base Routing Protocols

For Dynamic, DynamicSPR and ILPRouting, flooding was used to obtain the safety
periods that were used to calculate the capture ratio. In Dynamic and DynamicSPR,
flooding was also used as the base routing protocol for 〈normal〉 messages. The reason
behind this is that flooding is a very poor routing protocol for applications that
require SLP, as it leaks information about the source node no matter the location of
an attacker. This is why it was important to develop SLP routing protocols against
it, because it leaks maximal information.

One of the major issues with flooding is that it sends many messages which
leads to large energy consumption. Another issue is that it can have poor delivery
ratios due to the lack of retransmissions. Other protocols such as the Collection Tree
Protocol (CTP) [57] or Ad-hoc On Demand Distance Vector Routing (AODV) [144]
can provide much better performance in terms of messages sent and delivery ratio.
They are also worse for the attacker as less information is leaked to it due to the
fewer messages sent over a smaller area of the network.

For Dynamic and DynamicSPR, applications may wish to use CTP or AODV
as the base routing protocol. However, as the real source no longer sends messages
via flooding then neither should the fake sources. The fake sources would need
to send 〈fake〉 messages along single path routes akin to CTP or AODV. These
fake routes would need to be along a path that competes with the real path. It is
likely that multiple junction points along the real path are necessary to ensure an
attacker is led off the real path. This sort of technique would be similar to some
tree-based SLP techniques, such as [115]. By making this change the Dynamic and
DynamicSPR would be able to become more efficient in terms of the number of
messages sent. This is not applicable to ILPRouting as the routing protocol has
already been replaced.
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8.6 Optimising for Different Metrics

In this thesis the focus has been on creating near optimal routing protocols to provide
SLP. To obtain near optimality in the capture ratio, a reduction in performance
needed to be traded off in other metrics. For example, Dynamic and DynamicSPR
have a high energy usage due to the number of messages sent, and ILPRouting has
a high delivery latency due to the way delay is used to group messages. All three
techniques provided the ability to parametrise them, which controlled the amount of
trade-off between capture ratio and the specific metrics. Dynamic and DynamicSPR
investigated 3 different approaches to the number of 〈fake〉 messages sent per source
period, and ILPRouting investigated 4 different delays to use. The problem is that
it is hard to avoid trade-offs between these two parameters. For SLP to be provided,
messages need to either avoid travelling the shortest path (increasing latency), or
if they continue to travel along the shortest path then some additional broadcasts
need to be used to obscure the real source (increasing the number of messages sent).
Therefore, network maintainers will need to make a choice with respect to which
metric they are willing to handle reduced performance in, in order to provide SLP.

8.7 Using Messages as a Proxy for Energy Consumption

Throughout the literature and also in this thesis, the number of messages sent by
an SLP-aware routing protocol has been used as a proxy for the amount of energy
that the protocol consumed. The rationale behind this is that sending and receiving
messages tends to be among the most energy expensive tasks performed by a WSN
as shown in Table 2.1. However, the time spent transmitting or receiving tends to be
very small compared to the length of time that a sensor node will operate over. This
is shown in Figure 6.16g, where fewer messages are sent per second as the source
period increase, but the average power consumption per node decreases at a much
slower rate such that the graphs appear flat. This means that reduction in the time
spent transmitting has a small effect and the cost of leaving the CPU and radio
idle causes much of the power consumption. This is reinforced when DynamicSPR
is tested with a duty cycle in Figure 7.16g and Figure 7.17g where less power is
consumed when fewer messages are sent. What this means is that the messages sent
metric is not very accurate in capturing the energy savings of a protocol without
a duty cycle. However, it becomes much more accurate when combined with an
appropriate duty cycle protocol.
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Chapter 9

Conclusions and Future Work

This thesis has presented ways to model, design and evaluate source location privacy
protocols for wireless sensor networks that are near optimal in terms of their capture
ratio. However, there are a number of ways in which the techniques presented could
be expanded further. This chapter concludes with a summary of the work presented
and the implications of it, and then will detail the future work opened by this
research.

9.1 Conclusion

This thesis has focused on developing near optimal source location privacy-aware
routing protocols for wireless sensor networks. These routing protocols are near
optimal in the sense that the capture ratio is near 0%. The aim is to prevent an
attacker who is following the protocol messages sent by a source node from capturing
the asset the source has detected. The time the attacker has to capture the source is
bound by a safety period which captures the amount of time an asset will be detected
for. The capture ratio is calculated as the percentage of simulation or experimental
instances in which the attacker reached the source within the safety period.

Initially an information theoretic model was developed to allow analysis of
arbitrary routing protocol specified in terms of a routing matrix. This model led
to the idea of competing paths which encompass the way a routing protocol should
be perturbed to reduce the information an attacker trying to capture the source
gains. Also presented was a way of representing routing protocols as a matrix and
then comparing the information revealed to an attacker against a different routing
protocol.

The information theoretic model focused on a spatial analysis of SLP-aware
routing protocols, however, many protocols also have a temporal aspect to their
privacy provision. To model the temporal nature of SLP-aware routing, the SLP

167



problem was modelled using integer linear programming. Using a solver, this model
was capable of outputting an optimal SLP-aware broadcast schedule that considered
the time at which messages should be broadcast. The optimal schedule was then used
as inspiration when developing the ILPRouting protocol that trades off optimality
for the ability to work in multiple scenarios. The ILPRouting protocol aims to group
messages together to reduce the number of moves the attacker can make towards
the source.

Next, a timing analysis was performed on when events in a technique that
use fake sources to provide SLP would occur. This timing analysis provided a
way for nodes in the network to determine parameters on-line rather than having
them specified at compile time, which allowed the Dynamic protocol to react to
changing network conditions. To reduce the energy cost of Dynamic, DynamicSPR
was developed with the intention to allocate fewer fake sources that would otherwise
counter the work other fake sources are doing. Finally, the timing analysis was
extended in order to develop a duty cycle to further increase the energy savings of
DynamicSPR. The duty cycle aimed to prioritise 〈fake〉 message delivery to ensure
reliable provision of SLP.

There have been two main categories of outputs from this thesis, one practical
and the other theoretical. The first is the three protocols developed which can be used
to provide SLP-aware routing. These protocols are useful for network administrators
that are deploying a network to monitor valuable assets. The performance has been
investigated, so network administrators will be aware of the trade-offs when using
these protocols. The high number of messages sent by DynamicSPR has also been
offset by the duty cycle developed, making it practical for deployments. The second
are the models (information theoretic analysis, ILP model, and fake source timing
analysis) used to obtain these protocols. The models have been developed in such
a way that they can be applied to other techniques, for example, the information
theoretic analysis can be used on any protocol that can be specified in terms of
the routing matrix. The ILP model can be modified in order to investigate ways
to structure new techniques by altering the constraints and using new objective
functions. The timing analysis of when events occur for fake source can also be
applied to different fake source SLP techniques, such as Source Simulation. These
models will assist in the development and comparison of future SLP-aware routing
protocols.

In summary, the modelling of the SLP problem using different techniques
has produced multiple near optimal SLP-aware routing protocols. These protocols
achieve their near optimality by trading-off performance in other metrics, either the
number of messages sent, or the latency of the messages. The models used to obtain
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these routing protocols can be used to compare other SLP-aware routing protocols
and assist in the development of new techniques with different trade-offs.

9.2 Future Work

There are a number of future avenues of work that could be undertaken by expanding
on ideas presented in this thesis. This section will first describe a number of immediate
areas in which the work presented could be explored further, and then present a
number of larger issues regarding SLP provision in new areas.

9.2.1 Expand the Integer Linear Programming Model

In Chapter 5 the SLP problem was modelled using ILP in order to obtain an optimal
schedule for a specific network configuration. This model is based upon a number of
assumptions that limits the kinds of schedules that can can be produced. However,
there are ways in which the ILP model could be altered to support generating different
broadcast schedules. For example, the ILP model only allows generating schedules
that route 〈normal〉 messages from the source to the sink. The model should be
adjusted to allow scheduling 〈fake〉 message broadcasts. In doing so this opens up
the model to generate techniques such as Dynamic, DynamicSPR, or fog routing [44].
This would require adding constraints on how 〈fake〉 messages are generated, as well
as how they are routed. Further changes that should be investigated are to alter the
routing constraints, which in many cases mean loosening the restrictions.

One possible example of a constraint that could be loosened is ctR4 that
states “Once a message is broadcasted by a node it is not broadcasted by that node
again”. This constraint could potentially be removed with the aim to obtain solutions
such as fog routing, or solutions that route messages in rings [100] around the source
before delivering them. Another routing constraint that could potentially be loosened
is ctR6 which states “All messages sent by the sources must reach the sink”. The
model could potentially be changed to only require a minimum number of messages
be delivered (essentially a target delivery ratio). This would allow the model to trade
off delivery ratio to provide SLP, whereas it currently requires a 100% delivery ratio.

In [175] a linear programming model was used to vary the communication
range of nodes to investigate the impact it had on protecting an asset-detecting node.
The ILP model presented in this thesis involved a communication range that can
be specified as a parameter, meaning it is fixed for all nodes and the entire time
the model is run for. An alternative would be to allow the range to be a decision
variable per node that changes over time. This would allow each node to have a
changeable range and for the ILP solver to assign values to it over time.
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These are four potential modifications that could be made to the ILP model
of SLP. Each combination could give rise to a different output that would provide
insight into using different strategies to developed SLP-aware routing protocols. It
is also worth attempting to have the ILP solver attempt to produce an output for
larger network sizes and different topologies. However, the maximum size presented
in this work was a 5x5 network as the solver required a large amount of RAM (nearly
100 GB) and several days to compute the solution. This means that producing output
for larger networks is likely to be difficult. This is a problem inherent in ILP models
with a large state, but extra computational power might help in obtaining an optimal
solution [90] for larger state spaces.

9.2.2 Investigate Alternate ILP Objective Functions

If no changes were to be made to the way the ILP model of SLP is formulated in
Chapter 5, then new schedules could be obtained by changing the objective function.
In Chapter 5 a single objective function was investigated that aimed to maximise the
attacker’s distance from the source when the safety period expires. However, there
are other objectives that are worth investigating using this model. These objectives
will vary depending on the metric that network maintainers wish to optimise for and
will likely give rise to different ways in which to perform the routing.

Another factor to consider is that many of these objectives have multiple
components. For example, an objective might be to maximise the attacker’s distance
from the source whilst also trying to minimise another metric important to the
network (such as energy usage). The ILP solver used to write the model provides a
function called staticLex1 that allows specifying a multi-criteria policy, where the
first objective is most important and not worth a reduction in its value to improve
subsequent objectives. An alternate is to specify a component of the objective
function in such a way that produces a poor value when SLP is not provided. Several
different objectives that are worth investigating will now be presented.

Prevent the Attacker From Finding the Source

Rather than trying to optimise for any specific metric, simply look for solutions in
which the attacker does not find the source. This is a weaker objective than the one

1https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.ide.help/
OPL_Studio/opllang_quickref/topics/tlr_oplf_staticLex.html
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used in Chapter 5, where the attacker’s distance from the source was maximised.

minimise
∑

e∈AA, e.v∈S
PA(P̂safety, e)

subject to Routing and Attacker Constraints.
(9.1)

Minimise Number of Messages Sent

Minimise the number of messages that all nodes send. This can be used as an
approximation to minimising energy usage, because sending and receiving messages
tends to be the most energy expensive task a WSN performs. A large cost is added
when the attacker finds the source, to prevent these solutions from being chosen.

minimise
∑

e∈AA, e.v∈S
1000PA(P̂safety, e) +

∑
n∈V
m∈M
τ∈T

B(n,m, τ)

subject to Routing and Attacker Constraints.

(9.2)

Minimise the Number of Attacker Moves

When the attacker starts at the sink, the smallest possible number of moves it can
make is 1 when it moves away from the sink. If no more attacker moves are made
and the source is not directly connected to the sink, then SLP should be provided.
This objective function should show how to minimise these moves.

minimise
∑

e∈AA, e.u 6=e.v
m∈M
τ∈T

(B(e.v,m, τ) ∧PA(τ, e))

subject to Routing and Attacker Constraints.

(9.3)

Maximise the Number of Attacker Moves

Whist minimising the number of attacker moves is a way to provide SLP, an attacker
will be aware that it is losing information about messages being sent. By maximising
the number of attacker moves, the attacker should respond to every possible message

— but in a way that prevents it from finding the source.

maximise −
∑

e∈AA, e.v∈S
1000PA(P̂safety, e) +

∑
e∈AA, e.u 6=e.v

m∈M
τ∈T

(B(e.v,m, τ) ∧PA(τ, e))

subject to Routing and Attacker Constraints.

(9.4)
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Minimise the Message Latency

For some WSN applications latency is an important performance attribute. Finding
a solution that provides SLP, whilst minimising latency will be important.

LAT(m) = min
q∈Q

n∈
−→
N (q)
τ∈T

t B(n,m, t)

1000 otherwise
− min

s∈S
τ∈T

t B(s,m, t)

1000 otherwise
(9.5)

minimise
∑

e∈AA, e.v∈S
1000PA(P̂safety, e) +

∑
m∈M

LAT(m)

subject to Routing and Attacker Constraints.
(9.6)

Conclusion

There are many different objective functions that could be used to find optimal
broadcast schedules for different objectives. The objectives that are important depend
on the context in which SLP is deployed. Multiple objectives can be optimised for
using this formulation, for example, both latency and the number of messages sent
could be optimised for by specifying certain weights for the two components of the
objective function. That the many different objectives can be calculated points to
the flexibility of the ILP model of SLP.

9.2.3 New Configurations

This work has focused on situations in which there is a single attacker trying to
capture a single source which is reporting data back to a single sink. By focusing
on this situation the problem for optimality for a single attacker, source, and sink
could be well understood. However, there are likely to be a wide range of different
configurations that will be used in real world scenarios that need further investigation.

If multiple sources are present in the network then there will be additional
challenges to providing SLP compared to when a single source is present. For
example, both fake sources [93] and phantom routing [59] perform worse when
multiple sources are present. This means that both Dynamic and DynamicSPR
are likely to perform poorly with multiple sources. However, ILPRouting is likely
to have better performance due to it performing retransmissions. The problem is
the multiple sources can exist in positions where the messages sent by each source
competes and undoes the SLP-provision work by the other sources. Future work will
need to ensure that protecting one source does not lead to the location of another
source from being revealed. Some options may including using clustering techniques
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to aggregate information about a herd of animals into what appears to be a single
source. Alternately the routes SLP-providing messages take should be allocated to
ensure that they interact with messages from other source in a way that increases
the attacker’s uncertainty of which direction to explore.

In this work it is assumed that there is a single sink located at the centre of
the network. In some situations multiple sinks may be used to collect data from the
WSN. In this situation the techniques presented could be modified to take advantage
of this. For example, ILPRouting could alternate sending 〈normal〉 messages to
two different sinks. By sending to a different sink the route could avoid the area it
previously travelled to, reducing the chance an attacker would be in a location to
overhear each message. However, multiple sinks would not be important for Dynamic
and DynamicSPR because flooding is used and all nodes in the network receive the
〈normal〉 and 〈fake〉 messages.

If multiple sinks are used as part of a strategy to provide SLP then it will
be important to place them in good positions. Determining an optimal placement
of sinks and the way in which messages are routed to them are both likely to be
difficult problems to solve. Techniques like ILP might be able to offer insight as to
where in the network the sinks should be located, along with how to route messages
to the different sinks.

9.2.4 Dealing with Different Attackers

In this thesis, a single distributed eavesdropping attacker that follows the network
traffic to capture the source has been assumed. The attacker fails to capture the
source if it is not co-located within a specified time, termed the safety period. There
are a number of different capabilities this attacker could be equipped with. This
section will describe those alternate options.

Message Detection Ability

In Section 3.5 it was chosen to assume attackers have the ability to perfectly determine
whether a message is new or not. If an attacker does not have this ability then
Protectionless flooding would be able to defeat the attacker, as it would follow the
flood of messages away from the source. Assuming the attacker has the ability to
perfectly determine if a message is new or not is the worst case behaviour, but is
unlikely to be realistic as messages are encrypted and their contents change with each
hop. An attacker might be capable of of detecting the probability that a message
is new. However, the impact of moving in response to certain packets that it has
already seen will reduce the attacker’s ability to capture the source.
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An alternative to this would be to specify the speed at which attackers move.
Once an attacker receives a message it would take them some time to move to the
node that sent the message. During this time period the attacker would not be able
to eavesdrop messages. This approach was not used in this work because it would
require setting a speed limit for attackers, thus limiting the generality of the attacker
model.

Multiple Attackers

In this work source location privacy techniques were developed against a single
mobile attacker. The aim of this work was to present near optimal techniques for
a single attacker and multiple attackers were out of its scope. It is possible that
multiple attackers physically present in the network may try to violate SLP. Due
to their larger combined visible area, multiple attackers are likely to prove more
effective against SLP techniques. However, there are a number of disadvantages
multiple cooperating attackers could face. If the attackers communicate wirelessly
then that is information the WSN could use to detect their presence and adjust how
SLP is being provided, or the network maintainers could use to detect the attackers.
For example, the WSN could avoid routing messages through areas in which the
attackers have been detected. An alternate non-technological aspect to consider is
that when attackers are in different positions then rangers or police have a greater
chance to find one of them. This means that attackers will have to trade-off a greater
risk of detection with the ability to capture the source in less time.

Recording History

The attacker presented in this work does not maintain any history about the process
of it attempting to locate the source. The reason behind this is that attempting
to use history in certain ways is likely to lead to worse performance. A simple
example is the attacker choosing not to move to locations it has previously visited.
This approach can easily lead an attacker to get trapped at a node at which it has
visited all neighbours. This is unlikely to be realistic behaviour for real attackers
that are trying to be modelled. A more complex example, would be if an attacker
waits at one location to receive multiple messages and then make a move based on
the messages received at that location, it will have increased the time it takes to
make a single move. This strategy will reduce the number of moves the attacker can
make, reducing its chance of capturing the source. This is also an issue with the
backtracking attacker that backtracks to the last known location with possible options
when it reaches a dead end, as it looses time it could be exploring the network by
backtracking along the route previously visited.
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Alternately, the attacker could build up a history of messages received and
moves taken over time as they respond to messages. By continuing to immediately
move, the attacker does not gain rich information about its current location, but
it allows it to gain sparse information across the network. An analysis of this
information could be performed to gain insight into the likely direction of the real
source and possibly fake sources if present. However, because of the low quantity
of data and the high amount of noise present, this analysis is likely to be hard to
perform.

Temporal Analysis

Another action that an attacker could perform is a temporal analysis of when it
receives messages at a given node. By doing so the attacker could aim to detect if
fake sources are present and attempt to estimate their direction. A problem with this
is that WSNs are unreliable, which causes messages to not always take the shortest
path. An example of this is shown in Figure 7.1, where the different latencies of
a packet travelling to nodes specific hops away from it is shown. There is often a
difference of 20 ms to 40 ms in the time it takes messages to arrive. Experiments
have previously shown that it takes about 6 ms for a message to be processed and
forwarded by a node. This noise makes an attacker doing timing analysis more
difficult, as the attacker will rely on timings to gauge the distance of real and fake
sources among other properties of the network.

Proactive Attacker

This thesis has focused on an attacker that moves in reaction to receiving a new
message. Alternatively the attacker could choose to proactively move to a different
location without receiving a message. In some ways this is the ideal attacker (from the
network’s perspective) as the aim of SLP is to make using the context from messages
a worse choice than performing an exhaustive search of the network. However, it
is likely that in many circumstances an attacker that proactively moves based on
its gathered knowledge will perform well. For example, an attacker could wait at a
location to gather multiple messages and then make a large move in one direction.
Other strategies may also perform well, so it is worth investigating how existing
techniques perform against a proactive attacker, and how to develop new techniques
to defend against one.
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Game Theory Perspective

It could be possible to consider the attacker’s behaviour and implementation of
an SLP-aware routing protocol from a game theoretic perspective. The optimal
outcome of a developed routing protocol would be if the attacker ignores it and
instead performs a random search of the network. A routing protocol might be able
to be developed such that the utility to the network maintainer is balanced where
the attacker doesn’t find the source and the energy cost is reasonable. It may be
better to analyse the objective of the attacker’s distance from the source, rather than
if the attacker has captured the source, for similar reasons as to why that was the
objective for ILPRouting.

Summary

Overall, there are a number of additional capabilities that an attacker could be
provided with. One of the downsides of any additional capability is if it takes times
to execute. With a non-zero time to execute this will delay the attacker on its way
to the source and decrease the chance that the attacker will capture the source
within the safety period. Therefore, it is often better for the attacker to perform
simple analysis with a small time cost (ideally zero time cost). Future work should
investigate these intuitions by testing different SLP-aware routing protocol with
different attacker strategies. Future work should also consider how modelling of real
poachers has been performed [84] and use that to inform the modelling of attackers
in the SLP problem.

9.2.5 Providing SLP in Highly Mobile Networks

The problem of source location privacy has thus far been focused on protecting the
location context of a mobile asset being monitored by a stationary WSN. However,
there are instances of highly mobile networks in which it may be necessary to provide
SLP.

In 2011 authorities in Egypt shut down the countries internet in response to
mass protests against the government2 with the aim to limit the flow of information.
One aspect of this was to hinder the ability of the protesters to organise themselves.
In 2014 a similar situation occurred in Hong Kong where authorities selectively
blocked certain communication platforms. In response to this the protesters turned
to a peer-to-peer communication app called FireChat3 to work around the commu-
nication restrictions. As the app relied on mesh networking it was able to provide

2https://www.nytimes.com/2011/01/29/technology/internet/29cutoff.html
3edition.cnn.com/2014/10/16/tech/mobile/tomorrow-transformed-firechat
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communications without being vulnerable to centralised filtering. However, it may
be the case that the mesh networking communications are vulnerable to context
privacy leakages. For example, as messages are sent by organisers of the protest the
authorities may want to find their location to arrest them. This could be achieved by
having an agent among the protesters following the wireless signals using a directional
antenna. As a directional antenna is likely to be noticeable, multiple agents could
be used to triangulate a signal’s source hop-by-hop. Alternately authorities might
choose to leverage telecommunications infrastructure to obtain a global view of
network traffic.

This sort of traffic analysis attack to find the location of the organisers of
a protest might be difficult, as there are many other members of the network who
are also sending their own messages. So future work should be to first investigate if
a mobile mesh network is vulnerable to a traffic analysis attack to determine the
message source. If the network is vulnerable then it is likely that different techniques
will need to be developed, compared to the techniques used in stationary WSNs.

Another kind of highly mobile network in which SLP is worth providing are
VANETs [49, 160]. Location privacy is important to prevent other road users from
knowing a vehicles origin, route, and destination. As a vehicle leaks identity in
certain ways that cannot be protected (by the number plate), location privacy is
not attempted to be provided against authorities. As the route messages take are
dependent on the route that cars travel, other techniques are used to provide SLP.
Many of the techniques focus on using temporary pseudonyms, whereby changing
pseudonyms periodically decorrelates a vehicle from the route it has taken. Several
approaches to changing the pseudonyms have been approached, including doing so
based on the velocity of the vehicle [28], changing at social spots [116], and using
game theory to encourage rational behaviour [54]. Routing based techniques from
WSNs may be applicable to VANET SLP and deserves future investigation.

9.2.6 Summary

Overall there are a large number of avenues for future work, including providing SLP
in WSNs under more challenging scenarios. But there are also a number of areas
(such as VANETs or ad-hoc messaging apps) in which the techniques and experience
from providing SLP in WSNs could also be applied.
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Appendix A

Result Reproduction

The results presented in this thesis were obtained with reproducibility in mind. All
results obtained from simulations (both TOSSIM and COOJA) are deterministic for
a given random seed. Only the results obtained from the testbeds are not expected
to behave in exactly the same way due to wireless noise that cannot be controlled,
however, with sufficient repeats the results should be similar.

As part of this work a simulation framework used to run simulations, gather
results, and analyse them was developed. The source code for this framework and
the algorithms presented here can be found at (1). The modified version of TinyOS
version 2.1.2 used for developing these algorithms can be found at (2). The source
code for the ILP model presented in Chapter 5 can be found at (3).

1. bitbucket.org/MBradbury/slp-algorithms-tinyos

2. github.com/MBradbury/tinyos-main/tree/bradbury_2_1_2

3. bitbucket.org/MBradbury/slp-attacker-ilp/raw/a4e326e/SLP/SLP.mod

The raw results generated by TOSSIM and COOJA can be found at the
following location: doi.org/10.5281/zenodo.1209158. This includes TOSSIM
results for Protectionless, Dynamic, DynamicSPR, ILPRouting, and Static. It also
includes COOJA results for Protectionless, DynamicSPR, DynamicSPR with duty
cycling, and DynamicSPR with TinyOS LPL. The raw results obtained from running
the code on the FlockLab testbed can be found at the following location: doi.org/

10.5281/zenodo.1229054. This includes the profiling performed on FlockLab as
well as results for Protectionless, DynamicSPR, and DynamicSPR with duty cycling.
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Appendix B

Conditional Entropy and
Mutual Information

In Chapter 4 the entropy and Jensen-Shannon divergence was used to compare
RN and RS . The aim of creating a properly perturbed path was to create a route
longer than the safety period the attacker would follow with no uncertainty. Using
conditional entropy and mutual information there are further analyses that can
be performed on a single routing matrix to understand the routing uncertainty.
For future work, increasing the uncertainty of a routing matrix, in ways similar to
differential privacy, may be another way to provide SLP.

H(X|Y) H(Y|X)

H(X) H(Y)

I(X;Y)

H(X, Y)

Figure B.1: Relation of mutual information

Mutual information between transitions taken at two times (λ and µ), given
the attacker starts at q, is denoted by I(Xλ;Xµ | AX 0 = q), which is defined in
Equation B.1 and shown in Figure B.1. To calculate I(Xλ;Xµ | AX 0 = q) the entropy
on Xλ denoted by H(Xλ | AX 0 = q) is required, which is shown in Equation 4.2. The
log component uses base 2 so the units of entropy are in bits.

I(Xλ;Xµ | AX 0 = q) = H(Xλ | AX 0 = q)−H(Xλ | Xµ,AN 0 = q) (B.1)
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H(Xλ | AX 0 = q) denotes the marginal entropy on Xλ when the attacker starts at
q and H(Xλ | Xµ,AX 0 = q) denotes the conditional entropy on Xλ given Xµ when
the attacker starts at q. To obtain I(Xλ;Xµ | AX 0 = q), H(Xλ | Xµ,AX 0 = q) needs
to be calculated, where n is a transition the attacker could take at λ and f is a
transition the attacker could take at µ.

H(Xλ | Xµ,AX 0 = q)

=
∑
f∈Γ

Pr (Xµ = f | AX 0 = q)H(Xλ | Xµ = f,AX 0 = q)

=
∑
n∈Γ

∑
f∈Γ

Pr (Xλ = n,Xµ = f | AX 0 = q) log2
Pr (Xµ = f | AX 0 = q)

Pr (Xλ = n,Xµ = f | AX 0 = q)

(B.2)

Substituting Equation B.2 into Equation B.1, mutual information is then given by
Equation B.3. When calculating I (Xλ;Xµ | AX 0 = q), if Pr (Xλ = n | AX 0 = q) = 0,
or Pr (Xµ = f | AX 0 = q) = 0, or Pr (Xλ = n,Xµ = f | AX 0 = q) = 0 that combina-
tion of transitions is treated as having a probability of 0 when calculating I.

I(Xλ;Xµ | AX 0 = q)

=
∑
n∈Γ

∑
f∈Γ

Pr (Xλ = n,Xµ = f | AX 0 = q) log2
Pr (Xλ = n,Xµ = f | AX 0 = q)

Pr (Xλ = n | AX 0 = q) Pr (Xµ = f | AX 0 = q)

(B.3)

The mutual information between times λ and µ for a routing matrix indicates much
the uncertainty of Xλ decreases when Xµ is known (and vice versa). When λ = µ the
uncertainty decrease is equal to H(Xλ) as there is no longer any uncertainty. When
the entropy is 0, the mutual information is also 0 as there can be no decrease in
uncertainty. This means that mutual information indicates the decrease of uncertainty
of taking a transition at λ when the transition taken at µ is known.

The joint probability of the attacker taking transition n at λ and f at µ,
given that the attacker starts at q, is represented by Pr (Xλ = n,Xµ = f | AX 0 = q).
This probability is defined in Equation B.4.

Pr (Xλ = n,Xµ = f | AX 0 = q)

=



Pr (Xλ = n | AX 0 = q) n = f ∧ λ = µ

0 n 6= f ∧ λ = µ

Pr (Xµ = f | AX λ = n2) Pr (Xλ = n | AX 0 = q) λ < µ

Pr
(
Xλ = n | AX µ = f2

)
Pr (Xµ = f | AX 0 = q) µ < λ

(B.4)
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Figure B.2: Mutual Information between Nλ and Nµ I(Nλ;Nµ | AN 0 = q)

Figure B.2 shows the mutual information between different times in RN and
Figure B.3 shows the conditional entropy. There are no graphs showing the mutual
information or conditional entropy for RS as the entropy is 0 which means that both
the mutual information and conditional entropy would also be 0. When the attacker
starts at nodes 1, 2, 3, 4, or 7 the mutual information and conditional entropy is
also 0 for RN because there is no uncertainty about the path that the attacker takes
from those starting nodes to the source.

When the transition at time µ is known and µ is after the attacker has
captured the source, the conditional entropy is equal to the entropy as knowing the
attacker stays at the source does not reveal information about the earlier transitions.
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Figure B.3: Conditional Entropy H(Nλ | Nµ,AN 0 = q)

However, knowledge of which transition is taken at µ does affect the uncertainty of
the transitions that could be taken at λ.

In conclusion, conditional entropy is useful in understanding how much inform-
ation an attacker can gain about taking a transition at λ if it knows the transition
taken at µ, and mutual information is useful in understanding the dependency
between taking transitions at two times. However, these measures are only useful
for understanding how transitions at different times in one routing matrix relate.
Measures such as the Jensen-Shannon divergence should be used to compare two
different routing matrices.
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Appendix C

Dynamic: Extra Results

As stated in Subsection 6.3.3 the Dynamic algorithm has previously been published
with different strategies to calculate the number of 〈fake〉 messages to send [24, 25].
Since then the implementation of Dynamic has been modified to better handle certain
errors that would previously have led to lost messages. In this thesis Dynamic was
presented with three strategies that send fewer messages than in the two strategies
presented in the publications. In this appendix the two old strategies will be described
and results will be compared between the old and new strategies.

C.1 Strategies

C.1.1 Pull From Attacker

This approach (AttackerEst) aims to pull the attacker back from its estimated
position assuming no SLP protection. In this case it is assumed that TFS nodes
propagate away from the source at the same rate that an attacker moves towards the
source. This can be a reasonable assumption when the duration of the TFS is equal
to the source period. This means that a TFS will need to send twice the ∆sink(j) to
dissuade the attacker back from its position. ∆sink(j) message are needed to pull
back from the sink to the TFS, another ∆sink(j) messages are needed to pull the
attacker from its position back to the sink.

#F (j) = max⊥(1, 2∆sink(j)) (C.1)

C.1.2 Pull From Sink

This approach (Sink) aims to pull the attacker back from the sink’s location. This
approach is less aggressive compared to the previous approach and is not as focused
on trying to pull the attacker all the way back, but instead keeping it in a location

183



Approach AttackerEst
Approach Fixed1

Approach Fixed2
Approach Rnd

Approach Sink

 0

 20

 40

 60

 80

 100

7x7 11x11 15x15 21x21 25x25

R
e
ce

iv
e
 R

a
ti

o
 (

%
)

Network Size

(a) Source Period 2.0 seconds

 0

 20

 40

 60

 80

 100

7x7 11x11 15x15 21x21 25x25

R
e
ce

iv
e
 R

a
ti

o
 (

%
)

Network Size

(b) Source Period 0.25 seconds

Figure C.1: Results showing the percentage of 〈normal〉 messages received at sink.
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Figure C.2: Results showing the capture ratio.

between the TFS and the source. An important benefit of this approach is that
∆src(j)−∆ss is used to calculate the sink distance. This means that a TFS closer
to the source will send fewer messages than TFS further away.

#F (j) = max⊥

1,

∆sink(j) if ⊥ ∈ {∆src(j),∆ss}

∆src(j)−∆ss otherwise

 (C.2)

C.2 Results

The results for the two old Dynamic approaches are presented here. Only results
for a source period of 2.0 and 0.25 are presented. These results show that the
AttackerEst and Sink approaches are as good or better in terms of capure ratio
than the Fixed1, Fixed2, or Rnd approaches to the number of 〈fake〉 messages to
send. This is because AttackerEst and Sink send a much larger number of 〈fake〉
messages (sometime more than 100% extra). But sending this many messages has a
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Figure C.3: Results showing the average number of 〈fake〉 messages sent per node
per second.
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Figure C.4: Results showing the average number of messages sent per node per
second.

high cost in terms of energy cost, and it also leads to poor performance in terms of
delivery ratio where AttackerEst delivers half the value of Fixed1. Message delivery
latency tends to be higher for AttackerEst and Sink. These two approaches are
also more capable of pulling the attacker back to further locations when the source
period is high.

Overall, the cost in terms of number of messages sent and the very low delivery
ratio makes the AttackerEst and Sink approaches much worse than Fixed1, Fixed2,
or Rnd. The reason that different results were obtained in this thesis and in [25] was
because the protocol’s implementation had been improved to better handle certain
failure conditions between publication of [25] and this work. Because of the improved
reliability AttackerEst and Sink ended up sending many more messages than they
used to. This is why results for Fixed1, Fixed2, and Rnd were presented in the main
thesis instead of AttackerEst and Sink.
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Figure C.5: Results showing the attacker’s distance from the source.
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Figure C.6: Results showing the time it took a normal message to reach the sink.
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Appendix D

ILPRouting: Direct to Sink
Results

In Section 5.5 ILPRouting results for different probabilities of sending messages
directly to the sink were omitted as they were said to provide worse performance
than the ones presented. This appendix will present those results and demonstrate
that they are worse than the ones presented in the results section of Chapter 5.

D.1 Capture Ratio

It was expected that as more messages travel directly towards the sink the capture
ratio would increase. However, a number of different capture ratio patterns are
observed when varying the probability messages travel directly towards the sink and
other parameters.

For the very small network of size 7 varying this parameter had no effect on
the capture ratio. This is because the first 10 messages sent by the source will never
travel directly to the sink and will always try to travel around the sink to approach
it from behind. This parameter was set to allow some time for the attacker to be
pulled away and also because the direct to sink behaviour was only observed for later
messages in the ILP model output. As the size 7 network is small so is the safety
period, and the safety period is small enough that not enough messages are sent for
this parameter to have an effect.

For small networks sized 11 and 15, a higher probability of sending directly
to the sink led to a lower capture ratio.

For large networks sized 21 an 25, a there is an optimum of the parameter
around 20% or 30% as a higher value of 40% starts to lead to a higher capture ratio.
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Figure D.1: ILPRouting results showing the capture ratio for different probabilities
of sending messages directly to the sink.

D.2 Receive Ratio

A larger receive ratio is observed with a higher probability of sending messages
directly towards the sink. This is because messages take the shortest path more
often and because fewer hops need to be traversed there is a lower probability of a
message being lost.

D.3 Messages Sent per Second

There is no change in the number of messages sent per second for the majority
of parameter combinations. For the large networks of size 21 and 25 when the
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Figure D.2: ILPRouting results showing the receive ratio for different probabilities
of sending messages directly to the sink.

source period is 0.25, it can be observed that there is a slight decrease for higher
probabilities of sending messages directly to the sink. This is because on these larger
networks, messages that avoid the sink can take longer routes when avoiding the
sink compared to smaller networks. So there is a greater potential for message sent
reductions in these larger networks.

D.4 Latency

As the probability a message is sent directly to the sink increases the latency
decreases. This is because the probability of the message going along the shortest
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Figure D.3: ILPRouting results showing the messages sent per second for different
probabilities of sending messages directly to the sink.

path is increasing, so messages take less time to reach the sink.

D.5 Attacker Distance

With a larger probability of sending messages directly to the sink the attacker
distance becomes lower. This is to be expected as fewer messages are approaching
the sink from behind, so there is a greater pull from the source along the shortest
path.
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Figure D.4: ILPRouting results showing the message latency for different
probabilities of sending messages directly to the sink.

D.6 Conclusions

Overall, sending messages in ILPRouting with a 20% or 30% probability of sending
the message directly to the sink tends to produce the best results. The results
showing 20% were focused on in Chapter 5 because of the low capture ratio and the
high attacker distance it produced.
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Figure D.5: ILPRouting results showing the attacker distance for different
probabilities of sending messages directly to the sink.
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Appendix E

Confidence Interval Tables

In this appendix the sample mean and 95% confidence intervals will be presented.
Columns will be included in the tables for the parameters of the protocol which
includes the source period Psrc, also shown will be the number of repeats (R). The
remaining six columns are key metrics of how the protocols perform and will include
the mean result and the confidence interval. These six columns are: (i) the capture
ratio, (ii) the time taken to capture (T T ), (iii) the receive ratio, (iv) the number of
messages sent per second, (v) the delivery latency of 〈normal〉 messages, and (vi)
the attacker distance from the source when the simulation terminated.

All results presented in this Thesis are present in these tables, except for
Static which has been omitted due to their long length and the limited role the
results for Static has in the results analysis. Rather than specify the full list of
duty cycle or LPL parameters, numbers will be used which refer to the parameters
specified in Table 7.1 and Table 7.2.

E.1 TOSSIM

E.1.1 Protectionless

Table E.1: Confidence Intervals for Protectionless on TOSSIM Network Size 7

Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 100000 100.0 ± 0.0 2.0 ± 0.0 90 ± 0.1 106 ± 0 24 ± 0 0 ± 0
0.5 100000 100.0 ± 0.0 3.3 ± 0.0 96 ± 0.1 65 ± 0 24 ± 0 0 ± 0
1.0 100000 100.0 ± 0.0 5.9 ± 0.0 100 ± 0.0 36 ± 0 23 ± 0 0 ± 0
2.0 100000 100.0 ± 0.0 11.3 ± 0.0 100 ± 0.0 19 ± 0 23 ± 0 0 ± 0
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Table E.2: Confidence Intervals for Protectionless on TOSSIM Network Size 11

Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 100000 100.0 ± 0.0 3.0 ± 0.0 93 ± 0.1 339 ± 0 37 ± 0 0 ± 0
0.5 100000 100.0 ± 0.0 5.3 ± 0.0 98 ± 0.0 193 ± 0 37 ± 0 0 ± 0
1.0 100000 100.0 ± 0.0 9.9 ± 0.0 99 ± 0.0 103 ± 0 37 ± 0 0 ± 0
2.0 100000 100.0 ± 0.0 19.3 ± 0.0 99 ± 0.0 53 ± 0 37 ± 0 0 ± 0

Table E.3: Confidence Intervals for Protectionless on TOSSIM Network Size 15

Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 100000 100.0 ± 0.0 4.1 ± 0.0 95 ± 0.0 705 ± 0 50 ± 0 0 ± 0
0.5 100000 100.0 ± 0.0 7.4 ± 0.0 98 ± 0.0 387 ± 0 50 ± 0 0 ± 0
1.0 100000 100.0 ± 0.0 14.0 ± 0.0 99 ± 0.0 203 ± 0 49 ± 0 0 ± 0
2.0 100000 100.0 ± 0.0 27.6 ± 0.1 99 ± 0.0 103 ± 0 49 ± 0 0 ± 0

Table E.4: Confidence Intervals for Protectionless on TOSSIM Network Size 21

Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 100000 100.0 ± 0.0 5.6 ± 0.0 97 ± 0.0 1501 ± 0 68 ± 0 0 ± 0
0.5 100000 100.0 ± 0.0 10.6 ± 0.0 99 ± 0.0 802 ± 0 68 ± 0 0 ± 0
1.0 100000 100.0 ± 0.0 20.3 ± 0.0 99 ± 0.0 414 ± 0 68 ± 0 0 ± 0
2.0 100000 100.0 ± 0.0 40.2 ± 0.1 99 ± 0.0 210 ± 0 68 ± 0 0 ± 0

Table E.5: Confidence Intervals for Protectionless on TOSSIM Network Size 25

Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 100000 100.0 ± 0.0 6.7 ± 0.0 97 ± 0.0 2196 ± 1 81 ± 0 0 ± 0
0.5 100000 100.0 ± 0.0 12.7 ± 0.0 99 ± 0.0 1160 ± 0 80 ± 0 0 ± 0
1.0 100000 100.0 ± 0.0 24.6 ± 0.1 99 ± 0.0 595 ± 0 80 ± 0 0 ± 0
2.0 100000 100.0 ± 0.0 48.8 ± 0.2 99 ± 0.0 301 ± 0 80 ± 0 0 ± 0

E.1.2 Dynamic

Table E.6: Confidence Intervals for Dynamic on TOSSIM Network Size 7

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 AEst 20377 5.3 ± 0.3 7.1 ± 0.0 71 ± 0.2 427 ± 2 29 ± 0 22 ± 0
0.25 Fxd1 2000 13.2 ± 1.5 7.0 ± 0.0 91 ± 0.5 219 ± 2 26 ± 0 20 ± 0
0.25 Fxd2 2000 8.8 ± 1.2 7.1 ± 0.0 88 ± 0.5 273 ± 3 27 ± 0 21 ± 0
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Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 RND 2000 6.9 ± 1.1 7.1 ± 0.0 84 ± 0.6 295 ± 2 28 ± 0 22 ± 0
0.25 SINK 20479 7.5 ± 0.4 7.1 ± 0.0 87 ± 0.2 288 ± 1 27 ± 0 23 ± 0
0.5 AEst 20455 5.3 ± 0.3 9.4 ± 0.0 82 ± 0.2 377 ± 2 28 ± 0 22 ± 0
0.5 Fxd1 2000 11.2 ± 1.4 9.2 ± 0.0 95 ± 0.4 163 ± 1 26 ± 0 20 ± 0
0.5 Fxd2 2000 7.7 ± 1.2 9.3 ± 0.0 94 ± 0.4 212 ± 2 26 ± 0 21 ± 0
0.5 RND 2000 6.8 ± 1.1 9.4 ± 0.0 95 ± 0.3 235 ± 2 26 ± 0 22 ± 0
0.5 SINK 20473 5.7 ± 0.3 9.4 ± 0.0 93 ± 0.1 235 ± 1 26 ± 0 23 ± 0
1.0 AEst 20446 5.4 ± 0.3 13.9 ± 0.0 93 ± 0.1 290 ± 1 26 ± 0 22 ± 0
1.0 Fxd1 2000 11.4 ± 1.4 13.6 ± 0.1 99 ± 0.2 109 ± 1 25 ± 0 20 ± 0
1.0 Fxd2 2000 7.4 ± 1.2 13.8 ± 0.1 98 ± 0.3 143 ± 1 25 ± 0 22 ± 0
1.0 RND 2000 5.7 ± 1.0 14.0 ± 0.1 98 ± 0.2 160 ± 1 25 ± 0 22 ± 0
1.0 SINK 20485 5.5 ± 0.3 13.9 ± 0.0 97 ± 0.1 166 ± 1 25 ± 0 24 ± 0
2.0 AEst 20439 5.9 ± 0.3 23.4 ± 0.0 97 ± 0.1 193 ± 1 26 ± 0 21 ± 0
2.0 Fxd1 2000 12.2 ± 1.4 22.8 ± 0.2 99 ± 0.1 66 ± 1 25 ± 0 20 ± 1
2.0 Fxd2 2000 7.6 ± 1.2 23.2 ± 0.1 99 ± 0.2 86 ± 1 25 ± 0 22 ± 0
2.0 RND 2000 7.0 ± 1.1 23.3 ± 0.1 99 ± 0.2 96 ± 1 25 ± 0 22 ± 0
2.0 SINK 20477 5.9 ± 0.3 23.4 ± 0.0 98 ± 0.1 101 ± 0 25 ± 0 24 ± 0

Table E.7: Confidence Intervals for Dynamic on TOSSIM Network Size 11

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 AEst 20295 1.0 ± 0.1 9.2 ± 0.0 51 ± 0.2 1832 ± 5 50 ± 0 42 ± 0
0.25 Fxd1 2002 1.8 ± 0.6 9.2 ± 0.0 89 ± 0.4 779 ± 4 43 ± 0 40 ± 1
0.25 Fxd2 2002 1.6 ± 0.6 9.2 ± 0.0 80 ± 0.5 965 ± 6 45 ± 0 40 ± 1
0.25 RND 2000 1.5 ± 0.5 9.2 ± 0.0 79 ± 0.5 1031 ± 7 46 ± 0 39 ± 1
0.25 SINK 20492 0.7 ± 0.1 9.2 ± 0.0 72 ± 0.2 1253 ± 4 47 ± 0 44 ± 0
0.5 AEst 19587 0.8 ± 0.1 13.5 ± 0.0 65 ± 0.2 1695 ± 6 48 ± 0 39 ± 0
0.5 Fxd1 2001 1.8 ± 0.6 13.5 ± 0.0 96 ± 0.2 547 ± 4 41 ± 0 39 ± 1
0.5 Fxd2 2002 1.1 ± 0.5 13.5 ± 0.0 92 ± 0.4 707 ± 5 42 ± 0 39 ± 1
0.5 RND 2002 1.1 ± 0.5 13.5 ± 0.0 89 ± 0.3 781 ± 6 42 ± 0 40 ± 1
0.5 SINK 20496 0.6 ± 0.1 13.5 ± 0.0 83 ± 0.1 1023 ± 4 44 ± 0 43 ± 0
1.0 AEst 19265 0.9 ± 0.1 22.2 ± 0.0 79 ± 0.2 1309 ± 5 45 ± 0 37 ± 0
1.0 Fxd1 2002 1.1 ± 0.5 22.2 ± 0.0 98 ± 0.2 338 ± 2 40 ± 0 38 ± 1
1.0 Fxd2 2002 1.4 ± 0.5 22.2 ± 0.0 97 ± 0.2 446 ± 4 40 ± 0 38 ± 1
1.0 RND 2002 1.3 ± 0.5 22.2 ± 0.0 96 ± 0.2 505 ± 4 40 ± 0 37 ± 1
1.0 SINK 20497 0.7 ± 0.1 22.2 ± 0.0 90 ± 0.1 728 ± 3 42 ± 0 41 ± 0
2.0 AEst 15454 1.2 ± 0.2 40.0 ± 0.0 88 ± 0.1 880 ± 4 42 ± 0 36 ± 0
2.0 Fxd1 2002 1.2 ± 0.5 40.0 ± 0.1 99 ± 0.1 190 ± 1 39 ± 0 38 ± 1
2.0 Fxd2 2002 1.6 ± 0.5 40.0 ± 0.1 98 ± 0.2 253 ± 2 39 ± 0 38 ± 1
2.0 RND 2001 1.6 ± 0.6 40.0 ± 0.1 98 ± 0.2 285 ± 2 39 ± 0 37 ± 1
2.0 SINK 20501 0.7 ± 0.1 40.0 ± 0.0 96 ± 0.1 451 ± 2 40 ± 0 41 ± 0
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Table E.8: Confidence Intervals for Dynamic on TOSSIM Network Size 15

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 AEst 17723 0.6 ± 0.1 11.3 ± 0.0 44 ± 0.2 4252 ± 12 70 ± 0 64 ± 0
0.25 Fxd1 2002 0.5 ± 0.3 11.3 ± 0.0 87 ± 0.4 1671 ± 9 59 ± 0 63 ± 1
0.25 Fxd2 2002 0.5 ± 0.3 11.3 ± 0.0 81 ± 0.4 2075 ± 12 62 ± 0 60 ± 1
0.25 RND 2001 0.7 ± 0.4 11.3 ± 0.0 80 ± 0.4 2207 ± 13 63 ± 0 59 ± 1
0.25 SINK 20500 0.2 ± 0.1 11.3 ± 0.0 63 ± 0.2 3057 ± 8 65 ± 0 65 ± 0
0.5 AEst 18802 0.4 ± 0.1 17.7 ± 0.0 58 ± 0.2 3984 ± 13 66 ± 0 58 ± 0
0.5 Fxd1 2001 0.7 ± 0.4 17.7 ± 0.0 95 ± 0.2 1134 ± 7 55 ± 0 59 ± 1
0.5 Fxd2 2001 0.2 ± 0.2 17.7 ± 0.0 89 ± 0.3 1449 ± 10 57 ± 0 59 ± 1
0.5 RND 2002 0.3 ± 0.3 17.7 ± 0.0 87 ± 0.3 1593 ± 11 58 ± 0 58 ± 1
0.5 SINK 20499 0.3 ± 0.1 17.7 ± 0.0 77 ± 0.1 2503 ± 8 62 ± 0 59 ± 0
1.0 AEst 18825 0.4 ± 0.1 30.5 ± 0.0 72 ± 0.2 3031 ± 12 63 ± 0 55 ± 0
1.0 Fxd1 2002 0.3 ± 0.2 30.5 ± 0.0 97 ± 0.2 667 ± 4 54 ± 0 60 ± 1
1.0 Fxd2 2002 0.3 ± 0.3 30.5 ± 0.0 96 ± 0.2 882 ± 7 54 ± 0 59 ± 1
1.0 RND 2002 0.5 ± 0.3 30.5 ± 0.0 96 ± 0.2 994 ± 8 55 ± 0 58 ± 1
1.0 SINK 20499 0.3 ± 0.1 30.5 ± 0.0 86 ± 0.1 1769 ± 6 59 ± 0 61 ± 0
2.0 AEst 16174 0.4 ± 0.1 56.6 ± 0.0 84 ± 0.1 2034 ± 9 59 ± 0 54 ± 0
2.0 Fxd1 2001 0.2 ± 0.2 56.7 ± 0.0 98 ± 0.2 365 ± 2 53 ± 0 60 ± 1
2.0 Fxd2 2001 0.7 ± 0.4 56.6 ± 0.1 98 ± 0.2 483 ± 4 54 ± 0 59 ± 1
2.0 RND 2002 0.5 ± 0.3 56.6 ± 0.1 98 ± 0.2 553 ± 4 53 ± 0 58 ± 1
2.0 SINK 20498 0.2 ± 0.1 56.6 ± 0.0 93 ± 0.1 1126 ± 4 56 ± 0 61 ± 0

Table E.9: Confidence Intervals for Dynamic on TOSSIM Network Size 21

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 AEst 4961 0.2 ± 0.1 14.4 ± 0.0 39 ± 0.4 9928 ± 49 100 ± 0 97 ± 1
0.25 Fxd1 2002 0.3 ± 0.2 14.4 ± 0.0 84 ± 0.3 3705 ± 18 83 ± 0 96 ± 1
0.25 Fxd2 2002 0.3 ± 0.3 14.4 ± 0.0 82 ± 0.3 4528 ± 25 86 ± 0 90 ± 1
0.25 RND 2002 0.1 ± 0.2 14.4 ± 0.0 79 ± 0.3 4821 ± 25 87 ± 0 88 ± 1
0.25 SINK 3603 0.3 ± 0.2 14.4 ± 0.0 54 ± 0.4 7545 ± 45 92 ± 0 99 ± 1
0.5 AEst 3261 0.2 ± 0.1 24.0 ± 0.0 51 ± 0.4 9365 ± 66 91 ± 0 93 ± 1
0.5 Fxd1 2001 0.2 ± 0.2 24.0 ± 0.0 93 ± 0.2 2399 ± 13 76 ± 0 93 ± 1
0.5 Fxd2 2002 0.1 ± 0.1 24.0 ± 0.0 88 ± 0.3 3055 ± 19 80 ± 0 92 ± 1
0.5 RND 2002 0.2 ± 0.2 24.0 ± 0.0 88 ± 0.3 3417 ± 21 81 ± 0 90 ± 1
0.5 SINK 5782 0.3 ± 0.1 24.0 ± 0.0 70 ± 0.2 6081 ± 33 86 ± 0 90 ± 1
1.0 AEst 2971 0.2 ± 0.1 43.1 ± 0.0 66 ± 0.4 7108 ± 63 87 ± 0 85 ± 1
1.0 Fxd1 2002 0.3 ± 0.2 43.1 ± 0.0 96 ± 0.2 1386 ± 8 74 ± 0 91 ± 1
1.0 Fxd2 2002 0.1 ± 0.2 43.1 ± 0.0 95 ± 0.2 1817 ± 13 75 ± 0 91 ± 1
1.0 RND 2002 0.2 ± 0.2 43.1 ± 0.0 94 ± 0.2 2057 ± 14 75 ± 0 89 ± 1
1.0 SINK 4960 0.2 ± 0.1 43.1 ± 0.0 81 ± 0.2 4340 ± 28 83 ± 0 87 ± 1
2.0 AEst 2523 0.2 ± 0.2 81.7 ± 0.1 79 ± 0.3 4912 ± 45 83 ± 0 81 ± 1
2.0 Fxd1 2002 0.1 ± 0.1 81.8 ± 0.0 99 ± 0.1 743 ± 5 73 ± 0 92 ± 1
2.0 Fxd2 2002 0.2 ± 0.2 81.8 ± 0.1 97 ± 0.2 980 ± 8 74 ± 0 90 ± 1
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Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
2.0 RND 2002 0.1 ± 0.2 81.8 ± 0.1 97 ± 0.2 1127 ± 9 74 ± 0 89 ± 1
2.0 SINK 4388 0.1 ± 0.1 81.8 ± 0.0 88 ± 0.2 2857 ± 19 79 ± 0 89 ± 1

Table E.10: Confidence Intervals for Dynamic on TOSSIM Network Size 25

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 AEst 1298 0.1 ± 0.2 16.5 ± 0.0 38 ± 0.8 14989 ± 139 119 ± 1 116 ± 1
0.25 Fxd1 2001 0.0 ± 0.1 16.5 ± 0.0 84 ± 0.3 5574 ± 21 98 ± 0 118 ± 1
0.25 Fxd2 2002 0.1 ± 0.1 16.5 ± 0.0 81 ± 0.3 6734 ± 34 102 ± 0 111 ± 1
0.25 RND 2002 0.1 ± 0.2 16.5 ± 0.0 78 ± 0.3 7181 ± 32 103 ± 0 106 ± 1
0.25 SINK 1995 0.3 ± 0.2 16.5 ± 0.0 50 ± 0.6 11912 ± 97 111 ± 1 121 ± 1
0.5 AEst 1998 0.1 ± 0.1 28.3 ± 0.0 48 ± 0.6 14085 ± 121 109 ± 1 115 ± 1
0.5 Fxd1 2002 0.1 ± 0.2 28.2 ± 0.0 92 ± 0.2 3497 ± 18 90 ± 0 116 ± 1
0.5 Fxd2 2001 0.1 ± 0.1 28.2 ± 0.0 88 ± 0.3 4447 ± 26 95 ± 0 114 ± 1
0.5 RND 2000 0.1 ± 0.1 28.2 ± 0.0 88 ± 0.3 4968 ± 28 95 ± 0 110 ± 1
0.5 SINK 2000 0.1 ± 0.1 28.3 ± 0.0 66 ± 0.4 9401 ± 76 102 ± 0 114 ± 1
1.0 AEst 1501 0.1 ± 0.2 51.6 ± 0.1 63 ± 0.5 10863 ± 116 102 ± 0 109 ± 2
1.0 Fxd1 2002 0.1 ± 0.2 51.6 ± 0.0 97 ± 0.2 2011 ± 12 87 ± 0 114 ± 1
1.0 Fxd2 2002 0.1 ± 0.2 51.6 ± 0.0 94 ± 0.2 2613 ± 21 89 ± 0 113 ± 1
1.0 RND 2001 0.1 ± 0.1 51.6 ± 0.0 93 ± 0.2 2984 ± 20 90 ± 0 112 ± 1
1.0 SINK 2000 0.1 ± 0.1 51.6 ± 0.0 79 ± 0.3 6749 ± 57 98 ± 0 104 ± 1
2.0 AEst 585 0.0 ± 0.0 99.1 ± 0.0 76 ± 0.6 7743 ± 120 99 ± 0 100 ± 3
2.0 Fxd1 2001 0.2 ± 0.2 99.1 ± 0.1 98 ± 0.1 1081 ± 9 86 ± 0 112 ± 1
2.0 Fxd2 2002 0.2 ± 0.2 99.1 ± 0.1 98 ± 0.1 1409 ± 11 87 ± 0 112 ± 1
2.0 RND 2002 0.1 ± 0.1 99.1 ± 0.1 97 ± 0.1 1646 ± 12 87 ± 0 110 ± 1
2.0 SINK 1373 0.1 ± 0.2 99.1 ± 0.1 87 ± 0.3 4463 ± 52 94 ± 0 107 ± 2

E.1.3 DynamicSPR

Table E.11: Confidence Intervals for DynamicSPR on TOSSIM Network Size 7

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 20492 9.2 ± 0.4 7.1 ± 0.0 98 ± 0.1 213 ± 0 24 ± 0 20 ± 0
0.25 Fxd2 20476 3.0 ± 0.2 7.2 ± 0.0 84 ± 0.2 274 ± 1 27 ± 0 25 ± 0
0.25 RND 20484 3.3 ± 0.2 7.2 ± 0.0 87 ± 0.2 267 ± 1 26 ± 0 25 ± 0
0.5 Fxd1 20497 7.5 ± 0.4 9.4 ± 0.0 98 ± 0.1 155 ± 0 24 ± 0 21 ± 0
0.5 Fxd2 20473 2.8 ± 0.2 9.5 ± 0.0 98 ± 0.1 205 ± 0 24 ± 0 25 ± 0
0.5 RND 20485 3.2 ± 0.2 9.5 ± 0.0 97 ± 0.1 202 ± 0 25 ± 0 25 ± 0
1.0 Fxd1 20491 7.4 ± 0.4 13.9 ± 0.0 99 ± 0.0 101 ± 0 24 ± 0 21 ± 0
1.0 Fxd2 20482 2.9 ± 0.2 14.1 ± 0.0 99 ± 0.0 134 ± 0 24 ± 0 26 ± 0
1.0 RND 20486 3.0 ± 0.2 14.1 ± 0.0 99 ± 0.0 133 ± 0 24 ± 0 25 ± 0
2.0 Fxd1 20495 6.8 ± 0.3 23.5 ± 0.0 99 ± 0.0 61 ± 0 24 ± 0 21 ± 0
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Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
2.0 Fxd2 20474 3.1 ± 0.2 23.7 ± 0.0 99 ± 0.0 80 ± 0 24 ± 0 25 ± 0
2.0 RND 20483 3.1 ± 0.2 23.7 ± 0.0 99 ± 0.0 80 ± 0 24 ± 0 25 ± 0

Table E.12: Confidence Intervals for DynamicSPR on TOSSIM Network Size 11

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 20497 2.3 ± 0.2 9.2 ± 0.0 94 ± 0.1 652 ± 1 39 ± 0 38 ± 0
0.25 Fxd2 20500 0.5 ± 0.1 9.2 ± 0.0 85 ± 0.1 833 ± 2 43 ± 0 45 ± 0
0.25 RND 20500 0.6 ± 0.1 9.2 ± 0.0 88 ± 0.1 807 ± 2 42 ± 0 45 ± 0
0.5 Fxd1 20500 2.0 ± 0.2 13.5 ± 0.0 98 ± 0.1 438 ± 0 38 ± 0 38 ± 0
0.5 Fxd2 20498 0.6 ± 0.1 13.5 ± 0.0 95 ± 0.1 547 ± 1 39 ± 0 43 ± 0
0.5 RND 20499 0.7 ± 0.1 13.5 ± 0.0 94 ± 0.1 542 ± 1 39 ± 0 43 ± 0
1.0 Fxd1 20497 1.8 ± 0.2 22.2 ± 0.0 98 ± 0.0 265 ± 0 38 ± 0 36 ± 0
1.0 Fxd2 20502 0.6 ± 0.1 22.2 ± 0.0 98 ± 0.0 335 ± 1 38 ± 0 42 ± 0
1.0 RND 20500 0.8 ± 0.1 22.2 ± 0.0 98 ± 0.0 332 ± 1 38 ± 0 41 ± 0
2.0 Fxd1 20498 1.7 ± 0.2 40.0 ± 0.0 99 ± 0.0 148 ± 0 38 ± 0 37 ± 0
2.0 Fxd2 20499 0.6 ± 0.1 40.1 ± 0.0 99 ± 0.0 186 ± 0 38 ± 0 42 ± 0
2.0 RND 20499 0.8 ± 0.1 40.1 ± 0.0 99 ± 0.0 185 ± 0 38 ± 0 42 ± 0

Table E.13: Confidence Intervals for DynamicSPR on TOSSIM Network Size 15

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 20496 0.7 ± 0.1 11.3 ± 0.0 91 ± 0.1 1330 ± 1 54 ± 0 56 ± 0
0.25 Fxd2 20500 0.2 ± 0.1 11.3 ± 0.0 87 ± 0.1 1715 ± 3 58 ± 0 64 ± 0
0.25 RND 20497 0.3 ± 0.1 11.3 ± 0.0 89 ± 0.1 1631 ± 3 57 ± 0 63 ± 0
0.5 Fxd1 20497 0.9 ± 0.1 17.7 ± 0.0 98 ± 0.0 860 ± 1 51 ± 0 51 ± 0
0.5 Fxd2 20497 0.4 ± 0.1 17.7 ± 0.0 93 ± 0.1 1038 ± 2 53 ± 0 58 ± 0
0.5 RND 20499 0.3 ± 0.1 17.7 ± 0.0 93 ± 0.1 1035 ± 2 53 ± 0 58 ± 0
1.0 Fxd1 20497 0.7 ± 0.1 30.5 ± 0.0 98 ± 0.0 492 ± 1 51 ± 0 53 ± 0
1.0 Fxd2 20499 0.3 ± 0.1 30.5 ± 0.0 98 ± 0.0 599 ± 1 51 ± 0 59 ± 0
1.0 RND 20499 0.3 ± 0.1 30.5 ± 0.0 98 ± 0.0 592 ± 1 51 ± 0 58 ± 0
2.0 Fxd1 20499 0.7 ± 0.1 56.6 ± 0.0 99 ± 0.0 266 ± 0 51 ± 0 53 ± 0
2.0 Fxd2 20494 0.2 ± 0.1 56.7 ± 0.0 99 ± 0.0 324 ± 1 51 ± 0 59 ± 0
2.0 RND 20500 0.4 ± 0.1 56.6 ± 0.0 99 ± 0.0 321 ± 1 51 ± 0 59 ± 0

Table E.14: Confidence Intervals for DynamicSPR on TOSSIM Network Size 21

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 20498 0.1 ± 0.0 14.4 ± 0.0 89 ± 0.1 2847 ± 3 76 ± 0 80 ± 0
0.25 Fxd2 18346 0.1 ± 0.0 14.4 ± 0.0 88 ± 0.1 3579 ± 8 79 ± 0 88 ± 0
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Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 RND 20498 0.1 ± 0.0 14.4 ± 0.0 88 ± 0.1 3391 ± 7 78 ± 0 87 ± 0
0.5 Fxd1 20497 0.3 ± 0.1 24.0 ± 0.0 97 ± 0.0 1728 ± 2 71 ± 0 72 ± 0
0.5 Fxd2 20497 0.1 ± 0.0 24.0 ± 0.0 93 ± 0.1 2052 ± 4 73 ± 0 81 ± 0
0.5 RND 20498 0.1 ± 0.0 24.0 ± 0.0 95 ± 0.1 2028 ± 4 73 ± 0 81 ± 0
1.0 Fxd1 20500 0.2 ± 0.1 43.1 ± 0.0 98 ± 0.0 958 ± 1 70 ± 0 73 ± 0
1.0 Fxd2 20497 0.1 ± 0.0 43.1 ± 0.0 98 ± 0.0 1121 ± 2 70 ± 0 79 ± 0
1.0 RND 20499 0.1 ± 0.0 43.1 ± 0.0 98 ± 0.0 1103 ± 2 71 ± 0 79 ± 0
2.0 Fxd1 20497 0.3 ± 0.1 81.8 ± 0.0 99 ± 0.0 506 ± 0 70 ± 0 73 ± 0
2.0 Fxd2 9632 0.1 ± 0.1 81.8 ± 0.0 99 ± 0.0 594 ± 2 70 ± 0 79 ± 0
2.0 RND 20502 0.1 ± 0.0 81.8 ± 0.0 99 ± 0.0 584 ± 1 70 ± 0 78 ± 0

Table E.15: Confidence Intervals for DynamicSPR on TOSSIM Network Size 25

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 10271 0.1 ± 0.0 16.5 ± 0.0 89 ± 0.1 4217 ± 6 90 ± 0 94 ± 0
0.25 Fxd2 4914 0.1 ± 0.1 16.5 ± 0.0 88 ± 0.2 5190 ± 24 93 ± 0 102 ± 1
0.25 RND 5081 0.0 ± 0.0 16.5 ± 0.0 88 ± 0.2 4945 ± 19 92 ± 0 101 ± 1
0.5 Fxd1 5462 0.1 ± 0.1 28.3 ± 0.0 97 ± 0.1 2458 ± 4 84 ± 0 87 ± 1
0.5 Fxd2 5036 0.0 ± 0.0 28.3 ± 0.0 93 ± 0.1 2914 ± 12 87 ± 0 97 ± 1
0.5 RND 5069 0.1 ± 0.1 28.3 ± 0.0 95 ± 0.1 2850 ± 11 86 ± 0 95 ± 1
1.0 Fxd1 11076 0.1 ± 0.1 51.6 ± 0.0 98 ± 0.1 1350 ± 2 83 ± 0 85 ± 0
1.0 Fxd2 5026 0.1 ± 0.1 51.6 ± 0.0 98 ± 0.1 1546 ± 6 83 ± 0 90 ± 1
1.0 RND 5296 0.1 ± 0.1 51.6 ± 0.0 97 ± 0.1 1527 ± 6 83 ± 0 90 ± 1
2.0 Fxd1 11399 0.2 ± 0.1 99.1 ± 0.0 99 ± 0.0 708 ± 1 82 ± 0 85 ± 0
2.0 Fxd2 5285 0.0 ± 0.1 99.1 ± 0.0 99 ± 0.1 813 ± 3 82 ± 0 91 ± 1
2.0 RND 5289 0.1 ± 0.1 99.1 ± 0.0 99 ± 0.1 798 ± 3 82 ± 0 90 ± 1

E.1.4 ILPRouting

Table E.16: Confidence Intervals for ILPRouting on TOSSIM Network Size 7

Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.25 0 1 16903 19.9 ± 0.6 7.1 ± 0.0 88 ± 0.1 140 ± 0 351 ± 1 15 ± 0
0.25 0 2 16626 13.9 ± 0.5 7.2 ± 0.0 87 ± 0.1 136 ± 0 447 ± 1 17 ± 0
0.25 0 3 17646 7.7 ± 0.4 7.3 ± 0.0 79 ± 0.1 130 ± 0 560 ± 1 19 ± 0
0.25 0 4 17937 6.0 ± 0.3 7.4 ± 0.0 73 ± 0.1 122 ± 0 680 ± 1 20 ± 0
0.25 10 1 21493 19.5 ± 0.5 7.1 ± 0.0 88 ± 0.1 140 ± 0 351 ± 1 15 ± 0
0.25 10 2 16535 13.4 ± 0.5 7.2 ± 0.0 87 ± 0.1 137 ± 0 447 ± 1 17 ± 0
0.25 10 3 15311 7.6 ± 0.4 7.3 ± 0.0 79 ± 0.1 130 ± 0 558 ± 1 19 ± 0
0.25 10 4 15860 6.0 ± 0.4 7.4 ± 0.0 74 ± 0.1 122 ± 0 680 ± 1 20 ± 0
0.25 20 1 21491 20.2 ± 0.5 7.1 ± 0.0 88 ± 0.1 139 ± 0 352 ± 1 15 ± 0
0.25 20 2 16469 14.2 ± 0.5 7.2 ± 0.0 87 ± 0.1 136 ± 0 446 ± 1 17 ± 0

199



Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.25 20 3 21492 7.9 ± 0.4 7.3 ± 0.0 79 ± 0.1 130 ± 0 559 ± 1 19 ± 0
0.25 20 4 21490 6.1 ± 0.3 7.4 ± 0.0 74 ± 0.1 122 ± 0 679 ± 1 20 ± 0
0.25 30 1 18567 20.1 ± 0.6 7.1 ± 0.0 88 ± 0.1 139 ± 0 351 ± 1 15 ± 0
0.25 30 2 16426 13.9 ± 0.5 7.2 ± 0.0 87 ± 0.1 136 ± 0 446 ± 1 17 ± 0
0.25 30 3 15333 7.6 ± 0.4 7.3 ± 0.0 79 ± 0.1 130 ± 0 561 ± 1 19 ± 0
0.25 30 4 16063 6.2 ± 0.4 7.4 ± 0.0 74 ± 0.1 122 ± 0 678 ± 1 20 ± 0
0.25 40 1 17918 19.8 ± 0.6 7.1 ± 0.0 88 ± 0.1 140 ± 0 351 ± 1 15 ± 0
0.25 40 2 16541 13.8 ± 0.5 7.2 ± 0.0 87 ± 0.1 137 ± 0 446 ± 1 17 ± 0
0.25 40 3 15323 7.5 ± 0.4 7.3 ± 0.0 79 ± 0.1 130 ± 0 558 ± 1 19 ± 0
0.25 40 4 15982 6.3 ± 0.4 7.4 ± 0.0 74 ± 0.1 122 ± 0 678 ± 1 20 ± 0
0.25 50 1 16060 19.6 ± 0.6 7.1 ± 0.0 88 ± 0.1 140 ± 0 350 ± 1 15 ± 0
0.25 50 2 15634 13.6 ± 0.5 7.2 ± 0.0 87 ± 0.1 136 ± 0 447 ± 1 17 ± 0
0.25 50 3 16386 8.0 ± 0.4 7.3 ± 0.0 79 ± 0.1 130 ± 0 560 ± 1 19 ± 0
0.25 50 4 17432 6.0 ± 0.4 7.4 ± 0.0 74 ± 0.1 122 ± 0 677 ± 1 20 ± 0
0.5 0 1 16416 18.8 ± 0.6 9.3 ± 0.0 95 ± 0.1 105 ± 0 312 ± 1 15 ± 0
0.5 0 2 14108 8.7 ± 0.5 9.5 ± 0.0 94 ± 0.1 101 ± 0 513 ± 1 18 ± 0
0.5 0 3 14224 4.0 ± 0.3 9.7 ± 0.0 87 ± 0.1 98 ± 0 741 ± 1 20 ± 0
0.5 0 4 19739 2.0 ± 0.2 9.9 ± 0.0 76 ± 0.1 89 ± 0 972 ± 1 21 ± 0
0.5 10 1 21497 19.7 ± 0.5 9.3 ± 0.0 95 ± 0.1 105 ± 0 313 ± 1 15 ± 0
0.5 10 2 18720 8.8 ± 0.4 9.5 ± 0.0 94 ± 0.1 102 ± 0 511 ± 1 18 ± 0
0.5 10 3 13788 4.3 ± 0.3 9.7 ± 0.0 87 ± 0.1 98 ± 0 741 ± 1 20 ± 0
0.5 10 4 13788 2.1 ± 0.2 9.9 ± 0.0 76 ± 0.1 89 ± 0 972 ± 2 21 ± 0
0.5 20 1 21496 19.2 ± 0.5 9.3 ± 0.0 95 ± 0.1 105 ± 0 312 ± 1 15 ± 0
0.5 20 2 17358 9.0 ± 0.4 9.5 ± 0.0 94 ± 0.1 102 ± 0 513 ± 1 18 ± 0
0.5 20 3 14633 3.7 ± 0.3 9.7 ± 0.0 87 ± 0.1 98 ± 0 741 ± 1 20 ± 0
0.5 20 4 19175 2.1 ± 0.2 9.9 ± 0.0 77 ± 0.1 89 ± 0 971 ± 1 21 ± 0
0.5 30 1 14310 19.0 ± 0.6 9.3 ± 0.0 95 ± 0.1 105 ± 0 313 ± 1 15 ± 0
0.5 30 2 15649 9.1 ± 0.5 9.5 ± 0.0 94 ± 0.1 101 ± 0 512 ± 1 18 ± 0
0.5 30 3 13994 4.2 ± 0.3 9.7 ± 0.0 87 ± 0.1 98 ± 0 742 ± 1 20 ± 0
0.5 30 4 14786 1.8 ± 0.2 9.9 ± 0.0 76 ± 0.1 89 ± 0 969 ± 2 21 ± 0
0.5 40 1 17604 18.9 ± 0.6 9.3 ± 0.0 95 ± 0.1 105 ± 0 312 ± 1 15 ± 0
0.5 40 2 15101 9.4 ± 0.5 9.5 ± 0.0 94 ± 0.1 101 ± 0 512 ± 1 18 ± 0
0.5 40 3 19817 3.9 ± 0.3 9.7 ± 0.0 87 ± 0.1 98 ± 0 740 ± 1 20 ± 0
0.5 40 4 20233 2.1 ± 0.2 9.9 ± 0.0 77 ± 0.1 89 ± 0 970 ± 1 21 ± 0
0.5 50 1 21991 19.0 ± 0.5 9.3 ± 0.0 95 ± 0.1 105 ± 0 312 ± 1 15 ± 0
0.5 50 2 21992 9.0 ± 0.4 9.5 ± 0.0 94 ± 0.1 102 ± 0 513 ± 1 18 ± 0
0.5 50 3 21222 4.0 ± 0.3 9.7 ± 0.0 87 ± 0.1 98 ± 0 742 ± 1 20 ± 0
0.5 50 4 21997 1.9 ± 0.2 9.9 ± 0.0 77 ± 0.1 89 ± 0 969 ± 1 21 ± 0
1.0 0 1 13813 21.1 ± 0.7 13.8 ± 0.0 97 ± 0.1 69 ± 0 308 ± 1 16 ± 0
1.0 0 2 21495 8.9 ± 0.4 14.3 ± 0.0 91 ± 0.1 66 ± 0 702 ± 1 18 ± 0
1.0 0 3 13778 3.7 ± 0.3 14.6 ± 0.0 96 ± 0.1 65 ± 0 1117 ± 2 20 ± 0
1.0 0 4 13966 1.6 ± 0.2 15.0 ± 0.0 76 ± 0.1 58 ± 0 1526 ± 2 21 ± 0
1.0 10 1 16562 20.8 ± 0.6 13.8 ± 0.0 97 ± 0.1 69 ± 0 309 ± 1 16 ± 0
1.0 10 2 15575 8.2 ± 0.4 14.3 ± 0.0 91 ± 0.1 66 ± 0 702 ± 1 18 ± 0
1.0 10 3 21351 3.6 ± 0.2 14.6 ± 0.0 96 ± 0.1 65 ± 0 1116 ± 1 20 ± 0
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Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
1.0 10 4 15153 1.5 ± 0.2 15.0 ± 0.0 76 ± 0.1 58 ± 0 1526 ± 2 21 ± 0
1.0 20 1 21496 20.7 ± 0.5 13.8 ± 0.0 97 ± 0.1 69 ± 0 309 ± 1 16 ± 0
1.0 20 2 17929 8.7 ± 0.4 14.3 ± 0.0 91 ± 0.1 66 ± 0 703 ± 1 18 ± 0
1.0 20 3 20941 3.7 ± 0.3 14.6 ± 0.0 96 ± 0.1 65 ± 0 1118 ± 1 20 ± 0
1.0 20 4 18864 1.5 ± 0.2 15.0 ± 0.0 76 ± 0.1 58 ± 0 1525 ± 2 21 ± 0
1.0 30 1 15537 21.1 ± 0.6 13.8 ± 0.0 97 ± 0.1 69 ± 0 309 ± 1 16 ± 0
1.0 30 2 14210 8.3 ± 0.5 14.3 ± 0.0 91 ± 0.2 66 ± 0 703 ± 1 18 ± 0
1.0 30 3 15189 3.6 ± 0.3 14.6 ± 0.0 96 ± 0.1 65 ± 0 1117 ± 1 20 ± 0
1.0 30 4 21493 1.6 ± 0.2 15.0 ± 0.0 76 ± 0.1 58 ± 0 1525 ± 2 21 ± 0
1.0 40 1 14766 20.4 ± 0.7 13.8 ± 0.0 97 ± 0.1 69 ± 0 309 ± 1 16 ± 0
1.0 40 2 21497 8.7 ± 0.4 14.3 ± 0.0 91 ± 0.1 66 ± 0 703 ± 1 18 ± 0
1.0 40 3 21495 3.8 ± 0.3 14.6 ± 0.0 96 ± 0.1 65 ± 0 1117 ± 1 20 ± 0
1.0 40 4 15645 1.6 ± 0.2 15.0 ± 0.0 76 ± 0.1 58 ± 0 1525 ± 2 21 ± 0
1.0 50 1 14824 20.3 ± 0.6 13.8 ± 0.0 97 ± 0.1 69 ± 0 309 ± 1 16 ± 0
1.0 50 2 15017 8.8 ± 0.5 14.3 ± 0.0 91 ± 0.2 66 ± 0 704 ± 1 18 ± 0
1.0 50 3 21998 3.7 ± 0.3 14.6 ± 0.0 96 ± 0.1 65 ± 0 1117 ± 1 20 ± 0
1.0 50 4 14525 1.5 ± 0.2 15.0 ± 0.0 76 ± 0.1 58 ± 0 1524 ± 2 22 ± 0
2.0 0 1 21494 20.7 ± 0.5 23.1 ± 0.0 97 ± 0.1 41 ± 0 308 ± 1 16 ± 0
2.0 0 2 17485 9.0 ± 0.4 24.1 ± 0.0 96 ± 0.1 42 ± 0 1068 ± 1 18 ± 0
2.0 0 3 17543 3.8 ± 0.3 24.8 ± 0.0 96 ± 0.1 38 ± 0 1848 ± 2 20 ± 0
2.0 0 4 21497 1.8 ± 0.2 25.5 ± 0.0 76 ± 0.1 34 ± 0 2603 ± 3 21 ± 0
2.0 10 1 18194 20.5 ± 0.6 23.1 ± 0.0 97 ± 0.1 41 ± 0 308 ± 1 16 ± 0
2.0 10 2 17724 8.5 ± 0.4 24.1 ± 0.0 96 ± 0.1 42 ± 0 1069 ± 1 18 ± 0
2.0 10 3 17429 3.9 ± 0.3 24.8 ± 0.0 96 ± 0.1 38 ± 0 1846 ± 2 20 ± 0
2.0 10 4 21495 1.8 ± 0.2 25.5 ± 0.0 76 ± 0.1 34 ± 0 2599 ± 4 21 ± 0
2.0 20 1 21494 21.0 ± 0.5 23.1 ± 0.0 97 ± 0.1 41 ± 0 308 ± 1 16 ± 0
2.0 20 2 21494 8.7 ± 0.4 24.1 ± 0.0 96 ± 0.1 42 ± 0 1068 ± 1 18 ± 0
2.0 20 3 21497 4.0 ± 0.3 24.8 ± 0.0 96 ± 0.1 38 ± 0 1847 ± 2 20 ± 0
2.0 20 4 21495 1.7 ± 0.2 25.5 ± 0.0 76 ± 0.1 34 ± 0 2599 ± 3 21 ± 0
2.0 30 1 21492 21.1 ± 0.5 23.1 ± 0.0 97 ± 0.1 41 ± 0 308 ± 1 16 ± 0
2.0 30 2 18170 8.9 ± 0.4 24.1 ± 0.0 96 ± 0.1 42 ± 0 1069 ± 1 18 ± 0
2.0 30 3 20334 3.6 ± 0.3 24.8 ± 0.0 96 ± 0.1 38 ± 0 1848 ± 2 20 ± 0
2.0 30 4 21489 1.8 ± 0.2 25.5 ± 0.0 76 ± 0.1 34 ± 0 2599 ± 4 21 ± 0
2.0 40 1 20980 20.7 ± 0.5 23.1 ± 0.0 97 ± 0.1 41 ± 0 308 ± 1 16 ± 0
2.0 40 2 17552 8.6 ± 0.4 24.1 ± 0.0 96 ± 0.1 42 ± 0 1070 ± 1 18 ± 0
2.0 40 3 17888 3.7 ± 0.3 24.8 ± 0.0 96 ± 0.1 38 ± 0 1849 ± 2 20 ± 0
2.0 40 4 17942 1.7 ± 0.2 25.5 ± 0.0 76 ± 0.1 34 ± 0 2603 ± 4 21 ± 0
2.0 50 1 18807 20.3 ± 0.6 23.1 ± 0.0 97 ± 0.1 41 ± 0 308 ± 1 16 ± 0
2.0 50 2 21996 8.7 ± 0.4 24.1 ± 0.0 96 ± 0.1 42 ± 0 1069 ± 1 18 ± 0
2.0 50 3 18072 3.9 ± 0.3 24.8 ± 0.0 96 ± 0.1 38 ± 0 1848 ± 2 20 ± 0
2.0 50 4 20188 1.7 ± 0.2 25.5 ± 0.0 76 ± 0.1 34 ± 0 2601 ± 4 21 ± 0
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Table E.17: Confidence Intervals for ILPRouting on TOSSIM Network Size 11

Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.25 0 1 21499 12.9 ± 0.4 9.1 ± 0.0 88 ± 0.1 205 ± 0 466 ± 1 26 ± 0
0.25 0 2 21491 7.6 ± 0.4 9.2 ± 0.0 87 ± 0.1 200 ± 0 589 ± 1 30 ± 0
0.25 0 3 21495 3.3 ± 0.2 9.3 ± 0.0 85 ± 0.1 195 ± 0 724 ± 1 32 ± 0
0.25 0 4 21497 1.6 ± 0.2 9.3 ± 0.0 78 ± 0.1 188 ± 0 881 ± 1 34 ± 0
0.25 10 1 21494 10.8 ± 0.4 9.1 ± 0.0 88 ± 0.1 204 ± 0 459 ± 1 27 ± 0
0.25 10 2 21496 6.5 ± 0.3 9.2 ± 0.0 87 ± 0.1 200 ± 0 578 ± 1 30 ± 0
0.25 10 3 21495 3.0 ± 0.2 9.3 ± 0.0 86 ± 0.1 196 ± 0 711 ± 1 32 ± 0
0.25 10 4 21497 1.6 ± 0.2 9.3 ± 0.0 78 ± 0.1 187 ± 0 867 ± 1 34 ± 0
0.25 20 1 21491 9.7 ± 0.4 9.2 ± 0.0 89 ± 0.1 204 ± 0 450 ± 1 27 ± 0
0.25 20 2 21496 5.5 ± 0.3 9.2 ± 0.0 87 ± 0.1 200 ± 0 571 ± 1 30 ± 0
0.25 20 3 21497 2.6 ± 0.2 9.3 ± 0.0 86 ± 0.1 196 ± 0 700 ± 1 32 ± 0
0.25 20 4 21500 1.4 ± 0.2 9.3 ± 0.0 78 ± 0.1 187 ± 0 856 ± 1 33 ± 0
0.25 30 1 21497 7.8 ± 0.4 9.2 ± 0.0 89 ± 0.1 203 ± 0 441 ± 1 27 ± 0
0.25 30 2 21495 4.4 ± 0.3 9.2 ± 0.0 87 ± 0.1 199 ± 0 562 ± 1 30 ± 0
0.25 30 3 21495 2.1 ± 0.2 9.3 ± 0.0 87 ± 0.1 196 ± 0 690 ± 1 32 ± 0
0.25 30 4 21495 1.3 ± 0.2 9.3 ± 0.0 79 ± 0.1 187 ± 0 845 ± 1 33 ± 0
0.25 40 1 21497 6.9 ± 0.3 9.2 ± 0.0 90 ± 0.1 203 ± 0 434 ± 1 27 ± 0
0.25 40 2 21495 4.1 ± 0.3 9.2 ± 0.0 88 ± 0.1 200 ± 0 554 ± 1 29 ± 0
0.25 40 3 21499 2.1 ± 0.2 9.3 ± 0.0 87 ± 0.1 196 ± 0 682 ± 1 31 ± 0
0.25 40 4 21491 1.3 ± 0.2 9.3 ± 0.0 79 ± 0.1 186 ± 0 836 ± 1 32 ± 0
0.25 50 1 21997 6.7 ± 0.3 9.2 ± 0.0 90 ± 0.1 203 ± 0 425 ± 1 26 ± 0
0.25 50 2 21996 3.9 ± 0.3 9.2 ± 0.0 88 ± 0.1 199 ± 0 545 ± 1 28 ± 0
0.25 50 3 22002 1.8 ± 0.2 9.3 ± 0.0 88 ± 0.1 196 ± 0 671 ± 1 30 ± 0
0.25 50 4 21996 1.3 ± 0.2 9.3 ± 0.0 79 ± 0.1 186 ± 0 828 ± 1 32 ± 0
0.5 0 1 21496 12.0 ± 0.4 13.4 ± 0.0 92 ± 0.1 139 ± 0 446 ± 1 27 ± 0
0.5 0 2 21498 6.5 ± 0.3 13.5 ± 0.0 91 ± 0.1 135 ± 0 678 ± 1 30 ± 0
0.5 0 3 21492 2.9 ± 0.2 13.6 ± 0.0 90 ± 0.1 132 ± 0 922 ± 1 32 ± 0
0.5 0 4 21495 1.0 ± 0.1 13.7 ± 0.0 82 ± 0.1 127 ± 0 1179 ± 1 34 ± 0
0.5 10 1 21500 9.9 ± 0.4 13.4 ± 0.0 93 ± 0.1 139 ± 0 438 ± 1 28 ± 0
0.5 10 2 21493 5.2 ± 0.3 13.5 ± 0.0 91 ± 0.1 135 ± 0 667 ± 1 30 ± 0
0.5 10 3 21495 2.2 ± 0.2 13.6 ± 0.0 90 ± 0.1 133 ± 0 908 ± 1 32 ± 0
0.5 10 4 21492 0.9 ± 0.1 13.7 ± 0.0 83 ± 0.1 126 ± 0 1167 ± 1 34 ± 0
0.5 20 1 21493 8.3 ± 0.4 13.4 ± 0.0 93 ± 0.1 138 ± 0 431 ± 1 28 ± 0
0.5 20 2 21496 4.5 ± 0.3 13.6 ± 0.0 92 ± 0.1 135 ± 0 658 ± 1 30 ± 0
0.5 20 3 21497 2.0 ± 0.2 13.7 ± 0.0 91 ± 0.1 132 ± 0 897 ± 1 32 ± 0
0.5 20 4 21496 0.9 ± 0.1 13.7 ± 0.0 83 ± 0.1 126 ± 0 1156 ± 1 34 ± 0
0.5 30 1 21498 7.1 ± 0.3 13.4 ± 0.0 93 ± 0.1 138 ± 0 424 ± 1 28 ± 0
0.5 30 2 21501 3.6 ± 0.3 13.6 ± 0.0 92 ± 0.1 135 ± 0 650 ± 1 30 ± 0
0.5 30 3 21495 1.7 ± 0.2 13.7 ± 0.0 91 ± 0.1 133 ± 0 886 ± 1 31 ± 0
0.5 30 4 21494 0.9 ± 0.1 13.7 ± 0.0 83 ± 0.1 126 ± 0 1146 ± 1 33 ± 0
0.5 40 1 21497 6.4 ± 0.3 13.4 ± 0.0 93 ± 0.1 138 ± 0 416 ± 1 27 ± 0
0.5 40 2 21500 3.4 ± 0.2 13.6 ± 0.0 93 ± 0.1 135 ± 0 641 ± 1 29 ± 0
0.5 40 3 21494 1.4 ± 0.2 13.7 ± 0.0 92 ± 0.1 132 ± 0 876 ± 1 31 ± 0
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Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.5 40 4 21499 0.7 ± 0.1 13.7 ± 0.0 83 ± 0.1 125 ± 0 1138 ± 1 33 ± 0
0.5 50 1 22000 6.0 ± 0.3 13.4 ± 0.0 94 ± 0.1 138 ± 0 409 ± 1 26 ± 0
0.5 50 2 21996 3.2 ± 0.2 13.6 ± 0.0 93 ± 0.1 134 ± 0 633 ± 1 28 ± 0
0.5 50 3 21996 1.3 ± 0.1 13.7 ± 0.0 93 ± 0.1 132 ± 0 866 ± 1 30 ± 0
0.5 50 4 21997 0.7 ± 0.1 13.7 ± 0.0 83 ± 0.1 125 ± 0 1130 ± 1 33 ± 0
1.0 0 1 21492 12.7 ± 0.4 21.9 ± 0.0 90 ± 0.1 84 ± 0 445 ± 1 27 ± 0
1.0 0 2 21490 6.4 ± 0.3 22.2 ± 0.0 91 ± 0.1 82 ± 0 885 ± 1 30 ± 0
1.0 0 3 21493 2.7 ± 0.2 22.5 ± 0.0 91 ± 0.1 81 ± 0 1336 ± 1 32 ± 0
1.0 0 4 21494 1.0 ± 0.1 22.7 ± 0.0 82 ± 0.1 77 ± 0 1795 ± 2 34 ± 0
1.0 10 1 21491 10.3 ± 0.4 22.0 ± 0.0 91 ± 0.1 84 ± 0 437 ± 1 27 ± 0
1.0 10 2 21494 5.4 ± 0.3 22.3 ± 0.0 91 ± 0.1 82 ± 0 874 ± 1 30 ± 0
1.0 10 3 21499 2.3 ± 0.2 22.5 ± 0.0 92 ± 0.1 82 ± 0 1321 ± 1 32 ± 0
1.0 10 4 21496 1.0 ± 0.1 22.7 ± 0.0 83 ± 0.1 76 ± 0 1781 ± 1 34 ± 0
1.0 20 1 21495 8.8 ± 0.4 22.0 ± 0.0 91 ± 0.1 84 ± 0 430 ± 1 28 ± 0
1.0 20 2 21501 4.6 ± 0.3 22.3 ± 0.0 91 ± 0.1 82 ± 0 866 ± 1 30 ± 0
1.0 20 3 21498 2.1 ± 0.2 22.5 ± 0.0 92 ± 0.1 81 ± 0 1311 ± 1 32 ± 0
1.0 20 4 21499 0.7 ± 0.1 22.7 ± 0.0 83 ± 0.1 76 ± 0 1772 ± 1 34 ± 0
1.0 30 1 21498 7.8 ± 0.4 22.0 ± 0.0 92 ± 0.1 83 ± 0 421 ± 1 27 ± 0
1.0 30 2 21494 4.0 ± 0.3 22.3 ± 0.0 92 ± 0.1 82 ± 0 856 ± 1 30 ± 0
1.0 30 3 21501 1.6 ± 0.2 22.5 ± 0.0 92 ± 0.1 81 ± 0 1299 ± 1 31 ± 0
1.0 30 4 21497 0.8 ± 0.1 22.7 ± 0.0 83 ± 0.1 76 ± 0 1760 ± 1 33 ± 0
1.0 40 1 21498 6.9 ± 0.3 22.0 ± 0.0 92 ± 0.1 84 ± 0 414 ± 1 27 ± 0
1.0 40 2 21499 3.5 ± 0.2 22.3 ± 0.0 93 ± 0.1 82 ± 0 847 ± 1 29 ± 0
1.0 40 3 21500 1.4 ± 0.2 22.5 ± 0.0 93 ± 0.1 81 ± 0 1289 ± 1 31 ± 0
1.0 40 4 21500 0.7 ± 0.1 22.7 ± 0.0 83 ± 0.1 76 ± 0 1751 ± 1 33 ± 0
1.0 50 1 21998 6.6 ± 0.3 22.0 ± 0.0 93 ± 0.1 83 ± 0 407 ± 1 26 ± 0
1.0 50 2 22001 3.2 ± 0.2 22.3 ± 0.0 93 ± 0.1 82 ± 0 838 ± 1 28 ± 0
1.0 50 3 21998 1.4 ± 0.2 22.5 ± 0.0 93 ± 0.1 81 ± 0 1278 ± 1 30 ± 0
1.0 50 4 21998 0.5 ± 0.1 22.7 ± 0.0 83 ± 0.1 75 ± 0 1741 ± 1 33 ± 0
2.0 0 1 21497 12.3 ± 0.4 39.5 ± 0.0 94 ± 0.1 48 ± 0 442 ± 1 27 ± 0
2.0 0 2 21494 6.6 ± 0.3 40.1 ± 0.0 93 ± 0.1 47 ± 0 1301 ± 1 30 ± 0
2.0 0 3 21493 2.9 ± 0.2 40.6 ± 0.0 93 ± 0.1 46 ± 0 2163 ± 2 32 ± 0
2.0 0 4 21494 1.1 ± 0.1 40.9 ± 0.0 82 ± 0.1 42 ± 0 3036 ± 3 34 ± 0
2.0 10 1 21492 10.8 ± 0.4 39.5 ± 0.0 94 ± 0.1 48 ± 0 435 ± 1 27 ± 0
2.0 10 2 21500 5.3 ± 0.3 40.2 ± 0.0 93 ± 0.1 47 ± 0 1292 ± 1 30 ± 0
2.0 10 3 21498 2.2 ± 0.2 40.6 ± 0.0 93 ± 0.1 46 ± 0 2149 ± 2 32 ± 0
2.0 10 4 21496 1.1 ± 0.1 40.9 ± 0.0 83 ± 0.1 42 ± 0 3022 ± 2 34 ± 0
2.0 20 1 21499 8.5 ± 0.4 39.6 ± 0.0 94 ± 0.1 48 ± 0 427 ± 1 28 ± 0
2.0 20 2 21495 4.6 ± 0.3 40.2 ± 0.1 94 ± 0.1 47 ± 0 1281 ± 1 30 ± 0
2.0 20 3 21498 1.8 ± 0.2 40.6 ± 0.0 93 ± 0.1 46 ± 0 2138 ± 2 32 ± 0
2.0 20 4 21500 0.8 ± 0.1 40.9 ± 0.0 83 ± 0.1 42 ± 0 3009 ± 3 34 ± 0
2.0 30 1 21498 7.8 ± 0.4 39.6 ± 0.0 94 ± 0.1 47 ± 0 421 ± 1 28 ± 0
2.0 30 2 21500 3.7 ± 0.3 40.2 ± 0.0 94 ± 0.1 46 ± 0 1272 ± 1 30 ± 0
2.0 30 3 21498 1.7 ± 0.2 40.6 ± 0.0 94 ± 0.1 46 ± 0 2125 ± 2 32 ± 0
2.0 30 4 21499 0.8 ± 0.1 40.9 ± 0.0 83 ± 0.1 42 ± 0 2999 ± 2 33 ± 0
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Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
2.0 40 1 21500 7.2 ± 0.3 39.7 ± 0.0 94 ± 0.1 47 ± 0 413 ± 1 27 ± 0
2.0 40 2 21500 3.4 ± 0.2 40.2 ± 0.0 94 ± 0.1 46 ± 0 1262 ± 1 29 ± 0
2.0 40 3 21498 1.6 ± 0.2 40.6 ± 0.0 94 ± 0.1 46 ± 0 2115 ± 2 31 ± 0
2.0 40 4 21496 0.7 ± 0.1 40.9 ± 0.0 83 ± 0.1 42 ± 0 2988 ± 2 33 ± 0
2.0 50 1 21998 6.2 ± 0.3 39.7 ± 0.0 95 ± 0.1 47 ± 0 406 ± 1 26 ± 0
2.0 50 2 21996 3.3 ± 0.2 40.2 ± 0.0 94 ± 0.1 46 ± 0 1253 ± 1 29 ± 0
2.0 50 3 21999 1.4 ± 0.2 40.6 ± 0.0 94 ± 0.1 46 ± 0 2103 ± 2 30 ± 0
2.0 50 4 22001 0.7 ± 0.1 40.9 ± 0.0 83 ± 0.1 42 ± 0 2976 ± 2 33 ± 0

Table E.18: Confidence Intervals for ILPRouting on TOSSIM Network Size 15

Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.25 0 1 21498 14.2 ± 0.5 11.2 ± 0.0 86 ± 0.2 276 ± 0 592 ± 1 36 ± 0
0.25 0 2 21498 8.5 ± 0.4 11.3 ± 0.0 82 ± 0.2 270 ± 0 722 ± 1 40 ± 0
0.25 0 3 21493 4.4 ± 0.3 11.3 ± 0.0 80 ± 0.2 264 ± 0 870 ± 1 42 ± 0
0.25 0 4 21496 1.4 ± 0.2 11.4 ± 0.0 76 ± 0.1 259 ± 0 1025 ± 1 46 ± 0
0.25 10 1 21499 10.7 ± 0.4 11.2 ± 0.0 86 ± 0.2 274 ± 0 576 ± 1 38 ± 0
0.25 10 2 21495 6.5 ± 0.3 11.3 ± 0.0 82 ± 0.1 269 ± 0 703 ± 1 41 ± 0
0.25 10 3 21499 3.3 ± 0.2 11.3 ± 0.0 81 ± 0.1 264 ± 0 845 ± 1 43 ± 0
0.25 10 4 21497 1.1 ± 0.1 11.4 ± 0.0 76 ± 0.1 259 ± 0 994 ± 1 46 ± 0
0.25 20 1 21496 7.4 ± 0.4 11.2 ± 0.0 87 ± 0.1 273 ± 0 559 ± 1 39 ± 0
0.25 20 2 21497 4.9 ± 0.3 11.3 ± 0.0 83 ± 0.1 269 ± 0 685 ± 1 41 ± 0
0.25 20 3 21499 2.4 ± 0.2 11.3 ± 0.0 83 ± 0.1 263 ± 0 819 ± 1 43 ± 0
0.25 20 4 21497 1.0 ± 0.1 11.4 ± 0.0 77 ± 0.1 258 ± 0 968 ± 1 45 ± 0
0.25 30 1 21500 5.5 ± 0.3 11.3 ± 0.0 88 ± 0.1 271 ± 0 543 ± 1 39 ± 0
0.25 30 2 21497 3.6 ± 0.3 11.3 ± 0.0 84 ± 0.1 268 ± 0 668 ± 1 41 ± 0
0.25 30 3 21496 1.8 ± 0.2 11.3 ± 0.0 84 ± 0.1 262 ± 0 796 ± 1 42 ± 0
0.25 30 4 21498 0.9 ± 0.1 11.4 ± 0.0 78 ± 0.1 256 ± 0 946 ± 1 45 ± 0
0.25 40 1 21498 5.6 ± 0.3 11.3 ± 0.0 89 ± 0.1 270 ± 0 527 ± 1 38 ± 0
0.25 40 2 21497 3.7 ± 0.3 11.3 ± 0.0 84 ± 0.1 266 ± 0 651 ± 1 40 ± 0
0.25 40 3 21494 2.0 ± 0.2 11.3 ± 0.0 85 ± 0.1 262 ± 0 778 ± 1 41 ± 0
0.25 40 4 21497 1.2 ± 0.1 11.4 ± 0.0 79 ± 0.1 255 ± 0 926 ± 1 43 ± 0
0.25 50 1 22000 8.0 ± 0.4 11.2 ± 0.0 90 ± 0.1 269 ± 0 510 ± 1 34 ± 0
0.25 50 2 21997 5.7 ± 0.3 11.3 ± 0.0 85 ± 0.1 264 ± 0 635 ± 1 37 ± 0
0.25 50 3 21998 3.4 ± 0.2 11.3 ± 0.0 87 ± 0.1 260 ± 0 759 ± 1 38 ± 0
0.25 50 4 21995 1.9 ± 0.2 11.4 ± 0.0 79 ± 0.1 253 ± 0 908 ± 1 41 ± 0
0.5 0 1 21496 12.4 ± 0.4 17.5 ± 0.0 87 ± 0.2 177 ± 0 575 ± 1 37 ± 0
0.5 0 2 21497 7.0 ± 0.3 17.6 ± 0.0 86 ± 0.2 174 ± 0 819 ± 1 41 ± 0
0.5 0 3 21492 4.0 ± 0.3 17.8 ± 0.0 79 ± 0.1 167 ± 0 1080 ± 1 42 ± 0
0.5 0 4 21499 1.5 ± 0.2 17.8 ± 0.0 79 ± 0.1 165 ± 0 1338 ± 1 47 ± 0
0.5 10 1 21499 9.4 ± 0.4 17.6 ± 0.0 87 ± 0.2 176 ± 0 560 ± 1 39 ± 0
0.5 10 2 21497 5.8 ± 0.3 17.7 ± 0.0 86 ± 0.2 173 ± 0 799 ± 1 41 ± 0
0.5 10 3 21493 2.7 ± 0.2 17.8 ± 0.0 80 ± 0.1 167 ± 0 1056 ± 1 43 ± 0
0.5 10 4 21499 1.1 ± 0.1 17.9 ± 0.0 79 ± 0.1 164 ± 0 1310 ± 1 47 ± 0
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Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.5 20 1 21502 6.4 ± 0.3 17.6 ± 0.0 87 ± 0.1 175 ± 0 544 ± 1 40 ± 0
0.5 20 2 21497 4.0 ± 0.3 17.7 ± 0.0 87 ± 0.1 172 ± 0 781 ± 1 42 ± 0
0.5 20 3 21497 2.1 ± 0.2 17.8 ± 0.0 82 ± 0.1 166 ± 0 1030 ± 1 43 ± 0
0.5 20 4 21499 0.9 ± 0.1 17.8 ± 0.0 80 ± 0.1 163 ± 0 1287 ± 1 46 ± 0
0.5 30 1 21500 5.0 ± 0.3 17.6 ± 0.0 88 ± 0.1 174 ± 0 529 ± 1 40 ± 0
0.5 30 2 21500 3.0 ± 0.2 17.7 ± 0.0 87 ± 0.1 171 ± 0 762 ± 1 42 ± 0
0.5 30 3 21496 1.6 ± 0.2 17.8 ± 0.0 83 ± 0.1 165 ± 0 1008 ± 1 42 ± 0
0.5 30 4 21501 0.7 ± 0.1 17.9 ± 0.0 80 ± 0.1 162 ± 0 1263 ± 1 46 ± 0
0.5 40 1 21501 4.5 ± 0.3 17.6 ± 0.0 88 ± 0.1 173 ± 0 512 ± 1 38 ± 0
0.5 40 2 21500 3.1 ± 0.2 17.7 ± 0.0 88 ± 0.1 170 ± 0 745 ± 1 40 ± 0
0.5 40 3 21501 1.7 ± 0.2 17.8 ± 0.0 84 ± 0.1 164 ± 0 989 ± 1 41 ± 0
0.5 40 4 21498 0.9 ± 0.1 17.8 ± 0.0 81 ± 0.1 161 ± 0 1243 ± 1 45 ± 0
0.5 50 1 21994 6.9 ± 0.3 17.6 ± 0.0 89 ± 0.1 172 ± 0 496 ± 1 35 ± 0
0.5 50 2 21997 4.5 ± 0.3 17.7 ± 0.0 88 ± 0.1 169 ± 0 728 ± 1 38 ± 0
0.5 50 3 21998 2.4 ± 0.2 17.8 ± 0.0 85 ± 0.1 163 ± 0 969 ± 1 39 ± 0
0.5 50 4 22000 1.2 ± 0.1 17.8 ± 0.0 81 ± 0.1 160 ± 0 1224 ± 1 43 ± 0
1.0 0 1 21495 10.2 ± 0.4 30.2 ± 0.0 90 ± 0.2 103 ± 0 573 ± 1 38 ± 0
1.0 0 2 21500 5.7 ± 0.3 30.4 ± 0.0 89 ± 0.2 101 ± 0 1037 ± 1 41 ± 0
1.0 0 3 21498 2.9 ± 0.2 30.6 ± 0.0 82 ± 0.2 96 ± 0 1514 ± 1 44 ± 0
1.0 0 4 21498 1.4 ± 0.2 30.8 ± 0.0 82 ± 0.2 95 ± 0 1984 ± 2 46 ± 0
1.0 10 1 21495 7.5 ± 0.4 30.3 ± 0.0 90 ± 0.2 102 ± 0 558 ± 1 39 ± 0
1.0 10 2 21502 4.4 ± 0.3 30.5 ± 0.0 90 ± 0.2 101 ± 0 1017 ± 1 42 ± 0
1.0 10 3 21500 2.4 ± 0.2 30.7 ± 0.0 83 ± 0.1 96 ± 0 1490 ± 1 44 ± 0
1.0 10 4 21499 1.0 ± 0.1 30.8 ± 0.0 82 ± 0.1 95 ± 0 1958 ± 2 46 ± 0
1.0 20 1 21498 5.8 ± 0.3 30.3 ± 0.0 91 ± 0.1 102 ± 0 540 ± 1 40 ± 0
1.0 20 2 21497 3.3 ± 0.2 30.5 ± 0.0 90 ± 0.1 100 ± 0 998 ± 1 42 ± 0
1.0 20 3 21497 1.5 ± 0.2 30.7 ± 0.0 83 ± 0.1 95 ± 0 1469 ± 1 45 ± 0
1.0 20 4 21497 0.8 ± 0.1 30.8 ± 0.0 83 ± 0.1 94 ± 0 1931 ± 2 46 ± 0
1.0 30 1 21499 3.9 ± 0.3 30.4 ± 0.0 91 ± 0.1 101 ± 0 525 ± 1 40 ± 0
1.0 30 2 21496 2.5 ± 0.2 30.6 ± 0.0 91 ± 0.1 100 ± 0 979 ± 1 42 ± 0
1.0 30 3 21496 1.3 ± 0.1 30.7 ± 0.0 84 ± 0.1 95 ± 0 1449 ± 1 44 ± 0
1.0 30 4 21499 0.6 ± 0.1 30.8 ± 0.0 84 ± 0.1 94 ± 0 1909 ± 1 46 ± 0
1.0 40 1 21497 4.0 ± 0.3 30.4 ± 0.0 91 ± 0.1 101 ± 0 509 ± 1 38 ± 0
1.0 40 2 21497 2.2 ± 0.2 30.6 ± 0.0 91 ± 0.1 99 ± 0 961 ± 1 41 ± 0
1.0 40 3 21498 1.3 ± 0.1 30.7 ± 0.0 84 ± 0.1 94 ± 0 1429 ± 1 43 ± 0
1.0 40 4 21499 0.6 ± 0.1 30.8 ± 0.0 84 ± 0.1 93 ± 0 1888 ± 1 45 ± 0
1.0 50 1 21998 5.6 ± 0.3 30.4 ± 0.0 92 ± 0.1 100 ± 0 493 ± 1 36 ± 0
1.0 50 2 21999 3.5 ± 0.2 30.5 ± 0.0 92 ± 0.1 99 ± 0 942 ± 1 38 ± 0
1.0 50 3 22000 2.0 ± 0.2 30.7 ± 0.0 85 ± 0.1 94 ± 0 1410 ± 1 41 ± 0
1.0 50 4 21995 1.1 ± 0.1 30.8 ± 0.0 85 ± 0.1 92 ± 0 1865 ± 1 43 ± 0
2.0 0 1 21497 10.7 ± 0.4 55.9 ± 0.0 90 ± 0.2 56 ± 0 572 ± 1 38 ± 0
2.0 0 2 21498 5.9 ± 0.3 56.5 ± 0.0 89 ± 0.2 55 ± 0 1474 ± 1 41 ± 0
2.0 0 3 21501 3.4 ± 0.2 56.9 ± 0.0 82 ± 0.2 52 ± 0 2387 ± 2 44 ± 0
2.0 0 4 21498 1.5 ± 0.2 57.2 ± 0.0 82 ± 0.2 51 ± 0 3289 ± 3 46 ± 0
2.0 10 1 21499 8.0 ± 0.4 56.1 ± 0.0 90 ± 0.2 55 ± 0 557 ± 1 39 ± 0
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Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
2.0 10 2 21502 4.5 ± 0.3 56.6 ± 0.0 90 ± 0.2 54 ± 0 1454 ± 1 42 ± 0
2.0 10 3 21500 2.5 ± 0.2 56.9 ± 0.0 83 ± 0.1 52 ± 0 2362 ± 2 44 ± 0
2.0 10 4 21498 1.1 ± 0.1 57.2 ± 0.0 83 ± 0.1 51 ± 0 3259 ± 3 46 ± 0
2.0 20 1 21496 5.4 ± 0.3 56.3 ± 0.0 91 ± 0.1 55 ± 0 541 ± 1 40 ± 0
2.0 20 2 21497 3.3 ± 0.2 56.7 ± 0.0 90 ± 0.1 54 ± 0 1433 ± 1 42 ± 0
2.0 20 3 21500 1.7 ± 0.2 57.0 ± 0.0 84 ± 0.1 51 ± 0 2339 ± 2 44 ± 0
2.0 20 4 21500 0.8 ± 0.1 57.2 ± 0.0 83 ± 0.1 51 ± 0 3233 ± 2 46 ± 0
2.0 30 1 21499 4.1 ± 0.3 56.4 ± 0.0 91 ± 0.1 55 ± 0 525 ± 1 40 ± 0
2.0 30 2 21499 2.5 ± 0.2 56.7 ± 0.0 91 ± 0.1 54 ± 0 1412 ± 1 42 ± 0
2.0 30 3 21499 1.4 ± 0.2 57.0 ± 0.0 84 ± 0.1 51 ± 0 2319 ± 2 44 ± 0
2.0 30 4 21498 0.7 ± 0.1 57.2 ± 0.0 84 ± 0.1 50 ± 0 3207 ± 2 46 ± 0
2.0 40 1 21501 4.1 ± 0.3 56.4 ± 0.0 92 ± 0.1 54 ± 0 510 ± 1 38 ± 0
2.0 40 2 21497 2.4 ± 0.2 56.7 ± 0.0 91 ± 0.1 53 ± 0 1395 ± 1 40 ± 0
2.0 40 3 21500 1.5 ± 0.2 57.0 ± 0.1 85 ± 0.1 51 ± 0 2299 ± 2 42 ± 0
2.0 40 4 21501 0.9 ± 0.1 57.2 ± 0.0 84 ± 0.1 50 ± 0 3182 ± 2 44 ± 0
2.0 50 1 22000 5.3 ± 0.3 56.4 ± 0.0 92 ± 0.1 54 ± 0 493 ± 1 36 ± 0
2.0 50 2 22001 3.7 ± 0.2 56.7 ± 0.1 92 ± 0.1 53 ± 0 1374 ± 1 38 ± 0
2.0 50 3 22000 2.1 ± 0.2 57.0 ± 0.0 86 ± 0.1 51 ± 0 2277 ± 2 40 ± 0
2.0 50 4 21998 1.2 ± 0.1 57.3 ± 0.1 85 ± 0.1 50 ± 0 3159 ± 2 43 ± 0

Table E.19: Confidence Intervals for ILPRouting on TOSSIM Network Size 21

Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.25 0 1 21496 12.6 ± 0.4 14.3 ± 0.0 79 ± 0.2 370 ± 1 774 ± 1 53 ± 0
0.25 0 2 21497 9.0 ± 0.4 14.4 ± 0.0 77 ± 0.2 365 ± 1 910 ± 1 56 ± 0
0.25 0 3 21492 5.0 ± 0.3 14.4 ± 0.0 75 ± 0.2 359 ± 1 1057 ± 1 60 ± 0
0.25 0 4 21495 2.3 ± 0.2 14.5 ± 0.0 73 ± 0.2 354 ± 1 1214 ± 1 63 ± 0
0.25 10 1 21500 8.6 ± 0.4 14.4 ± 0.0 80 ± 0.2 368 ± 1 744 ± 1 56 ± 0
0.25 10 2 21496 6.0 ± 0.3 14.4 ± 0.0 79 ± 0.2 362 ± 1 876 ± 1 58 ± 0
0.25 10 3 21498 3.4 ± 0.2 14.5 ± 0.0 77 ± 0.2 358 ± 1 1017 ± 1 61 ± 0
0.25 10 4 21496 1.6 ± 0.2 14.5 ± 0.0 75 ± 0.2 353 ± 0 1164 ± 1 63 ± 0
0.25 20 1 21501 5.5 ± 0.3 14.4 ± 0.0 81 ± 0.2 366 ± 1 715 ± 1 57 ± 0
0.25 20 2 21493 4.0 ± 0.3 14.4 ± 0.0 80 ± 0.2 361 ± 0 844 ± 1 59 ± 0
0.25 20 3 21498 2.3 ± 0.2 14.5 ± 0.0 79 ± 0.2 356 ± 0 978 ± 1 61 ± 0
0.25 20 4 21500 1.1 ± 0.1 14.5 ± 0.0 77 ± 0.2 352 ± 0 1118 ± 1 62 ± 0
0.25 30 1 21495 4.3 ± 0.3 14.4 ± 0.0 83 ± 0.2 363 ± 0 685 ± 1 56 ± 0
0.25 30 2 21499 3.1 ± 0.2 14.5 ± 0.0 82 ± 0.2 358 ± 0 811 ± 1 58 ± 0
0.25 30 3 21496 1.7 ± 0.2 14.5 ± 0.0 80 ± 0.2 354 ± 0 942 ± 1 60 ± 0
0.25 30 4 21500 1.2 ± 0.1 14.5 ± 0.0 79 ± 0.2 350 ± 0 1079 ± 1 61 ± 0
0.25 40 1 21497 6.3 ± 0.3 14.4 ± 0.0 84 ± 0.2 361 ± 0 655 ± 1 51 ± 0
0.25 40 2 21499 4.9 ± 0.3 14.4 ± 0.0 84 ± 0.1 356 ± 0 781 ± 1 53 ± 0
0.25 40 3 21497 3.4 ± 0.2 14.5 ± 0.0 82 ± 0.1 352 ± 0 909 ± 1 56 ± 0
0.25 40 4 21494 2.2 ± 0.2 14.5 ± 0.0 81 ± 0.1 347 ± 0 1043 ± 1 57 ± 0
0.25 50 1 21992 14.0 ± 0.5 14.3 ± 0.0 86 ± 0.1 359 ± 0 628 ± 1 43 ± 0
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Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.25 50 2 21998 11.0 ± 0.4 14.3 ± 0.0 85 ± 0.1 354 ± 0 751 ± 1 45 ± 0
0.25 50 3 21996 7.7 ± 0.4 14.4 ± 0.0 84 ± 0.1 350 ± 0 880 ± 1 49 ± 0
0.25 50 4 21998 5.3 ± 0.3 14.4 ± 0.0 83 ± 0.1 345 ± 0 1014 ± 1 52 ± 0
0.5 0 1 21496 12.1 ± 0.4 23.8 ± 0.0 80 ± 0.2 224 ± 0 756 ± 1 53 ± 0
0.5 0 2 21495 8.0 ± 0.4 23.9 ± 0.0 78 ± 0.2 220 ± 0 1013 ± 1 57 ± 0
0.5 0 3 21497 5.0 ± 0.3 24.0 ± 0.0 77 ± 0.2 217 ± 0 1271 ± 1 60 ± 0
0.5 0 4 21494 1.8 ± 0.2 24.1 ± 0.0 74 ± 0.2 212 ± 0 1544 ± 1 64 ± 0
0.5 10 1 21500 8.1 ± 0.4 23.9 ± 0.0 81 ± 0.2 223 ± 0 726 ± 1 56 ± 0
0.5 10 2 21498 5.3 ± 0.3 24.0 ± 0.0 79 ± 0.2 219 ± 0 978 ± 1 59 ± 0
0.5 10 3 21497 3.3 ± 0.2 24.1 ± 0.0 79 ± 0.2 217 ± 0 1229 ± 1 61 ± 0
0.5 10 4 21497 1.5 ± 0.2 24.1 ± 0.0 75 ± 0.2 211 ± 0 1496 ± 1 64 ± 0
0.5 20 1 21500 5.1 ± 0.3 23.9 ± 0.0 82 ± 0.2 221 ± 0 698 ± 1 57 ± 0
0.5 20 2 21500 3.4 ± 0.2 24.0 ± 0.0 81 ± 0.2 217 ± 0 944 ± 1 59 ± 0
0.5 20 3 21501 2.1 ± 0.2 24.1 ± 0.0 81 ± 0.2 215 ± 0 1189 ± 1 61 ± 0
0.5 20 4 21497 1.0 ± 0.1 24.1 ± 0.0 77 ± 0.2 210 ± 0 1452 ± 1 64 ± 0
0.5 30 1 21497 4.0 ± 0.3 24.0 ± 0.0 84 ± 0.2 220 ± 0 667 ± 1 56 ± 0
0.5 30 2 21497 2.6 ± 0.2 24.0 ± 0.0 82 ± 0.2 216 ± 0 910 ± 1 58 ± 0
0.5 30 3 21500 1.5 ± 0.2 24.1 ± 0.0 82 ± 0.2 214 ± 0 1150 ± 1 60 ± 0
0.5 30 4 21499 1.0 ± 0.1 24.1 ± 0.0 78 ± 0.2 209 ± 0 1413 ± 1 62 ± 0
0.5 40 1 21498 5.6 ± 0.3 23.9 ± 0.0 85 ± 0.2 218 ± 0 640 ± 1 52 ± 0
0.5 40 2 21498 4.2 ± 0.3 24.0 ± 0.0 83 ± 0.1 214 ± 0 881 ± 1 54 ± 0
0.5 40 3 21498 2.9 ± 0.2 24.1 ± 0.0 84 ± 0.1 213 ± 0 1118 ± 1 56 ± 0
0.5 40 4 21499 1.8 ± 0.2 24.1 ± 0.0 80 ± 0.1 208 ± 0 1377 ± 1 58 ± 0
0.5 50 1 21999 13.0 ± 0.4 23.7 ± 0.0 86 ± 0.1 217 ± 0 612 ± 1 44 ± 0
0.5 50 2 21998 10.4 ± 0.4 23.8 ± 0.0 85 ± 0.1 213 ± 0 851 ± 1 46 ± 0
0.5 50 3 21998 7.2 ± 0.3 24.0 ± 0.0 85 ± 0.1 212 ± 0 1088 ± 1 50 ± 0
0.5 50 4 21992 4.6 ± 0.3 24.0 ± 0.0 81 ± 0.1 206 ± 0 1347 ± 1 53 ± 0
1.0 0 1 21497 10.2 ± 0.4 42.6 ± 0.0 82 ± 0.2 125 ± 0 753 ± 1 54 ± 0
1.0 0 2 21497 7.4 ± 0.3 42.9 ± 0.0 81 ± 0.2 123 ± 0 1235 ± 1 57 ± 0
1.0 0 3 21494 4.5 ± 0.3 43.1 ± 0.0 81 ± 0.2 122 ± 0 1720 ± 2 60 ± 0
1.0 0 4 21495 2.3 ± 0.2 43.2 ± 0.0 76 ± 0.2 118 ± 0 2214 ± 2 64 ± 0
1.0 10 1 21498 6.9 ± 0.3 42.8 ± 0.0 83 ± 0.2 124 ± 0 722 ± 1 56 ± 0
1.0 10 2 21499 4.7 ± 0.3 43.0 ± 0.0 82 ± 0.2 122 ± 0 1201 ± 1 59 ± 0
1.0 10 3 21499 2.8 ± 0.2 43.2 ± 0.0 82 ± 0.2 121 ± 0 1676 ± 1 61 ± 0
1.0 10 4 21499 1.4 ± 0.2 43.3 ± 0.0 77 ± 0.2 117 ± 0 2170 ± 2 64 ± 0
1.0 20 1 21500 4.3 ± 0.3 42.9 ± 0.0 85 ± 0.2 123 ± 0 693 ± 1 57 ± 0
1.0 20 2 21497 3.1 ± 0.2 43.1 ± 0.0 83 ± 0.2 121 ± 0 1165 ± 1 60 ± 0
1.0 20 3 21496 1.9 ± 0.2 43.2 ± 0.0 84 ± 0.2 121 ± 0 1636 ± 1 61 ± 0
1.0 20 4 21496 0.9 ± 0.1 43.3 ± 0.0 78 ± 0.2 116 ± 0 2125 ± 2 64 ± 0
1.0 30 1 21499 3.1 ± 0.2 43.0 ± 0.0 86 ± 0.2 123 ± 0 662 ± 1 56 ± 0
1.0 30 2 21499 2.4 ± 0.2 43.1 ± 0.0 84 ± 0.2 120 ± 0 1131 ± 1 59 ± 0
1.0 30 3 21499 1.4 ± 0.2 43.2 ± 0.1 85 ± 0.2 120 ± 0 1596 ± 1 60 ± 0
1.0 30 4 21500 0.9 ± 0.1 43.3 ± 0.0 79 ± 0.2 116 ± 0 2082 ± 2 62 ± 0
1.0 40 1 21499 5.1 ± 0.3 42.9 ± 0.0 87 ± 0.2 122 ± 0 632 ± 1 51 ± 0
1.0 40 2 21498 4.0 ± 0.3 43.0 ± 0.0 85 ± 0.1 119 ± 0 1101 ± 1 54 ± 0
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Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
1.0 40 3 21500 2.7 ± 0.2 43.2 ± 0.0 87 ± 0.2 119 ± 0 1560 ± 1 56 ± 0
1.0 40 4 21498 1.8 ± 0.2 43.3 ± 0.0 81 ± 0.1 115 ± 0 2045 ± 1 59 ± 0
1.0 50 1 21999 11.4 ± 0.4 42.6 ± 0.0 88 ± 0.1 121 ± 0 605 ± 1 44 ± 0
1.0 50 2 21998 9.2 ± 0.4 42.8 ± 0.0 87 ± 0.1 119 ± 0 1069 ± 1 47 ± 0
1.0 50 3 21998 6.5 ± 0.3 43.0 ± 0.0 88 ± 0.1 118 ± 0 1527 ± 1 50 ± 0
1.0 50 4 21999 4.5 ± 0.3 43.1 ± 0.0 82 ± 0.1 114 ± 0 2009 ± 1 54 ± 0
2.0 0 1 21499 10.2 ± 0.4 80.8 ± 0.1 83 ± 0.2 66 ± 0 753 ± 1 54 ± 0
2.0 0 2 21498 7.4 ± 0.3 81.3 ± 0.0 81 ± 0.2 65 ± 0 1689 ± 2 57 ± 0
2.0 0 3 21497 4.7 ± 0.3 81.7 ± 0.0 82 ± 0.2 65 ± 0 2627 ± 2 59 ± 0
2.0 0 4 21496 2.3 ± 0.2 82.1 ± 0.0 76 ± 0.2 62 ± 0 3574 ± 3 64 ± 0
2.0 10 1 21497 6.8 ± 0.3 81.2 ± 0.0 84 ± 0.2 66 ± 0 722 ± 1 56 ± 0
2.0 10 2 21499 4.9 ± 0.3 81.5 ± 0.0 82 ± 0.2 64 ± 0 1652 ± 2 59 ± 0
2.0 10 3 21501 3.0 ± 0.2 81.9 ± 0.0 83 ± 0.2 65 ± 0 2580 ± 2 61 ± 0
2.0 10 4 21498 1.5 ± 0.2 82.1 ± 0.0 77 ± 0.2 62 ± 0 3525 ± 3 64 ± 0
2.0 20 1 21497 4.3 ± 0.3 81.4 ± 0.0 85 ± 0.2 65 ± 0 692 ± 1 57 ± 0
2.0 20 2 21494 3.1 ± 0.2 81.7 ± 0.0 83 ± 0.2 64 ± 0 1615 ± 1 60 ± 0
2.0 20 3 21501 1.7 ± 0.2 82.1 ± 0.2 85 ± 0.2 64 ± 0 2537 ± 2 62 ± 0
2.0 20 4 21498 0.9 ± 0.1 82.2 ± 0.1 78 ± 0.2 61 ± 0 3476 ± 3 64 ± 0
2.0 30 1 21502 3.1 ± 0.2 81.6 ± 0.0 86 ± 0.2 65 ± 0 662 ± 1 57 ± 0
2.0 30 2 21499 2.3 ± 0.2 81.8 ± 0.0 84 ± 0.2 63 ± 0 1579 ± 1 58 ± 0
2.0 30 3 21496 1.5 ± 0.2 82.0 ± 0.0 86 ± 0.2 64 ± 0 2492 ± 2 60 ± 0
2.0 30 4 21497 0.9 ± 0.1 82.2 ± 0.0 80 ± 0.2 61 ± 0 3427 ± 2 62 ± 0
2.0 40 1 21502 5.0 ± 0.3 81.4 ± 0.0 87 ± 0.2 64 ± 0 633 ± 1 52 ± 0
2.0 40 2 21498 4.0 ± 0.3 81.6 ± 0.0 85 ± 0.1 63 ± 0 1545 ± 1 54 ± 0
2.0 40 3 21497 2.7 ± 0.2 81.9 ± 0.0 87 ± 0.2 63 ± 0 2453 ± 2 56 ± 0
2.0 40 4 21500 1.9 ± 0.2 82.1 ± 0.0 81 ± 0.1 61 ± 0 3384 ± 2 59 ± 0
2.0 50 1 21996 11.3 ± 0.4 80.8 ± 0.0 89 ± 0.1 64 ± 0 605 ± 1 44 ± 0
2.0 50 2 21999 9.3 ± 0.4 81.1 ± 0.0 87 ± 0.1 62 ± 0 1514 ± 1 47 ± 0
2.0 50 3 22000 6.8 ± 0.3 81.5 ± 0.0 89 ± 0.1 63 ± 0 2417 ± 2 50 ± 0
2.0 50 4 22001 5.1 ± 0.3 81.8 ± 0.0 82 ± 0.1 60 ± 0 3347 ± 2 53 ± 0

Table E.20: Confidence Intervals for ILPRouting on TOSSIM Network Size 25

Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.25 0 1 21498 10.2 ± 0.4 16.4 ± 0.0 73 ± 0.2 427 ± 1 895 ± 1 65 ± 0
0.25 0 2 21500 8.0 ± 0.4 16.5 ± 0.0 72 ± 0.2 422 ± 1 1033 ± 1 68 ± 0
0.25 0 3 21497 4.7 ± 0.3 16.5 ± 0.0 71 ± 0.2 416 ± 1 1182 ± 1 71 ± 0
0.25 0 4 21491 2.5 ± 0.2 16.6 ± 0.0 69 ± 0.2 411 ± 1 1336 ± 1 75 ± 0
0.25 10 1 21498 6.5 ± 0.3 16.5 ± 0.0 75 ± 0.2 425 ± 1 855 ± 1 68 ± 0
0.25 10 2 21495 4.8 ± 0.3 16.5 ± 0.0 74 ± 0.2 419 ± 1 989 ± 1 70 ± 0
0.25 10 3 21499 2.8 ± 0.2 16.6 ± 0.0 73 ± 0.2 414 ± 1 1129 ± 1 73 ± 0
0.25 10 4 21498 1.5 ± 0.2 16.6 ± 0.0 72 ± 0.2 410 ± 1 1273 ± 1 75 ± 0
0.25 20 1 21498 4.1 ± 0.3 16.5 ± 0.0 77 ± 0.2 422 ± 1 819 ± 1 69 ± 0
0.25 20 2 21500 3.0 ± 0.2 16.5 ± 0.0 76 ± 0.2 416 ± 1 946 ± 1 71 ± 0

208



Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
0.25 20 3 21500 2.0 ± 0.2 16.6 ± 0.0 75 ± 0.2 412 ± 1 1082 ± 1 72 ± 0
0.25 20 4 21498 1.1 ± 0.1 16.6 ± 0.0 74 ± 0.2 409 ± 1 1219 ± 1 74 ± 0
0.25 30 1 21499 3.6 ± 0.2 16.5 ± 0.0 79 ± 0.2 420 ± 1 779 ± 1 66 ± 0
0.25 30 2 21496 2.7 ± 0.2 16.5 ± 0.0 78 ± 0.2 414 ± 1 905 ± 1 68 ± 0
0.25 30 3 21495 2.0 ± 0.2 16.6 ± 0.0 77 ± 0.2 410 ± 1 1036 ± 1 69 ± 0
0.25 30 4 21501 1.4 ± 0.2 16.6 ± 0.0 76 ± 0.2 406 ± 1 1170 ± 1 71 ± 0
0.25 40 1 21496 7.1 ± 0.3 16.5 ± 0.0 81 ± 0.2 417 ± 1 743 ± 1 58 ± 0
0.25 40 2 21499 5.6 ± 0.3 16.5 ± 0.0 80 ± 0.2 412 ± 1 869 ± 1 60 ± 0
0.25 40 3 21496 4.3 ± 0.3 16.5 ± 0.0 79 ± 0.2 408 ± 1 999 ± 1 63 ± 0
0.25 40 4 21496 3.5 ± 0.2 16.5 ± 0.0 79 ± 0.1 404 ± 1 1130 ± 1 65 ± 0
0.25 50 1 21998 18.1 ± 0.5 16.3 ± 0.0 83 ± 0.1 416 ± 1 709 ± 1 46 ± 0
0.25 50 2 21998 15.7 ± 0.5 16.3 ± 0.0 82 ± 0.1 410 ± 0 834 ± 1 48 ± 0
0.25 50 3 22002 11.9 ± 0.4 16.4 ± 0.0 82 ± 0.1 405 ± 0 962 ± 1 52 ± 0
0.25 50 4 21998 8.4 ± 0.4 16.5 ± 0.0 81 ± 0.1 402 ± 0 1095 ± 1 56 ± 0
0.5 0 1 21496 9.7 ± 0.4 28.0 ± 0.1 76 ± 0.2 252 ± 0 874 ± 1 65 ± 0
0.5 0 2 21496 6.9 ± 0.3 28.1 ± 0.0 75 ± 0.2 247 ± 0 1134 ± 1 68 ± 0
0.5 0 3 21497 4.6 ± 0.3 28.3 ± 0.1 73 ± 0.2 244 ± 0 1400 ± 1 71 ± 0
0.5 0 4 21501 2.1 ± 0.2 28.3 ± 0.0 71 ± 0.2 241 ± 0 1671 ± 2 75 ± 0
0.5 10 1 21497 6.3 ± 0.3 28.1 ± 0.0 78 ± 0.2 250 ± 0 834 ± 1 68 ± 0
0.5 10 2 21494 4.4 ± 0.3 28.2 ± 0.0 77 ± 0.2 246 ± 0 1086 ± 1 70 ± 0
0.5 10 3 21499 2.7 ± 0.2 28.3 ± 0.0 75 ± 0.2 243 ± 0 1345 ± 1 72 ± 0
0.5 10 4 21497 1.2 ± 0.1 28.3 ± 0.0 74 ± 0.2 241 ± 0 1608 ± 1 75 ± 0
0.5 20 1 21497 3.9 ± 0.3 28.2 ± 0.0 80 ± 0.2 248 ± 0 795 ± 1 69 ± 0
0.5 20 2 21498 2.6 ± 0.2 28.2 ± 0.0 79 ± 0.2 244 ± 0 1041 ± 1 70 ± 0
0.5 20 3 21499 1.7 ± 0.2 28.3 ± 0.0 77 ± 0.2 242 ± 0 1293 ± 1 72 ± 0
0.5 20 4 21498 0.9 ± 0.1 28.4 ± 0.0 76 ± 0.2 239 ± 0 1548 ± 1 74 ± 0
0.5 30 1 21500 3.1 ± 0.2 28.2 ± 0.0 82 ± 0.2 246 ± 0 756 ± 1 66 ± 0
0.5 30 2 21499 2.4 ± 0.2 28.2 ± 0.0 81 ± 0.2 243 ± 0 997 ± 1 68 ± 0
0.5 30 3 21498 1.7 ± 0.2 28.3 ± 0.0 80 ± 0.2 240 ± 0 1245 ± 1 69 ± 0
0.5 30 4 21496 1.3 ± 0.1 28.3 ± 0.0 79 ± 0.2 238 ± 0 1496 ± 1 71 ± 0
0.5 40 1 21498 6.5 ± 0.3 28.1 ± 0.0 84 ± 0.2 245 ± 0 720 ± 1 58 ± 0
0.5 40 2 21499 5.3 ± 0.3 28.2 ± 0.0 83 ± 0.2 242 ± 0 959 ± 1 61 ± 0
0.5 40 3 21499 3.9 ± 0.3 28.2 ± 0.0 82 ± 0.2 239 ± 0 1203 ± 1 63 ± 0
0.5 40 4 21497 3.0 ± 0.2 28.3 ± 0.0 81 ± 0.1 237 ± 0 1453 ± 1 65 ± 0
0.5 50 1 21999 17.0 ± 0.5 27.7 ± 0.0 85 ± 0.1 244 ± 0 686 ± 1 46 ± 0
0.5 50 2 21997 14.0 ± 0.5 27.9 ± 0.0 85 ± 0.1 241 ± 0 924 ± 1 49 ± 0
0.5 50 3 22000 10.8 ± 0.4 28.0 ± 0.0 84 ± 0.1 238 ± 0 1168 ± 1 52 ± 0
0.5 50 4 22002 7.9 ± 0.4 28.1 ± 0.0 83 ± 0.1 236 ± 0 1416 ± 1 57 ± 0
1.0 0 1 21495 9.8 ± 0.4 51.1 ± 0.0 77 ± 0.2 138 ± 0 871 ± 1 66 ± 0
1.0 0 2 21493 7.2 ± 0.3 51.3 ± 0.0 75 ± 0.2 135 ± 0 1361 ± 2 68 ± 0
1.0 0 3 21495 5.0 ± 0.3 51.5 ± 0.0 73 ± 0.2 134 ± 0 1858 ± 2 71 ± 0
1.0 0 4 21493 2.4 ± 0.2 51.7 ± 0.0 72 ± 0.2 132 ± 0 2355 ± 2 74 ± 0
1.0 10 1 21499 6.4 ± 0.3 51.4 ± 0.2 78 ± 0.2 137 ± 0 830 ± 1 68 ± 0
1.0 10 2 21499 5.0 ± 0.3 51.5 ± 0.0 77 ± 0.2 135 ± 0 1310 ± 1 70 ± 0
1.0 10 3 21500 3.0 ± 0.2 51.6 ± 0.0 75 ± 0.2 133 ± 0 1801 ± 2 72 ± 0
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Psrc PDS Grp R Captured T T Received Sent Latency Attacker
(sec) (%) Size (%) (sec) (%) per sec (ms) Distance
1.0 10 4 21500 1.5 ± 0.2 51.8 ± 0.0 74 ± 0.2 132 ± 0 2288 ± 2 75 ± 0
1.0 20 1 21499 4.0 ± 0.3 51.4 ± 0.0 80 ± 0.2 136 ± 0 789 ± 1 69 ± 0
1.0 20 2 21497 2.8 ± 0.2 51.6 ± 0.0 79 ± 0.2 134 ± 0 1265 ± 1 70 ± 0
1.0 20 3 21499 1.7 ± 0.2 51.7 ± 0.0 78 ± 0.2 132 ± 0 1746 ± 1 72 ± 0
1.0 20 4 21499 1.0 ± 0.1 51.8 ± 0.0 77 ± 0.2 131 ± 0 2227 ± 2 74 ± 0
1.0 30 1 21498 3.1 ± 0.2 51.5 ± 0.0 82 ± 0.2 135 ± 0 750 ± 1 66 ± 0
1.0 30 2 21498 2.4 ± 0.2 51.6 ± 0.0 81 ± 0.2 133 ± 0 1220 ± 1 67 ± 0
1.0 30 3 21496 1.7 ± 0.2 51.7 ± 0.0 80 ± 0.2 132 ± 0 1695 ± 1 69 ± 0
1.0 30 4 21498 1.3 ± 0.1 51.8 ± 0.0 79 ± 0.2 131 ± 0 2170 ± 2 71 ± 0
1.0 40 1 21498 6.9 ± 0.3 51.4 ± 0.2 84 ± 0.2 134 ± 0 712 ± 1 58 ± 0
1.0 40 2 21497 5.6 ± 0.3 51.4 ± 0.0 83 ± 0.2 132 ± 0 1178 ± 1 60 ± 0
1.0 40 3 21499 4.3 ± 0.3 51.5 ± 0.0 82 ± 0.2 131 ± 0 1651 ± 1 62 ± 0
1.0 40 4 21497 3.2 ± 0.2 51.6 ± 0.0 81 ± 0.2 130 ± 0 2122 ± 2 65 ± 0
1.0 50 1 22001 16.7 ± 0.5 50.6 ± 0.0 86 ± 0.1 134 ± 0 678 ± 1 47 ± 0
1.0 50 2 21998 14.2 ± 0.5 50.8 ± 0.0 85 ± 0.1 132 ± 0 1143 ± 1 49 ± 0
1.0 50 3 21999 11.4 ± 0.4 51.1 ± 0.0 84 ± 0.1 130 ± 0 1613 ± 1 52 ± 0
1.0 50 4 22000 8.3 ± 0.4 51.3 ± 0.0 84 ± 0.1 129 ± 0 2081 ± 1 55 ± 0
2.0 0 1 21496 10.1 ± 0.4 97.9 ± 0.1 78 ± 0.3 72 ± 0 869 ± 1 65 ± 0
2.0 0 2 21495 7.1 ± 0.3 98.5 ± 0.0 78 ± 0.2 71 ± 0 1818 ± 2 68 ± 0
2.0 0 3 21496 5.4 ± 0.3 98.8 ± 0.0 77 ± 0.2 71 ± 0 2773 ± 2 70 ± 0
2.0 0 4 21496 2.7 ± 0.2 99.2 ± 0.0 77 ± 0.2 71 ± 0 3731 ± 3 74 ± 0
2.0 10 1 21497 6.4 ± 0.3 98.4 ± 0.1 80 ± 0.2 72 ± 0 827 ± 1 68 ± 0
2.0 10 2 21501 4.8 ± 0.3 98.8 ± 0.0 80 ± 0.2 71 ± 0 1766 ± 2 70 ± 0
2.0 10 3 21497 3.1 ± 0.2 99.1 ± 0.0 79 ± 0.2 71 ± 0 2715 ± 2 72 ± 0
2.0 10 4 21498 1.7 ± 0.2 99.3 ± 0.0 79 ± 0.2 71 ± 0 3662 ± 3 75 ± 0
2.0 20 1 21502 3.9 ± 0.3 98.7 ± 0.0 81 ± 0.2 71 ± 0 788 ± 1 69 ± 0
2.0 20 2 21495 2.7 ± 0.2 99.0 ± 0.0 81 ± 0.2 70 ± 0 1720 ± 2 71 ± 0
2.0 20 3 21497 1.6 ± 0.2 99.2 ± 0.0 81 ± 0.2 70 ± 0 2656 ± 2 73 ± 0
2.0 20 4 21497 1.1 ± 0.1 99.4 ± 0.0 81 ± 0.2 70 ± 0 3596 ± 3 75 ± 0
2.0 30 1 21499 3.2 ± 0.2 98.8 ± 0.0 83 ± 0.2 71 ± 0 748 ± 1 66 ± 0
2.0 30 2 21500 2.3 ± 0.2 99.1 ± 0.1 83 ± 0.2 70 ± 0 1674 ± 2 68 ± 0
2.0 30 3 21498 1.8 ± 0.2 99.2 ± 0.0 83 ± 0.2 70 ± 0 2603 ± 2 70 ± 0
2.0 30 4 21495 1.3 ± 0.2 99.4 ± 0.2 83 ± 0.2 69 ± 0 3536 ± 3 72 ± 0
2.0 40 1 21496 6.6 ± 0.3 98.4 ± 0.0 85 ± 0.2 70 ± 0 711 ± 1 58 ± 0
2.0 40 2 21500 5.7 ± 0.3 98.7 ± 0.0 85 ± 0.2 70 ± 0 1632 ± 1 60 ± 0
2.0 40 3 21498 4.4 ± 0.3 98.9 ± 0.0 85 ± 0.2 69 ± 0 2557 ± 2 63 ± 0
2.0 40 4 21498 3.5 ± 0.2 99.1 ± 0.0 85 ± 0.2 69 ± 0 3481 ± 3 66 ± 0
2.0 50 1 21998 16.9 ± 0.5 96.9 ± 0.1 86 ± 0.1 70 ± 0 677 ± 1 46 ± 0
2.0 50 2 22001 14.9 ± 0.5 97.4 ± 0.1 86 ± 0.1 69 ± 0 1592 ± 1 49 ± 0
2.0 50 3 22000 11.7 ± 0.4 98.0 ± 0.1 86 ± 0.1 69 ± 0 2511 ± 2 52 ± 0
2.0 50 4 21998 9.2 ± 0.4 98.4 ± 0.1 86 ± 0.1 69 ± 0 3429 ± 2 56 ± 0
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E.2 Cooja

E.2.1 Protectionless

Table E.21: Confidence Intervals for Protectionless on Cooja Network Size 7

Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 5002 100.0 ± 0.0 2.1 ± 0.0 85 ± 0.3 113 ± 0 90 ± 0 0 ± 0
0.5 5002 100.0 ± 0.0 3.5 ± 0.0 87 ± 0.3 68 ± 0 89 ± 0 0 ± 0
1.0 5002 100.0 ± 0.0 6.4 ± 0.0 87 ± 0.3 37 ± 0 88 ± 0 0 ± 0
2.0 5002 100.0 ± 0.0 12.2 ± 0.0 100 ± 0.0 19 ± 0 96 ± 0 0 ± 0
4.0 502 100.0 ± 0.0 23.9 ± 0.0 100 ± 0.2 10 ± 0 97 ± 0 0 ± 0
8.0 502 100.0 ± 0.0 47.4 ± 0.0 99 ± 0.3 5 ± 0 97 ± 0 0 ± 0

Table E.22: Confidence Intervals for Protectionless on Cooja Network Size 9

Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 502 100.0 ± 0.0 2.6 ± 0.0 92 ± 0.9 214 ± 1 122 ± 0 0 ± 0
0.5 502 100.0 ± 0.0 4.5 ± 0.0 98 ± 0.5 124 ± 1 121 ± 0 0 ± 0
1.0 502 100.0 ± 0.0 8.4 ± 0.0 99 ± 0.2 67 ± 0 120 ± 0 0 ± 0
2.0 502 100.0 ± 0.0 16.2 ± 0.0 100 ± 0.1 34 ± 0 121 ± 0 0 ± 0
4.0 502 100.0 ± 0.0 31.8 ± 0.1 100 ± 0.0 17 ± 0 123 ± 0 0 ± 0
8.0 502 100.0 ± 0.0 63.3 ± 0.2 100 ± 0.0 9 ± 0 124 ± 0 0 ± 0

Table E.23: Confidence Intervals for Protectionless on Cooja Network Size 11

Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 502 100.0 ± 0.0 3.1 ± 0.0 95 ± 0.6 342 ± 2 151 ± 0 0 ± 0
0.5 502 100.0 ± 0.0 5.5 ± 0.0 98 ± 0.4 195 ± 1 151 ± 0 0 ± 0
1.0 502 100.0 ± 0.0 10.3 ± 0.0 100 ± 0.1 104 ± 0 151 ± 0 0 ± 0
2.0 502 100.0 ± 0.0 20.1 ± 0.0 99 ± 0.2 53 ± 0 153 ± 1 0 ± 0
4.0 502 100.0 ± 0.0 39.6 ± 0.0 99 ± 0.3 27 ± 0 157 ± 3 0 ± 0
8.0 502 100.0 ± 0.0 78.6 ± 0.0 99 ± 0.3 14 ± 0 154 ± 0 0 ± 0

E.2.2 DynamicSPR

Table E.24: Confidence Intervals for DynamicSPR on Cooja Network Size 7

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 502 1.2 ± 1.0 7.3 ± 0.0 84 ± 0.9 210 ± 1 126 ± 2 30 ± 1
0.25 Fxd2 502 0.6 ± 0.7 7.4 ± 0.0 78 ± 1.1 244 ± 1 135 ± 2 34 ± 1

211



Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.5 Fxd1 502 0.0 ± 0.0 9.9 ± 0.0 92 ± 0.7 171 ± 1 109 ± 1 32 ± 1
0.5 Fxd2 502 0.0 ± 0.0 9.9 ± 0.0 90 ± 0.8 211 ± 1 123 ± 2 35 ± 1
1.0 Fxd1 502 0.0 ± 0.0 15.1 ± 0.0 98 ± 0.4 113 ± 1 105 ± 1 33 ± 1
1.0 Fxd2 502 0.0 ± 0.0 15.1 ± 0.0 93 ± 0.7 143 ± 1 113 ± 2 36 ± 0
2.0 Fxd1 502 0.0 ± 0.0 25.9 ± 0.0 98 ± 0.4 67 ± 0 106 ± 2 33 ± 1
2.0 Fxd2 502 0.0 ± 0.0 25.9 ± 0.0 97 ± 0.5 85 ± 1 112 ± 3 36 ± 0
4.0 Fxd1 502 0.0 ± 0.0 47.4 ± 0.0 98 ± 0.3 37 ± 0 111 ± 4 34 ± 0
4.0 Fxd2 502 0.0 ± 0.0 47.4 ± 0.0 98 ± 0.4 47 ± 0 114 ± 4 36 ± 0
8.0 Fxd1 502 0.0 ± 0.0 85.8 ± 0.2 98 ± 0.4 20 ± 0 136 ± 12 33 ± 0
8.0 Fxd2 502 0.0 ± 0.0 86.0 ± 0.2 97 ± 0.4 25 ± 0 131 ± 9 35 ± 0

Table E.25: Confidence Intervals for DynamicSPR on Cooja Network Size 9

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 502 0.6 ± 0.7 8.4 ± 0.0 90 ± 0.7 381 ± 2 162 ± 1 39 ± 1
0.25 Fxd2 502 0.0 ± 0.0 8.3 ± 0.0 82 ± 0.9 442 ± 3 178 ± 2 43 ± 1
0.5 Fxd1 502 0.0 ± 0.0 12.0 ± 0.0 93 ± 0.6 294 ± 2 152 ± 1 42 ± 1
0.5 Fxd2 502 0.0 ± 0.0 12.0 ± 0.0 92 ± 0.6 364 ± 3 159 ± 2 44 ± 1
1.0 Fxd1 502 0.0 ± 0.0 19.1 ± 0.0 91 ± 0.3 191 ± 1 143 ± 1 43 ± 1
1.0 Fxd2 502 0.0 ± 0.0 19.1 ± 0.0 89 ± 0.4 233 ± 2 152 ± 2 45 ± 1
2.0 Fxd1 502 0.0 ± 0.0 33.7 ± 0.0 98 ± 0.3 110 ± 1 144 ± 2 44 ± 1
2.0 Fxd2 502 0.0 ± 0.0 33.8 ± 0.0 97 ± 0.4 137 ± 1 146 ± 2 45 ± 1
4.0 Fxd1 502 0.0 ± 0.0 63.1 ± 0.0 97 ± 0.4 60 ± 0 149 ± 3 44 ± 1
4.0 Fxd2 502 0.0 ± 0.0 63.1 ± 0.0 96 ± 0.4 75 ± 1 149 ± 4 45 ± 1
8.0 Fxd1 502 0.0 ± 0.0 118.0 ± 0.2 98 ± 0.3 32 ± 0 154 ± 6 46 ± 1
8.0 Fxd2 502 0.0 ± 0.0 117.7 ± 0.2 97 ± 0.4 42 ± 0 154 ± 6 49 ± 0

Table E.26: Confidence Intervals for DynamicSPR on Cooja Network Size 11

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 399 0.3 ± 0.5 9.3 ± 0.0 87 ± 0.8 640 ± 3 207 ± 2 54 ± 1
0.25 Fxd2 380 0.0 ± 0.0 9.3 ± 0.0 80 ± 0.9 736 ± 3 223 ± 2 60 ± 1
0.5 Fxd1 397 0.0 ± 0.0 13.9 ± 0.0 93 ± 0.6 480 ± 2 194 ± 1 57 ± 1
0.5 Fxd2 365 0.0 ± 0.0 13.9 ± 0.0 91 ± 0.6 603 ± 3 206 ± 2 60 ± 1
1.0 Fxd1 402 0.0 ± 0.0 23.0 ± 0.0 97 ± 0.4 300 ± 1 183 ± 2 57 ± 1
1.0 Fxd2 368 0.0 ± 0.0 23.0 ± 0.0 95 ± 0.5 384 ± 2 192 ± 2 60 ± 1
2.0 Fxd1 431 0.0 ± 0.0 41.5 ± 0.0 98 ± 0.3 169 ± 1 179 ± 2 58 ± 1
2.0 Fxd2 392 0.0 ± 0.0 41.5 ± 0.0 97 ± 0.4 221 ± 1 185 ± 3 61 ± 0
4.0 Fxd1 388 0.0 ± 0.0 78.6 ± 0.0 98 ± 0.3 90 ± 0 184 ± 4 59 ± 1
4.0 Fxd2 360 0.0 ± 0.0 78.6 ± 0.0 98 ± 0.3 118 ± 1 185 ± 4 61 ± 0
8.0 Fxd1 390 0.0 ± 0.0 148.3 ± 0.2 98 ± 0.3 45 ± 0 196 ± 8 55 ± 1
8.0 Fxd2 369 0.0 ± 0.0 148.5 ± 0.2 97 ± 0.4 54 ± 1 199 ± 8 55 ± 1
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E.2.3 DynamicSPR with Duty Cycling

Table E.27: Confidence Intervals for DynamicSPR with Duty Cycling on Cooja
Network Size 7

Psrc App. DC R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 5 502 40.0 ± 4.3 6.8 ± 0.1 79 ± 1.3 141 ± 2 152 ± 2 14 ± 1
0.25 Fxd1 4 502 29.9 ± 4.0 7.0 ± 0.1 85 ± 1.2 152 ± 2 144 ± 2 16 ± 1
0.25 Fxd1 3 502 25.1 ± 3.8 7.0 ± 0.1 84 ± 1.1 158 ± 2 145 ± 2 19 ± 1
0.25 Fxd1 1 494 5.7 ± 2.0 7.2 ± 0.0 17 ± 1.1 80 ± 1 137 ± 2 19 ± 1
0.25 Fxd2 5 502 4.0 ± 1.7 7.3 ± 0.0 72 ± 1.3 194 ± 2 152 ± 2 26 ± 1
0.25 Fxd2 4 502 23.3 ± 3.7 7.1 ± 0.0 73 ± 1.4 140 ± 1 154 ± 2 18 ± 1
0.25 Fxd2 3 502 22.5 ± 3.7 7.1 ± 0.0 72 ± 1.4 155 ± 2 155 ± 2 19 ± 1
0.25 Fxd2 1 412 0.0 ± 0.0 7.3 ± 0.0 12 ± 0.4 85 ± 1 138 ± 3 22 ± 1
0.5 Fxd1 5 502 12.4 ± 2.9 9.7 ± 0.0 91 ± 0.8 127 ± 1 149 ± 2 14 ± 1
0.5 Fxd1 4 502 10.8 ± 2.7 9.7 ± 0.1 88 ± 1.0 127 ± 1 150 ± 2 19 ± 1
0.5 Fxd1 3 502 10.6 ± 2.7 9.7 ± 0.1 86 ± 1.1 129 ± 1 144 ± 2 21 ± 1
0.5 Fxd1 2 502 10.2 ± 2.7 9.7 ± 0.1 89 ± 0.9 132 ± 1 135 ± 1 20 ± 1
0.5 Fxd1 1 502 3.0 ± 1.5 9.8 ± 0.0 87 ± 0.9 137 ± 1 137 ± 1 22 ± 1
0.5 Fxd2 5 502 5.6 ± 2.0 9.8 ± 0.1 82 ± 1.0 146 ± 1 146 ± 1 23 ± 1
0.5 Fxd2 4 502 1.6 ± 1.1 9.9 ± 0.0 87 ± 0.9 158 ± 1 139 ± 1 27 ± 1
0.5 Fxd2 3 502 1.2 ± 1.0 9.9 ± 0.0 88 ± 0.9 163 ± 1 139 ± 1 28 ± 1
0.5 Fxd2 2 502 0.4 ± 0.6 9.9 ± 0.0 87 ± 0.9 165 ± 1 138 ± 1 28 ± 1
0.5 Fxd2 1 502 16.5 ± 3.3 9.7 ± 0.1 89 ± 0.9 139 ± 1 145 ± 1 21 ± 1
1.0 Fxd1 5 502 12.2 ± 2.9 14.9 ± 0.1 95 ± 0.6 82 ± 0 152 ± 2 14 ± 1
1.0 Fxd1 4 502 9.8 ± 2.6 14.8 ± 0.1 96 ± 0.6 85 ± 0 148 ± 2 19 ± 1
1.0 Fxd1 3 502 8.8 ± 2.5 14.8 ± 0.1 95 ± 0.6 86 ± 0 141 ± 1 19 ± 1
1.0 Fxd1 2 502 12.0 ± 2.8 14.7 ± 0.1 96 ± 0.5 87 ± 0 134 ± 1 19 ± 1
1.0 Fxd1 1 502 4.6 ± 1.8 15.0 ± 0.1 96 ± 0.5 91 ± 0 134 ± 1 22 ± 1
1.0 Fxd2 5 502 3.2 ± 1.5 15.0 ± 0.1 93 ± 0.8 102 ± 1 151 ± 2 22 ± 1
1.0 Fxd2 4 502 2.8 ± 1.4 15.0 ± 0.1 91 ± 0.9 102 ± 1 149 ± 2 26 ± 1
1.0 Fxd2 3 502 2.2 ± 1.3 15.1 ± 0.1 91 ± 0.9 107 ± 1 146 ± 2 27 ± 1
1.0 Fxd2 2 502 2.8 ± 1.4 15.1 ± 0.1 92 ± 0.8 107 ± 1 138 ± 1 27 ± 1
1.0 Fxd2 1 502 1.4 ± 1.0 15.1 ± 0.0 93 ± 0.7 116 ± 1 138 ± 1 27 ± 1
2.0 Fxd1 5 502 21.9 ± 3.6 24.6 ± 0.2 95 ± 0.7 49 ± 0 149 ± 2 12 ± 1
2.0 Fxd1 4 502 18.5 ± 3.4 24.7 ± 0.3 97 ± 0.5 49 ± 0 139 ± 1 16 ± 1
2.0 Fxd1 3 502 8.2 ± 2.4 25.3 ± 0.2 97 ± 0.6 50 ± 0 143 ± 2 19 ± 1
2.0 Fxd1 2 502 15.5 ± 3.2 24.8 ± 0.3 96 ± 0.5 51 ± 0 134 ± 1 17 ± 1
2.0 Fxd1 1 502 4.6 ± 1.8 25.7 ± 0.1 96 ± 0.5 53 ± 0 135 ± 1 21 ± 1
2.0 Fxd2 5 502 1.0 ± 0.9 25.8 ± 0.1 95 ± 0.7 61 ± 0 153 ± 3 22 ± 1
2.0 Fxd2 4 502 2.0 ± 1.2 25.7 ± 0.1 96 ± 0.6 63 ± 0 147 ± 3 24 ± 1
2.0 Fxd2 3 502 3.0 ± 1.5 25.7 ± 0.1 97 ± 0.5 63 ± 1 141 ± 2 25 ± 1
2.0 Fxd2 2 502 3.6 ± 1.6 25.7 ± 0.1 97 ± 0.5 65 ± 1 139 ± 2 25 ± 1
2.0 Fxd2 1 502 2.6 ± 1.4 25.7 ± 0.1 97 ± 0.5 67 ± 1 139 ± 2 26 ± 1
4.0 Fxd1 5 502 9.8 ± 2.6 46.0 ± 0.4 94 ± 0.6 27 ± 0 152 ± 3 15 ± 1
4.0 Fxd1 4 502 22.3 ± 3.7 44.8 ± 0.5 97 ± 0.5 27 ± 0 139 ± 3 13 ± 1
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Psrc App. DC R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
4.0 Fxd1 3 502 22.7 ± 3.7 44.6 ± 0.6 97 ± 0.6 28 ± 0 140 ± 3 15 ± 1
4.0 Fxd1 2 502 22.3 ± 3.7 43.9 ± 0.6 96 ± 0.6 28 ± 0 134 ± 1 14 ± 1
4.0 Fxd1 1 502 5.2 ± 1.9 46.7 ± 0.3 96 ± 0.6 29 ± 0 140 ± 4 19 ± 1
4.0 Fxd2 5 502 6.6 ± 2.2 46.4 ± 0.4 97 ± 0.5 35 ± 0 145 ± 2 19 ± 1
4.0 Fxd2 4 502 3.8 ± 1.7 46.8 ± 0.3 97 ± 0.5 35 ± 0 137 ± 1 22 ± 1
4.0 Fxd2 3 502 4.6 ± 1.8 46.8 ± 0.3 97 ± 0.5 36 ± 0 139 ± 2 22 ± 1
4.0 Fxd2 2 502 3.4 ± 1.6 46.9 ± 0.3 97 ± 0.5 36 ± 0 137 ± 2 24 ± 1
4.0 Fxd2 1 502 1.0 ± 0.9 47.2 ± 0.2 98 ± 0.4 36 ± 0 138 ± 3 25 ± 1
8.0 Fxd1 5 502 3.6 ± 1.6 86.0 ± 0.4 97 ± 0.5 15 ± 0 135 ± 2 19 ± 1
8.0 Fxd1 4 502 1.8 ± 1.2 86.4 ± 0.3 97 ± 0.5 15 ± 0 139 ± 4 23 ± 1
8.0 Fxd1 3 502 1.2 ± 1.0 87.0 ± 0.2 97 ± 0.4 16 ± 0 140 ± 5 25 ± 1
8.0 Fxd1 2 502 2.6 ± 1.4 86.8 ± 0.3 98 ± 0.4 16 ± 0 136 ± 3 24 ± 1
8.0 Fxd1 1 502 0.0 ± 0.0 87.0 ± 0.1 98 ± 0.4 17 ± 0 137 ± 3 26 ± 1
8.0 Fxd2 5 502 1.8 ± 1.2 87.5 ± 0.4 95 ± 0.6 19 ± 0 140 ± 3 25 ± 1
8.0 Fxd2 4 502 0.6 ± 0.7 88.0 ± 0.2 97 ± 0.4 19 ± 0 137 ± 2 30 ± 1
8.0 Fxd2 3 502 0.0 ± 0.0 88.3 ± 0.0 97 ± 0.5 20 ± 0 139 ± 3 31 ± 1
8.0 Fxd2 2 502 0.4 ± 0.6 88.2 ± 0.2 97 ± 0.4 20 ± 0 137 ± 2 31 ± 1
8.0 Fxd2 1 502 0.0 ± 0.0 88.4 ± 0.0 98 ± 0.4 21 ± 0 138 ± 4 32 ± 1

Table E.28: Confidence Intervals for DynamicSPR with Duty Cycling on Cooja
Network Size 9

Psrc App. DC R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 5 502 16.3 ± 3.2 8.2 ± 0.0 84 ± 1.0 284 ± 2 187 ± 1 29 ± 2
0.25 Fxd1 4 502 7.6 ± 2.3 8.3 ± 0.0 84 ± 0.9 305 ± 2 192 ± 1 33 ± 1
0.25 Fxd1 3 502 2.8 ± 1.4 8.3 ± 0.0 83 ± 0.9 328 ± 2 198 ± 1 36 ± 1
0.25 Fxd1 1 451 0.2 ± 0.4 8.3 ± 0.0 8 ± 0.2 109 ± 1 180 ± 3 29 ± 0
0.25 Fxd2 5 502 0.0 ± 0.0 8.3 ± 0.0 71 ± 1.0 372 ± 2 207 ± 2 46 ± 1
0.25 Fxd2 4 502 35.3 ± 4.2 7.9 ± 0.1 84 ± 1.0 238 ± 2 189 ± 1 21 ± 2
0.25 Fxd2 3 502 31.3 ± 4.1 8.0 ± 0.1 83 ± 1.0 259 ± 3 190 ± 1 26 ± 2
0.25 Fxd2 1 344 0.3 ± 0.6 8.4 ± 0.0 7 ± 0.5 112 ± 1 213 ± 7 31 ± 1
0.5 Fxd1 5 502 5.6 ± 2.0 11.9 ± 0.0 84 ± 1.0 212 ± 1 176 ± 1 29 ± 1
0.5 Fxd1 4 502 7.0 ± 2.2 11.9 ± 0.1 88 ± 0.8 223 ± 2 181 ± 1 34 ± 1
0.5 Fxd1 3 502 1.8 ± 1.2 11.9 ± 0.0 85 ± 0.8 233 ± 2 184 ± 1 41 ± 1
0.5 Fxd1 2 502 3.0 ± 1.5 11.9 ± 0.0 86 ± 0.8 240 ± 1 185 ± 1 38 ± 1
0.5 Fxd1 1 470 0.2 ± 0.4 12.0 ± 0.0 88 ± 0.7 257 ± 1 193 ± 2 41 ± 1
0.5 Fxd2 5 502 1.0 ± 0.9 12.0 ± 0.0 89 ± 0.8 259 ± 2 185 ± 1 43 ± 1
0.5 Fxd2 4 502 0.0 ± 0.0 12.0 ± 0.0 86 ± 0.8 297 ± 1 188 ± 1 47 ± 1
0.5 Fxd2 3 502 0.0 ± 0.0 12.0 ± 0.0 86 ± 0.8 312 ± 2 192 ± 1 47 ± 1
0.5 Fxd2 2 502 0.0 ± 0.0 12.0 ± 0.0 86 ± 0.8 315 ± 2 193 ± 1 47 ± 1
0.5 Fxd2 1 315 2.9 ± 1.8 11.9 ± 0.0 89 ± 0.9 257 ± 3 197 ± 2 41 ± 1
1.0 Fxd1 5 502 5.2 ± 1.9 18.9 ± 0.1 90 ± 0.5 141 ± 1 177 ± 1 27 ± 1
1.0 Fxd1 4 502 2.8 ± 1.4 19.1 ± 0.1 90 ± 0.4 145 ± 1 177 ± 1 32 ± 1
1.0 Fxd1 3 502 1.8 ± 1.2 19.1 ± 0.0 90 ± 0.5 150 ± 1 178 ± 1 36 ± 1
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Psrc App. DC R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
1.0 Fxd1 2 502 2.8 ± 1.4 19.1 ± 0.0 90 ± 0.4 152 ± 1 178 ± 1 35 ± 1
1.0 Fxd1 1 502 0.0 ± 0.0 19.1 ± 0.0 90 ± 0.4 166 ± 1 178 ± 1 40 ± 1
1.0 Fxd2 5 502 1.8 ± 1.2 19.1 ± 0.0 81 ± 0.9 163 ± 1 180 ± 1 37 ± 1
1.0 Fxd2 4 502 0.8 ± 0.8 19.1 ± 0.0 84 ± 0.7 175 ± 1 183 ± 1 46 ± 1
1.0 Fxd2 3 502 0.0 ± 0.0 19.2 ± 0.0 83 ± 0.7 183 ± 1 187 ± 2 48 ± 1
1.0 Fxd2 2 502 0.0 ± 0.0 19.1 ± 0.0 84 ± 0.7 189 ± 1 187 ± 2 47 ± 1
1.0 Fxd2 1 502 0.0 ± 0.0 19.1 ± 0.0 85 ± 0.6 210 ± 1 189 ± 2 47 ± 1
2.0 Fxd1 5 502 4.2 ± 1.8 33.5 ± 0.1 97 ± 0.4 80 ± 0 178 ± 1 27 ± 1
2.0 Fxd1 4 502 3.0 ± 1.5 33.6 ± 0.1 97 ± 0.4 81 ± 1 178 ± 1 32 ± 1
2.0 Fxd1 3 502 4.4 ± 1.8 33.5 ± 0.1 97 ± 0.4 83 ± 1 179 ± 2 32 ± 1
2.0 Fxd1 2 502 2.8 ± 1.4 33.7 ± 0.1 97 ± 0.4 85 ± 1 179 ± 1 33 ± 1
2.0 Fxd1 1 502 0.0 ± 0.0 33.8 ± 0.0 97 ± 0.4 91 ± 0 180 ± 2 37 ± 1
2.0 Fxd2 5 502 1.2 ± 1.0 33.7 ± 0.1 97 ± 0.4 102 ± 1 178 ± 1 35 ± 1
2.0 Fxd2 4 502 0.4 ± 0.6 33.7 ± 0.1 97 ± 0.4 103 ± 1 180 ± 2 41 ± 1
2.0 Fxd2 3 502 0.4 ± 0.6 33.7 ± 0.0 97 ± 0.4 107 ± 1 179 ± 1 43 ± 1
2.0 Fxd2 2 502 0.2 ± 0.4 33.7 ± 0.0 97 ± 0.4 109 ± 1 180 ± 2 43 ± 1
2.0 Fxd2 1 502 0.2 ± 0.4 33.7 ± 0.0 97 ± 0.4 116 ± 1 177 ± 1 45 ± 1
4.0 Fxd1 5 502 3.2 ± 1.5 62.8 ± 0.2 91 ± 0.4 44 ± 0 179 ± 2 26 ± 1
4.0 Fxd1 4 502 4.8 ± 1.9 62.8 ± 0.2 91 ± 0.4 43 ± 0 179 ± 1 31 ± 1
4.0 Fxd1 3 502 2.8 ± 1.4 62.9 ± 0.1 91 ± 0.4 45 ± 0 183 ± 3 32 ± 1
4.0 Fxd1 2 502 4.0 ± 1.7 62.8 ± 0.2 92 ± 0.3 46 ± 0 179 ± 2 32 ± 1
4.0 Fxd1 1 502 1.0 ± 0.9 63.1 ± 0.1 91 ± 0.3 49 ± 0 179 ± 1 36 ± 1
4.0 Fxd2 5 502 1.6 ± 1.1 62.9 ± 0.2 92 ± 0.3 56 ± 1 180 ± 4 35 ± 1
4.0 Fxd2 4 502 0.6 ± 0.7 63.1 ± 0.1 91 ± 0.3 57 ± 0 180 ± 2 41 ± 1
4.0 Fxd2 3 502 0.4 ± 0.6 63.1 ± 0.1 91 ± 0.3 60 ± 0 180 ± 2 44 ± 1
4.0 Fxd2 2 502 1.2 ± 1.0 63.0 ± 0.1 92 ± 0.3 61 ± 1 178 ± 1 42 ± 1
4.0 Fxd2 1 502 0.0 ± 0.0 63.2 ± 0.0 91 ± 0.3 65 ± 1 181 ± 2 44 ± 1
8.0 Fxd1 5 502 2.8 ± 1.4 118.6 ± 0.5 98 ± 0.4 22 ± 0 184 ± 3 27 ± 1
8.0 Fxd1 4 502 4.6 ± 1.8 118.4 ± 0.6 98 ± 0.3 22 ± 0 186 ± 4 29 ± 1
8.0 Fxd1 3 502 3.2 ± 1.5 118.6 ± 0.6 98 ± 0.3 23 ± 0 186 ± 4 29 ± 1
8.0 Fxd1 2 502 3.0 ± 1.5 118.5 ± 0.5 98 ± 0.3 24 ± 0 181 ± 2 28 ± 1
8.0 Fxd1 1 502 1.4 ± 1.0 119.4 ± 0.3 98 ± 0.3 25 ± 0 184 ± 4 32 ± 1
8.0 Fxd2 5 502 1.0 ± 0.9 119.7 ± 0.3 98 ± 0.3 29 ± 0 185 ± 3 33 ± 1
8.0 Fxd2 4 502 1.4 ± 1.0 119.7 ± 0.4 98 ± 0.3 29 ± 0 187 ± 5 37 ± 1
8.0 Fxd2 3 502 0.8 ± 0.8 120.0 ± 0.2 98 ± 0.3 30 ± 0 186 ± 4 39 ± 1
8.0 Fxd2 2 502 0.4 ± 0.6 120.1 ± 0.2 98 ± 0.3 30 ± 0 186 ± 5 38 ± 1
8.0 Fxd2 1 502 0.2 ± 0.4 120.3 ± 0.1 98 ± 0.3 31 ± 0 185 ± 4 40 ± 1

Table E.29: Confidence Intervals for DynamicSPR with Duty Cycling on Cooja
Network Size 11

Psrc App. DC R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 5 430 10.9 ± 3.0 9.1 ± 0.0 78 ± 1.0 440 ± 4 234 ± 1 38 ± 2
0.25 Fxd1 4 313 1.6 ± 1.4 9.3 ± 0.0 79 ± 1.2 474 ± 3 241 ± 2 44 ± 2
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Psrc App. DC R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.25 Fxd1 3 255 0.4 ± 0.8 9.3 ± 0.0 79 ± 1.2 526 ± 4 250 ± 2 50 ± 2
0.25 Fxd1 1 172 0.0 ± 0.0 9.3 ± 0.0 6 ± 0.3 136 ± 2 229 ± 5 35 ± 1
0.25 Fxd2 5 379 0.0 ± 0.0 9.3 ± 0.0 71 ± 1.1 599 ± 3 261 ± 2 57 ± 1
0.25 Fxd2 4 226 36.3 ± 6.3 8.8 ± 0.1 88 ± 1.2 364 ± 5 232 ± 2 28 ± 3
0.25 Fxd2 3 204 27.5 ± 6.2 8.9 ± 0.1 86 ± 1.4 405 ± 8 237 ± 2 33 ± 3
0.25 Fxd2 1 153 0.0 ± 0.0 9.3 ± 0.0 6 ± 0.3 138 ± 2 252 ± 8 37 ± 1
0.5 Fxd1 5 455 11.2 ± 2.9 13.7 ± 0.1 87 ± 0.8 330 ± 3 228 ± 1 32 ± 2
0.5 Fxd1 4 412 1.9 ± 1.3 13.8 ± 0.0 86 ± 0.8 360 ± 3 230 ± 1 45 ± 2
0.5 Fxd1 3 375 2.1 ± 1.5 13.9 ± 0.0 87 ± 0.8 370 ± 3 232 ± 1 49 ± 2
0.5 Fxd1 2 340 2.9 ± 1.8 13.9 ± 0.0 89 ± 0.8 374 ± 3 233 ± 1 46 ± 2
0.5 Fxd1 1 155 0.0 ± 0.0 13.9 ± 0.0 88 ± 1.1 405 ± 4 239 ± 2 52 ± 2
0.5 Fxd2 5 459 0.4 ± 0.6 13.9 ± 0.0 78 ± 1.0 398 ± 3 237 ± 1 53 ± 1
0.5 Fxd2 4 392 0.0 ± 0.0 13.9 ± 0.0 80 ± 0.9 451 ± 3 241 ± 1 57 ± 1
0.5 Fxd2 3 414 0.0 ± 0.0 13.9 ± 0.0 82 ± 0.8 477 ± 4 244 ± 1 56 ± 1
0.5 Fxd2 2 372 0.0 ± 0.0 13.9 ± 0.0 82 ± 0.8 482 ± 3 244 ± 2 57 ± 1
0.5 Fxd2 1 127 3.9 ± 3.4 13.8 ± 0.1 84 ± 1.6 388 ± 9 246 ± 3 50 ± 3
1.0 Fxd1 5 460 8.0 ± 2.5 22.6 ± 0.1 96 ± 0.5 205 ± 1 226 ± 1 30 ± 1
1.0 Fxd1 4 454 5.3 ± 2.1 22.8 ± 0.1 96 ± 0.5 214 ± 2 227 ± 1 35 ± 1
1.0 Fxd1 3 450 1.6 ± 1.1 22.9 ± 0.1 95 ± 0.5 220 ± 2 225 ± 1 40 ± 1
1.0 Fxd1 2 408 3.9 ± 1.9 22.9 ± 0.1 96 ± 0.5 225 ± 2 224 ± 1 38 ± 1
1.0 Fxd1 1 424 0.0 ± 0.0 23.0 ± 0.0 94 ± 0.5 247 ± 1 227 ± 1 50 ± 1
1.0 Fxd2 5 478 1.7 ± 1.2 22.9 ± 0.1 92 ± 0.6 241 ± 2 228 ± 1 43 ± 1
1.0 Fxd2 4 427 0.0 ± 0.0 22.9 ± 0.0 92 ± 0.7 262 ± 2 231 ± 2 52 ± 1
1.0 Fxd2 3 417 0.0 ± 0.0 23.0 ± 0.0 93 ± 0.7 275 ± 2 231 ± 1 54 ± 1
1.0 Fxd2 2 412 0.0 ± 0.0 23.0 ± 0.0 92 ± 0.6 283 ± 2 233 ± 1 56 ± 1
1.0 Fxd2 1 391 0.0 ± 0.0 23.0 ± 0.0 93 ± 0.6 316 ± 3 235 ± 2 56 ± 1
2.0 Fxd1 5 455 6.6 ± 2.3 41.1 ± 0.2 97 ± 0.4 115 ± 1 228 ± 2 30 ± 1
2.0 Fxd1 4 494 5.1 ± 1.9 41.2 ± 0.1 97 ± 0.4 118 ± 1 229 ± 2 34 ± 1
2.0 Fxd1 3 450 3.3 ± 1.7 41.3 ± 0.1 97 ± 0.4 121 ± 1 229 ± 2 37 ± 1
2.0 Fxd1 2 406 3.0 ± 1.7 41.4 ± 0.1 98 ± 0.4 124 ± 1 225 ± 1 36 ± 1
2.0 Fxd1 1 437 0.9 ± 0.9 41.4 ± 0.1 98 ± 0.3 132 ± 1 227 ± 1 41 ± 1
2.0 Fxd2 5 469 1.7 ± 1.2 41.5 ± 0.1 97 ± 0.3 147 ± 2 227 ± 2 39 ± 1
2.0 Fxd2 4 425 0.9 ± 0.9 41.5 ± 0.1 97 ± 0.4 149 ± 2 229 ± 2 44 ± 1
2.0 Fxd2 3 423 0.2 ± 0.5 41.5 ± 0.0 96 ± 0.5 153 ± 2 229 ± 2 45 ± 1
2.0 Fxd2 2 418 0.2 ± 0.5 41.5 ± 0.0 96 ± 0.5 157 ± 2 226 ± 2 47 ± 1
2.0 Fxd2 1 413 0.2 ± 0.5 41.5 ± 0.0 95 ± 0.5 163 ± 1 225 ± 1 53 ± 1
4.0 Fxd1 5 449 4.5 ± 1.9 78.2 ± 0.3 98 ± 0.4 61 ± 0 232 ± 3 31 ± 1
4.0 Fxd1 4 445 5.4 ± 2.1 77.9 ± 0.3 98 ± 0.3 63 ± 0 228 ± 2 33 ± 1
4.0 Fxd1 3 444 3.8 ± 1.8 78.2 ± 0.3 98 ± 0.3 63 ± 0 228 ± 2 35 ± 1
4.0 Fxd1 2 403 5.7 ± 2.3 78.0 ± 0.3 98 ± 0.4 65 ± 0 226 ± 2 35 ± 1
4.0 Fxd1 1 473 1.1 ± 0.9 78.6 ± 0.1 98 ± 0.3 69 ± 0 227 ± 2 40 ± 1
4.0 Fxd2 5 418 1.4 ± 1.1 78.4 ± 0.2 98 ± 0.3 80 ± 1 228 ± 2 38 ± 1
4.0 Fxd2 4 456 0.9 ± 0.9 78.5 ± 0.2 98 ± 0.3 81 ± 1 231 ± 4 42 ± 1
4.0 Fxd2 3 413 0.0 ± 0.0 78.6 ± 0.0 98 ± 0.3 84 ± 1 231 ± 3 45 ± 1
4.0 Fxd2 2 412 1.0 ± 1.0 78.5 ± 0.2 98 ± 0.3 85 ± 1 225 ± 2 45 ± 1
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Psrc App. DC R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
4.0 Fxd2 1 408 0.2 ± 0.5 78.6 ± 0.0 98 ± 0.4 88 ± 1 227 ± 2 48 ± 1
8.0 Fxd1 5 435 1.6 ± 1.2 148.8 ± 0.4 97 ± 0.4 32 ± 0 232 ± 3 36 ± 1
8.0 Fxd1 4 436 1.8 ± 1.3 149.2 ± 0.4 97 ± 0.4 32 ± 0 232 ± 4 43 ± 1
8.0 Fxd1 3 471 1.1 ± 0.9 149.4 ± 0.2 98 ± 0.3 33 ± 0 235 ± 4 45 ± 1
8.0 Fxd1 2 392 1.8 ± 1.3 149.4 ± 0.2 98 ± 0.3 34 ± 0 233 ± 4 41 ± 1
8.0 Fxd1 1 415 0.2 ± 0.5 149.8 ± 0.2 98 ± 0.3 38 ± 0 234 ± 4 47 ± 1
8.0 Fxd2 5 417 0.2 ± 0.5 150.7 ± 0.2 97 ± 0.4 40 ± 1 231 ± 4 46 ± 1
8.0 Fxd2 4 407 0.0 ± 0.0 150.9 ± 0.0 97 ± 0.4 43 ± 0 232 ± 4 53 ± 1
8.0 Fxd2 3 399 0.0 ± 0.0 151.0 ± 0.0 98 ± 0.4 46 ± 0 234 ± 4 54 ± 1
8.0 Fxd2 2 361 0.0 ± 0.0 151.0 ± 0.0 98 ± 0.3 47 ± 0 232 ± 5 55 ± 1
8.0 Fxd2 1 385 0.0 ± 0.0 151.1 ± 0.0 98 ± 0.3 51 ± 0 232 ± 4 56 ± 1

E.2.4 DynamicSPR with TinyOS LPL

Table E.30: Confidence Intervals for DynamicSPR with TinyOS LPL on Cooja
Network Size 7

Psrc App. TOS R Captured T T Received Sent Latency Attacker
(sec) LPL (%) (sec) (%) per sec (ms) Distance
0.5 Fxd1 1 501 22.8 ± 3.7 9.5 ± 0.1 64 ± 1.6 99 ± 1 369 ± 4 19 ± 1
0.5 Fxd1 2 502 6.6 ± 2.2 9.8 ± 0.1 66 ± 1.3 115 ± 1 286 ± 3 26 ± 1
0.5 Fxd1 3 501 37.3 ± 4.2 9.2 ± 0.1 62 ± 1.7 86 ± 1 438 ± 6 14 ± 1
0.5 Fxd1 4 501 41.7 ± 4.3 9.4 ± 0.1 61 ± 1.7 85 ± 1 478 ± 7 14 ± 1
0.5 Fxd1 5 502 14.5 ± 3.1 9.7 ± 0.1 61 ± 1.3 100 ± 1 341 ± 4 22 ± 1
0.5 Fxd2 1 498 4.4 ± 1.8 9.8 ± 0.1 45 ± 1.5 110 ± 1 379 ± 5 30 ± 1
0.5 Fxd2 2 502 0.8 ± 0.8 9.9 ± 0.0 55 ± 1.3 133 ± 1 279 ± 3 31 ± 1
0.5 Fxd2 3 500 18.2 ± 3.4 9.6 ± 0.1 48 ± 1.8 94 ± 1 448 ± 7 23 ± 1
0.5 Fxd2 4 496 16.3 ± 3.3 9.8 ± 0.1 48 ± 1.8 92 ± 1 489 ± 8 23 ± 1
0.5 Fxd2 5 502 2.6 ± 1.4 9.9 ± 0.0 50 ± 1.3 117 ± 1 335 ± 5 30 ± 1
0.5 RND 1 500 11.2 ± 2.8 9.7 ± 0.1 54 ± 1.6 106 ± 1 376 ± 4 26 ± 1
0.5 RND 2 502 1.6 ± 1.1 9.9 ± 0.0 59 ± 1.2 129 ± 1 280 ± 3 30 ± 1
0.5 RND 3 500 27.4 ± 3.9 9.4 ± 0.1 52 ± 1.9 91 ± 1 440 ± 6 18 ± 1
0.5 RND 4 500 28.4 ± 4.0 9.6 ± 0.1 53 ± 1.8 89 ± 1 475 ± 8 19 ± 1
0.5 RND 5 502 4.4 ± 1.8 9.8 ± 0.1 52 ± 1.4 111 ± 1 336 ± 4 28 ± 1
1.0 Fxd1 1 502 1.0 ± 0.9 15.1 ± 0.0 73 ± 1.4 84 ± 1 361 ± 4 30 ± 1
1.0 Fxd1 2 502 1.4 ± 1.0 15.1 ± 0.0 77 ± 1.2 87 ± 1 288 ± 3 31 ± 1
1.0 Fxd1 3 502 3.6 ± 1.6 15.0 ± 0.1 68 ± 1.5 76 ± 1 432 ± 5 28 ± 1
1.0 Fxd1 4 502 3.8 ± 1.7 15.0 ± 0.1 70 ± 1.5 74 ± 0 473 ± 5 28 ± 1
1.0 Fxd1 5 502 1.0 ± 0.9 15.1 ± 0.0 71 ± 1.4 80 ± 1 363 ± 4 29 ± 1
1.0 Fxd2 1 502 0.4 ± 0.6 15.1 ± 0.0 64 ± 1.4 97 ± 1 377 ± 5 32 ± 1
1.0 Fxd2 2 502 0.2 ± 0.4 15.1 ± 0.0 75 ± 1.3 105 ± 1 292 ± 3 33 ± 0
1.0 Fxd2 3 500 1.0 ± 0.9 15.1 ± 0.1 57 ± 1.4 88 ± 1 454 ± 6 32 ± 1
1.0 Fxd2 4 502 1.0 ± 0.9 15.1 ± 0.1 54 ± 1.5 86 ± 1 506 ± 7 32 ± 1
1.0 Fxd2 5 502 1.0 ± 0.9 15.1 ± 0.1 69 ± 1.4 93 ± 1 364 ± 4 31 ± 1
1.0 RND 1 502 0.4 ± 0.6 15.1 ± 0.0 66 ± 1.3 94 ± 1 370 ± 4 33 ± 1
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Psrc App. TOS R Captured T T Received Sent Latency Attacker
(sec) LPL (%) (sec) (%) per sec (ms) Distance
1.0 RND 2 502 0.2 ± 0.4 15.1 ± 0.0 74 ± 1.2 100 ± 1 291 ± 3 33 ± 1
1.0 RND 3 502 0.6 ± 0.7 15.1 ± 0.0 61 ± 1.4 84 ± 1 446 ± 6 31 ± 1
1.0 RND 4 502 2.4 ± 1.3 15.0 ± 0.1 60 ± 1.5 82 ± 1 493 ± 6 31 ± 1
1.0 RND 5 502 0.0 ± 0.0 15.1 ± 0.0 69 ± 1.4 90 ± 1 357 ± 4 31 ± 1
2.0 Fxd1 1 485 0.4 ± 0.6 25.8 ± 0.1 92 ± 0.9 56 ± 0 312 ± 2 31 ± 1
2.0 Fxd1 2 449 0.4 ± 0.6 25.8 ± 0.0 93 ± 0.8 57 ± 1 295 ± 2 31 ± 1
2.0 Fxd1 3 502 0.2 ± 0.4 25.9 ± 0.0 81 ± 1.2 54 ± 0 382 ± 3 32 ± 1
2.0 Fxd1 4 439 0.5 ± 0.6 25.8 ± 0.1 76 ± 1.3 53 ± 0 426 ± 4 32 ± 1
2.0 Fxd1 5 478 0.2 ± 0.4 25.9 ± 0.0 87 ± 1.0 54 ± 0 360 ± 3 31 ± 1
2.0 Fxd2 1 464 0.4 ± 0.6 25.8 ± 0.1 78 ± 1.3 69 ± 1 350 ± 3 34 ± 0
2.0 Fxd2 2 456 0.0 ± 0.0 25.9 ± 0.0 82 ± 1.2 68 ± 1 292 ± 3 34 ± 0
2.0 Fxd2 3 502 0.0 ± 0.0 25.9 ± 0.0 72 ± 1.3 63 ± 1 415 ± 5 34 ± 0
2.0 Fxd2 4 423 0.0 ± 0.0 25.9 ± 0.0 69 ± 1.5 63 ± 1 452 ± 6 35 ± 0
2.0 Fxd2 5 502 0.0 ± 0.0 25.9 ± 0.0 77 ± 1.2 66 ± 1 364 ± 4 33 ± 0
2.0 RND 1 469 0.0 ± 0.0 25.9 ± 0.0 82 ± 1.1 67 ± 1 338 ± 3 34 ± 0
2.0 RND 2 502 0.0 ± 0.0 25.9 ± 0.0 85 ± 1.1 69 ± 1 296 ± 2 34 ± 0
2.0 RND 3 502 0.4 ± 0.6 25.8 ± 0.1 74 ± 1.3 62 ± 1 409 ± 4 34 ± 0
2.0 RND 4 411 0.0 ± 0.0 25.9 ± 0.0 71 ± 1.4 62 ± 1 445 ± 6 35 ± 0
2.0 RND 5 502 0.4 ± 0.6 25.8 ± 0.1 81 ± 1.2 64 ± 1 366 ± 3 33 ± 1
4.0 Fxd1 1 309 0.0 ± 0.0 47.4 ± 0.0 98 ± 0.5 32 ± 0 305 ± 2 31 ± 1
4.0 Fxd1 2 475 0.2 ± 0.4 47.3 ± 0.1 95 ± 0.6 32 ± 0 299 ± 2 31 ± 1
4.0 Fxd1 3 500 0.4 ± 0.6 47.3 ± 0.1 97 ± 0.5 31 ± 0 362 ± 2 30 ± 1
4.0 Fxd1 4 271 0.0 ± 0.0 47.4 ± 0.0 98 ± 0.5 32 ± 0 380 ± 4 31 ± 1
4.0 Fxd1 5 476 0.0 ± 0.0 47.4 ± 0.0 95 ± 0.7 31 ± 0 369 ± 3 31 ± 1
4.0 Fxd2 1 314 0.0 ± 0.0 47.3 ± 0.0 93 ± 1.0 40 ± 0 314 ± 2 35 ± 0
4.0 Fxd2 2 447 0.2 ± 0.4 47.3 ± 0.0 93 ± 0.8 39 ± 0 296 ± 2 34 ± 0
4.0 Fxd2 3 500 0.0 ± 0.0 47.4 ± 0.0 85 ± 1.0 39 ± 0 377 ± 3 35 ± 0
4.0 Fxd2 4 264 0.0 ± 0.0 47.4 ± 0.0 81 ± 1.5 39 ± 0 406 ± 5 35 ± 1
4.0 Fxd2 5 497 0.2 ± 0.4 47.4 ± 0.0 89 ± 0.9 38 ± 0 363 ± 3 34 ± 0
4.0 RND 1 299 0.0 ± 0.0 47.4 ± 0.0 88 ± 1.2 40 ± 1 323 ± 3 35 ± 0
4.0 RND 2 460 0.0 ± 0.0 47.3 ± 0.0 91 ± 0.8 40 ± 0 296 ± 2 34 ± 0
4.0 RND 3 500 0.2 ± 0.4 47.3 ± 0.1 85 ± 1.0 38 ± 0 381 ± 3 35 ± 0
4.0 RND 4 264 0.0 ± 0.0 47.4 ± 0.0 84 ± 1.3 39 ± 0 411 ± 5 35 ± 0
4.0 RND 5 498 0.2 ± 0.4 47.3 ± 0.1 88 ± 0.9 37 ± 0 365 ± 3 34 ± 1
8.0 Fxd1 1 186 0.5 ± 1.1 88.9 ± 0.2 98 ± 0.6 17 ± 0 309 ± 3 31 ± 1
8.0 Fxd1 2 319 0.0 ± 0.0 89.0 ± 0.0 96 ± 0.7 17 ± 0 298 ± 2 31 ± 1
8.0 Fxd1 3 66 0.0 ± 0.0 89.0 ± 0.0 98 ± 1.0 17 ± 0 365 ± 6 31 ± 2
8.0 Fxd1 4 162 0.0 ± 0.0 89.0 ± 0.0 98 ± 0.6 17 ± 0 383 ± 4 32 ± 1
8.0 Fxd1 5 388 0.0 ± 0.0 89.0 ± 0.0 96 ± 0.6 17 ± 0 369 ± 3 31 ± 1
8.0 Fxd2 1 183 0.0 ± 0.0 89.0 ± 0.0 97 ± 0.7 22 ± 0 307 ± 3 35 ± 1
8.0 Fxd2 2 306 0.0 ± 0.0 89.0 ± 0.0 96 ± 0.7 21 ± 0 299 ± 3 34 ± 1
8.0 Fxd2 3 28 0.0 ± 0.0 89.0 ± 0.0 98 ± 1.9 21 ± 1 356 ± 12 35 ± 1
8.0 Fxd2 4 159 0.0 ± 0.0 89.0 ± 0.0 97 ± 0.7 22 ± 0 374 ± 5 35 ± 1
8.0 Fxd2 5 364 0.0 ± 0.0 89.0 ± 0.0 95 ± 0.7 21 ± 0 373 ± 3 34 ± 1
8.0 RND 1 183 0.0 ± 0.0 89.0 ± 0.0 98 ± 0.7 22 ± 0 308 ± 3 35 ± 1
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Psrc App. TOS R Captured T T Received Sent Latency Attacker
(sec) LPL (%) (sec) (%) per sec (ms) Distance
8.0 RND 2 306 0.0 ± 0.0 89.0 ± 0.0 96 ± 0.7 21 ± 0 299 ± 2 34 ± 1
8.0 RND 3 29 0.0 ± 0.0 89.0 ± 0.0 96 ± 2.1 21 ± 1 361 ± 14 34 ± 2
8.0 RND 4 170 0.0 ± 0.0 89.0 ± 0.0 97 ± 0.7 22 ± 0 376 ± 4 35 ± 1
8.0 RND 5 365 0.5 ± 0.8 88.9 ± 0.2 95 ± 0.7 21 ± 0 367 ± 3 34 ± 1

Table E.31: Confidence Intervals for DynamicSPR with TinyOS LPL on Cooja
Network Size 9

Psrc App. TOS R Captured T T Received Sent Latency Attacker
(sec) LPL (%) (sec) (%) per sec (ms) Distance
0.5 Fxd1 1 502 15.9 ± 3.2 11.6 ± 0.1 60 ± 1.4 174 ± 1 496 ± 5 29 ± 1
0.5 Fxd1 2 502 2.4 ± 1.3 11.9 ± 0.0 64 ± 1.1 206 ± 2 383 ± 3 39 ± 1
0.5 Fxd1 3 502 32.3 ± 4.1 11.2 ± 0.1 61 ± 1.6 151 ± 1 579 ± 6 20 ± 2
0.5 Fxd1 4 502 43.6 ± 4.4 11.1 ± 0.1 62 ± 1.6 145 ± 1 630 ± 7 17 ± 2
0.5 Fxd1 5 502 5.6 ± 2.0 11.8 ± 0.1 57 ± 1.2 182 ± 2 462 ± 4 35 ± 1
0.5 Fxd2 1 502 3.2 ± 1.5 11.9 ± 0.1 44 ± 1.4 192 ± 1 520 ± 6 42 ± 1
0.5 Fxd2 2 502 0.2 ± 0.4 12.0 ± 0.0 53 ± 1.2 238 ± 2 388 ± 4 44 ± 1
0.5 Fxd2 3 501 11.4 ± 2.8 11.7 ± 0.1 45 ± 1.5 164 ± 1 593 ± 6 34 ± 1
0.5 Fxd2 4 501 17.0 ± 3.3 11.8 ± 0.1 49 ± 1.6 157 ± 1 657 ± 8 31 ± 2
0.5 Fxd2 5 501 2.2 ± 1.3 12.0 ± 0.0 47 ± 1.2 209 ± 2 458 ± 5 42 ± 1
0.5 RND 1 502 4.8 ± 1.9 11.8 ± 0.1 50 ± 1.4 187 ± 1 511 ± 5 38 ± 1
0.5 RND 2 468 0.2 ± 0.4 11.9 ± 0.0 56 ± 1.1 228 ± 2 387 ± 4 44 ± 1
0.5 RND 3 502 21.1 ± 3.6 11.5 ± 0.1 52 ± 1.6 159 ± 1 588 ± 6 28 ± 2
0.5 RND 4 502 26.9 ± 3.9 11.5 ± 0.1 55 ± 1.7 152 ± 1 646 ± 8 24 ± 2
0.5 RND 5 502 2.6 ± 1.4 11.9 ± 0.1 50 ± 1.2 198 ± 2 452 ± 5 41 ± 1
1.0 Fxd1 1 439 0.0 ± 0.0 19.1 ± 0.0 65 ± 1.1 146 ± 1 491 ± 4 44 ± 1
1.0 Fxd1 2 502 0.0 ± 0.0 19.1 ± 0.0 70 ± 1.0 150 ± 1 393 ± 3 42 ± 1
1.0 Fxd1 3 502 1.2 ± 1.0 19.1 ± 0.1 64 ± 1.1 130 ± 1 585 ± 5 40 ± 1
1.0 Fxd1 4 410 1.7 ± 1.3 19.1 ± 0.1 65 ± 1.2 129 ± 1 643 ± 7 41 ± 1
1.0 Fxd1 5 490 1.0 ± 0.9 19.1 ± 0.0 69 ± 1.1 140 ± 1 485 ± 4 40 ± 1
1.0 Fxd2 1 426 0.2 ± 0.5 19.1 ± 0.1 55 ± 1.3 165 ± 1 510 ± 5 45 ± 1
1.0 Fxd2 2 500 0.0 ± 0.0 19.1 ± 0.0 67 ± 1.0 179 ± 2 391 ± 3 45 ± 1
1.0 Fxd2 3 500 0.0 ± 0.0 19.1 ± 0.0 49 ± 1.2 149 ± 1 625 ± 7 45 ± 1
1.0 Fxd2 4 439 0.2 ± 0.4 19.1 ± 0.0 48 ± 1.4 147 ± 1 685 ± 9 47 ± 1
1.0 Fxd2 5 502 0.0 ± 0.0 19.1 ± 0.0 62 ± 1.1 160 ± 1 483 ± 4 43 ± 1
1.0 RND 1 452 0.0 ± 0.0 19.1 ± 0.0 57 ± 1.2 159 ± 1 506 ± 5 46 ± 1
1.0 RND 2 502 0.0 ± 0.0 19.1 ± 0.0 67 ± 0.9 171 ± 1 393 ± 3 45 ± 1
1.0 RND 3 502 0.4 ± 0.6 19.1 ± 0.0 55 ± 1.2 143 ± 1 602 ± 6 44 ± 1
1.0 RND 4 441 0.2 ± 0.4 19.1 ± 0.0 54 ± 1.4 140 ± 1 671 ± 8 45 ± 1
1.0 RND 5 445 0.4 ± 0.6 19.1 ± 0.0 64 ± 1.1 155 ± 1 490 ± 5 43 ± 1
2.0 Fxd1 1 360 0.3 ± 0.5 33.7 ± 0.1 81 ± 1.1 90 ± 1 435 ± 3 45 ± 1
2.0 Fxd1 2 424 0.0 ± 0.0 33.7 ± 0.0 89 ± 0.8 94 ± 1 384 ± 2 43 ± 1
2.0 Fxd1 3 500 0.0 ± 0.0 33.7 ± 0.0 74 ± 1.1 88 ± 1 537 ± 4 46 ± 1
2.0 Fxd1 4 180 0.0 ± 0.0 33.8 ± 0.0 74 ± 1.9 88 ± 1 584 ± 7 46 ± 1
2.0 Fxd1 5 502 0.0 ± 0.0 33.7 ± 0.0 83 ± 0.9 89 ± 1 478 ± 3 43 ± 1
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Psrc App. TOS R Captured T T Received Sent Latency Attacker
(sec) LPL (%) (sec) (%) per sec (ms) Distance
2.0 Fxd2 1 311 0.0 ± 0.0 33.8 ± 0.0 76 ± 1.3 115 ± 1 471 ± 5 48 ± 1
2.0 Fxd2 2 414 0.2 ± 0.5 33.7 ± 0.1 82 ± 1.1 114 ± 1 391 ± 3 46 ± 1
2.0 Fxd2 3 500 0.2 ± 0.4 33.7 ± 0.1 72 ± 1.1 107 ± 1 564 ± 5 47 ± 1
2.0 Fxd2 4 281 0.4 ± 0.7 33.7 ± 0.1 70 ± 1.5 106 ± 1 609 ± 7 47 ± 1
2.0 Fxd2 5 450 0.0 ± 0.0 33.7 ± 0.0 78 ± 1.1 108 ± 1 492 ± 4 45 ± 1
2.0 RND 1 324 0.0 ± 0.0 33.8 ± 0.0 76 ± 1.3 112 ± 1 465 ± 4 48 ± 1
2.0 RND 2 416 0.0 ± 0.0 33.8 ± 0.0 84 ± 1.0 113 ± 1 392 ± 2 46 ± 1
2.0 RND 3 500 0.0 ± 0.0 33.7 ± 0.0 72 ± 1.0 104 ± 1 563 ± 5 47 ± 0
2.0 RND 4 283 0.4 ± 0.7 33.7 ± 0.1 68 ± 1.5 103 ± 1 601 ± 7 47 ± 1
2.0 RND 5 436 0.2 ± 0.5 33.7 ± 0.1 80 ± 1.0 105 ± 1 486 ± 4 45 ± 1
4.0 Fxd1 1 218 0.0 ± 0.0 63.2 ± 0.0 91 ± 0.5 52 ± 0 411 ± 3 42 ± 1
4.0 Fxd1 2 338 0.3 ± 0.6 63.1 ± 0.2 89 ± 0.5 52 ± 1 391 ± 2 43 ± 1
4.0 Fxd1 3 500 0.2 ± 0.4 63.1 ± 0.1 91 ± 0.4 51 ± 0 482 ± 2 41 ± 1
4.0 Fxd1 4 207 0.0 ± 0.0 63.1 ± 0.0 91 ± 0.6 53 ± 0 501 ± 4 43 ± 1
4.0 Fxd1 5 417 0.2 ± 0.5 63.1 ± 0.0 88 ± 0.5 50 ± 0 480 ± 3 41 ± 1
4.0 Fxd2 1 211 0.0 ± 0.0 63.2 ± 0.0 79 ± 1.2 64 ± 1 426 ± 3 48 ± 1
4.0 Fxd2 2 351 0.0 ± 0.0 63.2 ± 0.0 85 ± 0.8 63 ± 1 386 ± 2 46 ± 1
4.0 Fxd2 3 89 0.0 ± 0.0 63.2 ± 0.1 76 ± 2.1 63 ± 1 523 ± 8 48 ± 1
4.0 Fxd2 4 184 0.0 ± 0.0 63.1 ± 0.0 74 ± 1.4 63 ± 1 554 ± 7 49 ± 1
4.0 Fxd2 5 368 0.0 ± 0.0 63.2 ± 0.0 81 ± 0.8 62 ± 1 481 ± 3 45 ± 1
4.0 RND 1 230 0.0 ± 0.0 63.2 ± 0.0 81 ± 1.1 67 ± 1 437 ± 3 48 ± 1
4.0 RND 2 322 0.0 ± 0.0 63.1 ± 0.0 85 ± 0.8 64 ± 1 390 ± 2 46 ± 1
4.0 RND 3 500 0.0 ± 0.0 63.2 ± 0.0 81 ± 0.8 63 ± 1 519 ± 3 47 ± 1
4.0 RND 4 201 0.0 ± 0.0 63.2 ± 0.0 80 ± 1.2 64 ± 1 545 ± 6 49 ± 1
4.0 RND 5 388 0.0 ± 0.0 63.2 ± 0.0 82 ± 0.8 61 ± 1 482 ± 3 44 ± 1
8.0 Fxd1 1 133 0.0 ± 0.0 120.9 ± 0.0 98 ± 0.5 27 ± 0 415 ± 3 41 ± 1
8.0 Fxd1 2 232 0.0 ± 0.0 120.9 ± 0.0 96 ± 0.7 28 ± 0 391 ± 2 43 ± 1
8.0 Fxd1 3 146 0.0 ± 0.0 120.9 ± 0.0 97 ± 0.8 26 ± 0 483 ± 4 41 ± 1
8.0 Fxd1 4 114 0.0 ± 0.0 120.9 ± 0.0 98 ± 0.6 28 ± 0 496 ± 5 44 ± 1
8.0 Fxd1 5 283 0.4 ± 0.7 120.8 ± 0.2 95 ± 0.7 27 ± 0 482 ± 3 43 ± 1
8.0 Fxd2 1 142 0.0 ± 0.0 120.9 ± 0.0 98 ± 0.6 35 ± 1 410 ± 3 47 ± 1
8.0 Fxd2 2 230 0.0 ± 0.0 120.9 ± 0.0 96 ± 0.7 34 ± 1 393 ± 3 46 ± 1
8.0 Fxd2 3 143 0.0 ± 0.0 120.9 ± 0.0 96 ± 0.8 34 ± 1 485 ± 5 46 ± 1
8.0 Fxd2 4 111 0.0 ± 0.0 120.9 ± 0.0 97 ± 0.9 35 ± 1 495 ± 6 48 ± 1
8.0 Fxd2 5 269 0.0 ± 0.0 120.9 ± 0.0 95 ± 0.7 33 ± 1 480 ± 3 44 ± 1
8.0 RND 1 130 0.8 ± 1.5 120.5 ± 0.8 97 ± 0.9 36 ± 1 413 ± 4 48 ± 1
8.0 RND 2 223 0.0 ± 0.0 120.9 ± 0.0 96 ± 0.6 35 ± 1 393 ± 2 47 ± 1
8.0 RND 3 158 0.6 ± 1.3 120.6 ± 0.7 94 ± 1.0 35 ± 1 487 ± 4 48 ± 1
8.0 RND 4 121 0.0 ± 0.0 120.9 ± 0.0 92 ± 1.2 36 ± 1 502 ± 5 48 ± 1
8.0 RND 5 270 0.0 ± 0.0 120.9 ± 0.0 94 ± 0.8 33 ± 1 482 ± 3 44 ± 1
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Table E.32: Confidence Intervals for DynamicSPR with TinyOS LPL on Cooja
Network Size 11

Psrc App. TOS R Captured T T Received Sent Latency Attacker
(sec) LPL (%) (sec) (%) per sec (ms) Distance
0.5 Fxd1 1 267 13.5 ± 4.1 13.5 ± 0.1 58 ± 1.8 276 ± 2 623 ± 7 39 ± 2
0.5 Fxd1 2 267 0.0 ± 0.0 13.9 ± 0.0 63 ± 1.4 328 ± 3 482 ± 4 52 ± 1
0.5 Fxd1 3 500 34.8 ± 4.2 12.9 ± 0.1 59 ± 1.5 234 ± 2 727 ± 7 26 ± 2
0.5 Fxd1 4 267 47.9 ± 6.0 12.6 ± 0.2 63 ± 2.0 221 ± 2 782 ± 12 19 ± 3
0.5 Fxd1 5 268 3.0 ± 2.1 13.8 ± 0.1 54 ± 1.4 292 ± 4 575 ± 6 47 ± 2
0.5 Fxd2 1 241 1.7 ± 1.6 13.8 ± 0.1 42 ± 1.8 297 ± 2 642 ± 10 54 ± 2
0.5 Fxd2 2 253 0.4 ± 0.8 13.9 ± 0.0 53 ± 1.5 372 ± 3 491 ± 5 57 ± 1
0.5 Fxd2 3 500 9.2 ± 2.5 13.7 ± 0.1 46 ± 1.5 252 ± 1 754 ± 8 44 ± 2
0.5 Fxd2 4 235 21.3 ± 5.3 13.6 ± 0.2 52 ± 2.3 240 ± 2 810 ± 12 36 ± 3
0.5 Fxd2 5 252 0.0 ± 0.0 13.9 ± 0.0 43 ± 1.6 328 ± 4 577 ± 8 55 ± 1
0.5 RND 1 262 4.2 ± 2.4 13.7 ± 0.1 48 ± 1.7 290 ± 2 646 ± 9 49 ± 2
0.5 RND 2 273 0.0 ± 0.0 13.9 ± 0.0 56 ± 1.4 357 ± 4 484 ± 5 55 ± 1
0.5 RND 3 500 21.0 ± 3.6 13.3 ± 0.1 51 ± 1.5 245 ± 1 745 ± 7 35 ± 2
0.5 RND 4 237 27.4 ± 5.7 13.5 ± 0.2 56 ± 2.4 233 ± 2 797 ± 11 31 ± 3
0.5 RND 5 259 0.8 ± 1.1 13.9 ± 0.1 47 ± 1.6 313 ± 4 569 ± 7 53 ± 1
1.0 Fxd1 1 191 0.5 ± 1.0 22.9 ± 0.0 74 ± 1.6 223 ± 2 617 ± 7 56 ± 2
1.0 Fxd1 2 238 0.0 ± 0.0 22.9 ± 0.0 79 ± 1.4 231 ± 2 489 ± 4 54 ± 1
1.0 Fxd1 3 62 1.6 ± 3.2 22.8 ± 0.3 65 ± 3.5 198 ± 5 736 ± 18 51 ± 3
1.0 Fxd1 4 189 2.1 ± 2.1 22.9 ± 0.1 66 ± 1.8 196 ± 2 808 ± 11 52 ± 2
1.0 Fxd1 5 241 0.0 ± 0.0 22.9 ± 0.0 75 ± 1.4 214 ± 2 602 ± 6 50 ± 2
1.0 Fxd2 1 184 0.0 ± 0.0 23.0 ± 0.0 60 ± 2.0 252 ± 3 655 ± 9 57 ± 1
1.0 Fxd2 2 234 0.0 ± 0.0 23.0 ± 0.0 70 ± 1.5 275 ± 4 491 ± 4 56 ± 1
1.0 Fxd2 3 53 0.0 ± 0.0 23.0 ± 0.1 51 ± 3.3 228 ± 4 790 ± 28 57 ± 2
1.0 Fxd2 4 169 0.0 ± 0.0 23.0 ± 0.0 45 ± 2.2 224 ± 2 870 ± 16 60 ± 1
1.0 Fxd2 5 226 0.0 ± 0.0 23.0 ± 0.0 66 ± 1.5 240 ± 3 613 ± 7 54 ± 1
1.0 RND 1 200 0.0 ± 0.0 23.0 ± 0.0 63 ± 1.8 245 ± 2 641 ± 7 58 ± 1
1.0 RND 2 240 0.0 ± 0.0 23.0 ± 0.0 73 ± 1.4 261 ± 3 491 ± 4 55 ± 1
1.0 RND 3 78 0.0 ± 0.0 22.9 ± 0.1 58 ± 3.1 216 ± 3 755 ± 14 57 ± 2
1.0 RND 4 172 0.0 ± 0.0 23.0 ± 0.0 53 ± 2.0 213 ± 2 842 ± 13 59 ± 1
1.0 RND 5 243 0.0 ± 0.0 22.9 ± 0.0 68 ± 1.5 237 ± 2 599 ± 6 54 ± 1
2.0 Fxd1 1 141 0.0 ± 0.0 41.5 ± 0.0 80 ± 1.6 137 ± 2 560 ± 6 58 ± 1
2.0 Fxd1 2 211 0.0 ± 0.0 41.5 ± 0.0 85 ± 1.1 142 ± 2 480 ± 3 56 ± 1
2.0 Fxd1 3 152 0.7 ± 1.3 41.4 ± 0.2 77 ± 1.5 133 ± 2 676 ± 7 57 ± 1
2.0 Fxd1 4 123 0.0 ± 0.0 41.5 ± 0.1 77 ± 1.8 135 ± 2 740 ± 10 58 ± 1
2.0 Fxd1 5 209 0.0 ± 0.0 41.5 ± 0.0 83 ± 1.2 132 ± 2 593 ± 5 53 ± 1
2.0 Fxd2 1 133 0.8 ± 1.5 41.3 ± 0.3 76 ± 1.7 172 ± 3 585 ± 7 59 ± 2
2.0 Fxd2 2 196 0.0 ± 0.0 41.5 ± 0.0 84 ± 1.3 171 ± 3 489 ± 4 57 ± 1
2.0 Fxd2 3 160 0.6 ± 1.2 41.4 ± 0.2 72 ± 1.8 160 ± 2 702 ± 9 58 ± 1
2.0 Fxd2 4 119 0.8 ± 1.7 41.4 ± 0.3 67 ± 2.2 158 ± 3 757 ± 11 59 ± 2
2.0 Fxd2 5 192 0.0 ± 0.0 41.5 ± 0.0 79 ± 1.5 160 ± 3 604 ± 6 55 ± 1
2.0 RND 1 134 0.0 ± 0.0 41.5 ± 0.0 76 ± 1.7 166 ± 3 586 ± 7 59 ± 1
2.0 RND 2 194 0.0 ± 0.0 41.5 ± 0.0 83 ± 1.3 170 ± 3 489 ± 4 56 ± 1
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Psrc App. TOS R Captured T T Received Sent Latency Attacker
(sec) LPL (%) (sec) (%) per sec (ms) Distance
2.0 RND 3 161 0.0 ± 0.0 41.5 ± 0.0 72 ± 1.8 157 ± 2 697 ± 9 58 ± 1
2.0 RND 4 119 0.0 ± 0.0 41.5 ± 0.1 67 ± 2.1 155 ± 2 739 ± 13 60 ± 1
2.0 RND 5 197 0.0 ± 0.0 41.5 ± 0.0 81 ± 1.3 153 ± 2 605 ± 6 54 ± 2
4.0 Fxd1 1 93 0.0 ± 0.0 78.6 ± 0.1 97 ± 0.8 78 ± 1 513 ± 4 53 ± 2
4.0 Fxd1 2 151 0.0 ± 0.0 78.6 ± 0.0 95 ± 0.8 78 ± 1 480 ± 3 54 ± 2
4.0 Fxd1 3 121 0.0 ± 0.0 78.6 ± 0.1 94 ± 1.1 76 ± 1 600 ± 5 54 ± 2
4.0 Fxd1 4 79 0.0 ± 0.0 78.6 ± 0.1 93 ± 1.4 77 ± 1 623 ± 7 57 ± 2
4.0 Fxd1 5 183 0.0 ± 0.0 78.6 ± 0.0 92 ± 1.0 76 ± 1 593 ± 4 53 ± 1
4.0 Fxd2 1 98 0.0 ± 0.0 78.6 ± 0.1 85 ± 1.7 96 ± 1 545 ± 6 61 ± 1
4.0 Fxd2 2 143 0.0 ± 0.0 78.6 ± 0.1 89 ± 1.3 94 ± 2 483 ± 4 58 ± 1
4.0 Fxd2 3 124 0.0 ± 0.0 78.6 ± 0.1 83 ± 1.6 95 ± 2 653 ± 7 60 ± 1
4.0 Fxd2 4 77 0.0 ± 0.0 78.6 ± 0.1 81 ± 2.2 95 ± 2 685 ± 11 60 ± 2
4.0 Fxd2 5 173 0.0 ± 0.0 78.6 ± 0.0 87 ± 1.1 89 ± 2 596 ± 5 55 ± 2
4.0 RND 1 90 2.2 ± 3.1 77.8 ± 1.1 88 ± 1.8 98 ± 3 543 ± 6 58 ± 2
4.0 RND 2 155 0.0 ± 0.0 78.6 ± 0.0 91 ± 1.0 93 ± 2 487 ± 3 56 ± 1
4.0 RND 3 124 0.0 ± 0.0 78.7 ± 0.1 88 ± 1.4 96 ± 1 641 ± 8 61 ± 1
4.0 RND 4 77 1.3 ± 2.6 78.2 ± 0.9 85 ± 2.0 95 ± 2 672 ± 11 60 ± 2
4.0 RND 5 172 0.0 ± 0.0 78.6 ± 0.0 89 ± 1.1 90 ± 2 598 ± 4 56 ± 1
8.0 Fxd1 1 61 0.0 ± 0.0 151.5 ± 0.0 98 ± 0.9 41 ± 1 510 ± 4 55 ± 2
8.0 Fxd1 2 104 0.0 ± 0.0 151.5 ± 0.0 96 ± 0.8 41 ± 1 486 ± 3 54 ± 2
8.0 Fxd1 3 78 0.0 ± 0.0 151.5 ± 0.0 97 ± 0.8 40 ± 1 595 ± 6 53 ± 2
8.0 Fxd1 4 47 0.0 ± 0.0 151.5 ± 0.0 98 ± 1.0 41 ± 1 619 ± 7 54 ± 2
8.0 Fxd1 5 129 0.0 ± 0.0 151.5 ± 0.0 94 ± 0.9 40 ± 1 595 ± 4 52 ± 2
8.0 Fxd2 1 60 0.0 ± 0.0 151.5 ± 0.0 98 ± 0.9 52 ± 1 515 ± 4 61 ± 1
8.0 Fxd2 2 100 0.0 ± 0.0 151.5 ± 0.0 96 ± 0.9 50 ± 1 485 ± 3 55 ± 2
8.0 Fxd2 3 75 0.0 ± 0.0 151.5 ± 0.0 95 ± 1.0 51 ± 1 601 ± 6 59 ± 2
8.0 Fxd2 4 46 2.2 ± 4.4 150.0 ± 3.0 94 ± 1.9 51 ± 2 616 ± 9 59 ± 3
8.0 Fxd2 5 132 0.0 ± 0.0 151.5 ± 0.0 94 ± 0.9 48 ± 1 599 ± 4 55 ± 1
8.0 RND 1 54 0.0 ± 0.0 151.5 ± 0.0 95 ± 1.4 53 ± 2 518 ± 5 59 ± 2
8.0 RND 2 101 0.0 ± 0.0 151.5 ± 0.0 95 ± 1.2 50 ± 2 486 ± 3 57 ± 2
8.0 RND 3 76 0.0 ± 0.0 151.5 ± 0.0 92 ± 1.5 51 ± 1 610 ± 6 59 ± 2
8.0 RND 4 45 0.0 ± 0.0 151.5 ± 0.0 89 ± 2.1 53 ± 2 635 ± 10 61 ± 2
8.0 RND 5 123 0.0 ± 0.0 151.5 ± 0.0 94 ± 1.1 48 ± 1 591 ± 5 53 ± 2

E.3 FlockLab

E.3.1 Protectionless

Table E.33: Confidence Intervals for Protectionless on FlockLab

Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.5 14 100.0 ± 0.0 2.8 ± 0.7 94 ± 8.5 36 ± 3 143 ± 17 0 ± 0
1.0 14 100.0 ± 0.0 5.4 ± 0.7 92 ± 6.8 18 ± 1 144 ± 14 0 ± 0
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Psrc R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
2.0 14 100.0 ± 0.0 10.5 ± 2.1 98 ± 3.9 10 ± 1 144 ± 16 0 ± 0
8.0 16 100.0 ± 0.0 46.0 ± 5.5 89 ± 7.5 2 ± 0 151 ± 10 0 ± 0

E.3.2 DynamicSPR

Table E.34: Confidence Intervals for DynamicSPR on FlockLab

Psrc App. R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
0.5 Fxd1 5 20.0 ± 55.5 4.3 ± 1.9 78 ± 25.8 127 ± 20 207 ± 30 264 ± 262
0.5 Fxd2 5 0.0 ± 0.0 5.0 ± 0.0 70 ± 13.1 151 ± 14 273 ± 77 536 ± 139
1.0 Fxd1 5 0.0 ± 0.0 9.9 ± 0.0 76 ± 26.5 68 ± 7 160 ± 20 360 ± 165
1.0 Fxd2 5 0.0 ± 0.0 9.9 ± 0.0 77 ± 9.9 89 ± 21 189 ± 32 489 ± 188
2.0 Fxd1 5 0.0 ± 0.0 19.6 ± 0.0 89 ± 13.8 35 ± 2 159 ± 35 460 ± 150
2.0 Fxd2 5 0.0 ± 0.0 19.2 ± 0.2 87 ± 11.5 49 ± 7 154 ± 30 583 ± 108
8.0 Fxd1 9 0.0 ± 0.0 86.0 ± 0.0 93 ± 5.4 8 ± 0 145 ± 11 407 ± 105
8.0 Fxd2 7 0.0 ± 0.0 85.8 ± 0.3 97 ± 4.5 12 ± 2 147 ± 15 539 ± 56

E.3.3 DynamicSPR with Duty Cycling

Table E.35: Confidence Intervals for DynamicSPR with Duty Cycling on FlockLab

Psrc App. DC R Captured T T Received Sent Latency Attacker
(sec) (%) (sec) (%) per sec (ms) Distance
1.0 Fxd1 5 9 22.2 ± 33.9 9.3 ± 1.0 87 ± 11.0 50 ± 3 186 ± 14 325 ± 164
1.0 Fxd1 2 11 9.1 ± 20.3 9.6 ± 0.6 91 ± 7.3 55 ± 3 188 ± 11 374 ± 110
1.0 Fxd1 6 13 0.0 ± 0.0 9.9 ± 0.0 88 ± 8.4 57 ± 3 193 ± 13 426 ± 43
1.0 Fxd2 5 7 28.6 ± 45.1 8.9 ± 1.6 44 ± 26.3 50 ± 5 217 ± 37 304 ± 198
1.0 Fxd2 2 8 0.0 ± 0.0 9.9 ± 0.0 56 ± 12.2 59 ± 4 231 ± 38 455 ± 95
1.0 Fxd2 6 8 0.0 ± 0.0 9.9 ± 0.0 60 ± 17.2 64 ± 5 258 ± 35 455 ± 45
2.0 Fxd1 5 8 0.0 ± 0.0 19.5 ± 0.1 75 ± 22.6 23 ± 4 204 ± 23 299 ± 102
2.0 Fxd1 2 9 0.0 ± 0.0 19.5 ± 0.1 88 ± 10.8 25 ± 3 198 ± 14 411 ± 112
2.0 Fxd1 6 10 10.0 ± 22.6 18.4 ± 2.2 84 ± 16.0 26 ± 2 213 ± 33 408 ± 125
2.0 Fxd2 5 8 25.0 ± 38.7 17.5 ± 2.8 82 ± 12.0 29 ± 5 207 ± 13 299 ± 185
2.0 Fxd2 2 10 0.0 ± 0.0 19.1 ± 0.0 81 ± 15.5 33 ± 3 215 ± 27 397 ± 76
2.0 Fxd2 6 9 0.0 ± 0.0 19.1 ± 0.0 80 ± 16.4 36 ± 3 204 ± 12 446 ± 79
8.0 Fxd1 5 6 16.7 ± 42.8 80.8 ± 13.3 81 ± 14.9 6 ± 1 186 ± 19 336 ± 181
8.0 Fxd1 2 8 0.0 ± 0.0 85.9 ± 0.1 95 ± 4.5 7 ± 0 196 ± 18 349 ± 88
8.0 Fxd1 6 8 0.0 ± 0.0 85.8 ± 0.1 95 ± 4.5 7 ± 0 196 ± 11 431 ± 47
8.0 Fxd2 5 15 13.3 ± 19.5 84.4 ± 2.4 85 ± 9.8 8 ± 1 196 ± 10 354 ± 127
8.0 Fxd2 2 11 0.0 ± 0.0 85.9 ± 0.0 95 ± 5.5 9 ± 1 201 ± 11 401 ± 64
8.0 Fxd2 6 13 0.0 ± 0.0 85.5 ± 0.4 95 ± 5.3 9 ± 1 204 ± 15 447 ± 24
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