986 research outputs found

    A decision framework for placement of applications in clouds that minimizes their carbon footprint

    Get PDF
    Cloud computing gives users much freedom on where they host their computation and storage. However the CO2 emission of a job depends on the location and the energy efficiency of the data centers where it is run. We developed a decision framework that determines to move computation with accompanying data from a local to a greener remote data center for lower CO2 emissions. The model underlying the framework accounts for the energy consumption at the local and remote sites, as well as of networks among them. We showed that the type of network connecting the two sites has a significant impact on the total CO2 emission. Furthermore, the task’s complexity is a factor in deciding when and where to move computation

    A decision framework for placement of applications in clouds that minimizes their carbon footprint

    Full text link

    Strategies for Increased Energy Awareness in Cloud Federations

    Get PDF
    This chapter first identifies three scenarios that current energy aware cloud solutions cannot handle as isolated IaaS, but their federative efforts offer opportunities to be explored. These scenarios are centered around: (i) multi-datacenter cloud operator, (ii) commercial cloud federations, (iii) academic cloud federations. Based on these scenarios, we identify energy-aware scheduling policies to be applied in the management solutions of cloud federations. Among others, these policies should consider the behavior of independent administrative domains, the frequently contradicting goals of the participating clouds and federation wide energy consumption

    MACHS: Mitigating the Achilles Heel of the Cloud through High Availability and Performance-aware Solutions

    Get PDF
    Cloud computing is continuously growing as a business model for hosting information and communication technology applications. However, many concerns arise regarding the quality of service (QoS) offered by the cloud. One major challenge is the high availability (HA) of cloud-based applications. The key to achieving availability requirements is to develop an approach that is immune to cloud failures while minimizing the service level agreement (SLA) violations. To this end, this thesis addresses the HA of cloud-based applications from different perspectives. First, the thesis proposes a component’s HA-ware scheduler (CHASE) to manage the deployments of carrier-grade cloud applications while maximizing their HA and satisfying the QoS requirements. Second, a Stochastic Petri Net (SPN) model is proposed to capture the stochastic characteristics of cloud services and quantify the expected availability offered by an application deployment. The SPN model is then associated with an extensible policy-driven cloud scoring system that integrates other cloud challenges (i.e. green and cost concerns) with HA objectives. The proposed HA-aware solutions are extended to include a live virtual machine migration model that provides a trade-off between the migration time and the downtime while maintaining HA objective. Furthermore, the thesis proposes a generic input template for cloud simulators, GITS, to facilitate the creation of cloud scenarios while ensuring reusability, simplicity, and portability. Finally, an availability-aware CloudSim extension, ACE, is proposed. ACE extends CloudSim simulator with failure injection, computational paths, repair, failover, load balancing, and other availability-based modules

    Resource Orchestration in Softwarized Networks

    Get PDF
    Network softwarization is an emerging research area that is envisioned to revolutionize the way network infrastructure is designed, operated, and managed today. Contemporary telecommunication networks are going through a major transformation, and softwarization is recognized as a crucial enabler of this transformation by both academia and industry. Softwarization promises to overcome the current ossified state of Internet network architecture and evolve towards a more open, agile, flexible, and programmable networking paradigm that will reduce both capital and operational expenditures, cut-down time-to-market of new services, and create new revenue streams. Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are two complementary networking technologies that have established themselves as the cornerstones of network softwarization. SDN decouples the control and data planes to provide enhanced programmability and faster innovation of networking technologies. It facilitates simplified network control, scalability, availability, flexibility, security, cost-reduction, autonomic management, and fine-grained control of network traffic. NFV utilizes virtualization technology to reduce dependency on underlying hardware by moving packet processing activities from proprietary hardware middleboxes to virtualized entities that can run on commodity hardware. Together SDN and NFV simplify network infrastructure by utilizing standardized and commodity hardware for both compute and networking; bringing the benefits of agility, economies of scale, and flexibility of data centers to networks. Network softwarization provides the tools required to re-architect the current network infrastructure of the Internet. However, the effective application of these tools requires efficient utilization of networking resources in the softwarized environment. Innovative techniques and mechanisms are required for all aspects of network management and control. The overarching goal of this thesis is to address several key resource orchestration challenges in softwarized networks. The resource allocation and orchestration techniques presented in this thesis utilize the functionality provided by softwarization to reduce operational cost, improve resource utilization, ensure scalability, dynamically scale resource pools according to demand, and optimize energy utilization

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Cloud Computing cost and energy optimization through Federated Cloud SoS

    Get PDF
    2017 Fall.Includes bibliographical references.The two most significant differentiators amongst contemporary Cloud Computing service providers have increased green energy use and datacenter resource utilization. This work addresses these two issues from a system's architectural optimization viewpoint. The proposed approach herein, allows multiple cloud providers to utilize their individual computing resources in three ways by: (1) cutting the number of datacenters needed, (2) scheduling available datacenter grid energy via aggregators to reduce costs and power outages, and lastly by (3) utilizing, where appropriate, more renewable and carbon-free energy sources. Altogether our proposed approach creates an alternative paradigm for a Federated Cloud SoS approach. The proposed paradigm employs a novel control methodology that is tuned to obtain both financial and environmental advantages. It also supports dynamic expansion and contraction of computing capabilities for handling sudden variations in service demand as well as for maximizing usage of time varying green energy supplies. Herein we analyze the core SoS requirements, concept synthesis, and functional architecture with an eye on avoiding inadvertent cascading conditions. We suggest a physical architecture that diminishes unwanted outcomes while encouraging desirable results. Finally, in our approach, the constituent cloud services retain their independent ownership, objectives, funding, and sustainability means. This work analyzes the core SoS requirements, concept synthesis, and functional architecture. It suggests a physical structure that simulates the primary SoS emergent behavior to diminish unwanted outcomes while encouraging desirable results. The report will analyze optimal computing generation methods, optimal energy utilization for computing generation as well as a procedure for building optimal datacenters using a unique hardware computing system design based on the openCompute community as an illustrative collaboration platform. Finally, the research concludes with security features cloud federation requires to support to protect its constituents, its constituents tenants and itself from security risks

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Vue d'ensemble du problème de placement de service dans Fog and Edge Computing

    Get PDF
    To support the large and various applications generated by the Internet of Things(IoT), Fog Computing was introduced to complement the Cloud Computing and offer Cloud-like services at the edge of the network with low latency and real-time responses. Large-scale, geographical distribution and heterogeneity of edge computational nodes make service placement insuch infrastructure a challenging issue. Diversity of user expectations and IoT devices characteristics also complexify the deployment problem. This paper presents a survey of current research conducted on Service Placement Problem (SPP) in the Fog/Edge Computing. Based on a new clas-sification scheme, a categorization of current proposals is given and identified issues and challenges are discussed.Pour prendre en charge les applications volumineuses et variées générées par l'Internet des objets (IoT), le Fog Computing a été introduit pour compléter le Cloud et exploiter les ressources de calcul en périphérie du réseau afin de répondre aux besoins de calcul à faible latence et temps réel des applications. La répartition géographique à grande échelle et l'hétérogénéité des noeuds de calcul de périphérie rendent difficile le placement de services dans une telle infrastructure. La diversité des attentes des utilisateurs et des caractéristiques des périphériques IoT complexifie également le probllème de déploiement. Cet article présente une vue d'ensemble des recherches actuelles sur le problème de placement de service (SPP) dans l'informatique Fog et Edge. Sur la base d'un nouveau schéma de classification, les solutions présentées dans la littérature sont classées et les problèmes et défis identifiés sont discutés
    • …
    corecore