542 research outputs found

    A decentralized scheduling algorithm for time synchronized channel hopping

    Get PDF
    Abstract. Time Synchronized Channel Hopping (TSCH) is an existing medium access control scheme which enables robust communication through channel hopping and high data rates through synchronization. It is based on a time-slotted architecture, and its correct functioning depends on a schedule which is typically computed by a central node. This paper presents, to our knowledge, the first scheduling algorithm for TSCH networks which both is distributed and which copes with a mobile nodes. Two scheduling algorithms are presented. Aloha-based scheduling allocates one frequency channel for broadcasting advertisements for new neighbors. Reservation-based scheduling augments Aloha-based scheduling with a dedicated slot for targeted advertisements based on gossip information. A mobile ad-hoc network with frequent connectivity changes is simulated, and the performance of the two proposed algorithms is assessed against the optimal case. Reservation-based scheduling performs significantly better than Aloha-based scheduling, suggesting that the improved network reactivity is worth the increased algorithmic complexity and resource consumption

    Fast Desynchronization For Decentralized Multichannel Medium Access Control

    Get PDF
    Distributed desynchronization algorithms are key to wireless sensor networks as they allow for medium access control in a decentralized manner. In this paper, we view desynchronization primitives as iterative methods that solve optimization problems. In particular, by formalizing a well established desynchronization algorithm as a gradient descent method, we establish novel upper bounds on the number of iterations required to reach convergence. Moreover, by using Nesterov's accelerated gradient method, we propose a novel desynchronization primitive that provides for faster convergence to the steady state. Importantly, we propose a novel algorithm that leads to decentralized time-synchronous multichannel TDMA coordination by formulating this task as an optimization problem. Our simulations and experiments on a densely-connected IEEE 802.15.4-based wireless sensor network demonstrate that our scheme provides for faster convergence to the steady state, robustness to hidden nodes, higher network throughput and comparable power dissipation with respect to the recently standardized IEEE 802.15.4e-2012 time-synchronized channel hopping (TSCH) scheme.Comment: to appear in IEEE Transactions on Communication

    Distributed Time-Frequency Division Multiple Access Protocol For Wireless Sensor Networks

    Get PDF
    It is well known that biology-inspired self-maintaining algorithms in wireless sensor nodes achieve near optimum time division multiple access (TDMA) characteristics in a decentralized manner and with very low complexity. We extend such distributed TDMA approaches to multiple channels (frequencies). This is achieved by extending the concept of collaborative reactive listening in order to balance the number of nodes in all available channels. We prove the stability of the new protocol and estimate the delay until the balanced system state is reached. Our approach is benchmarked against single-channel distributed TDMA and channel hopping approaches using TinyOS imote2 wireless sensors.Comment: 4 pages, IEEE Wireless Communications Letters, to appear in 201

    A Load Balancing Algorithm for Resource Allocation in IEEE 802.15.4e Networks

    Full text link
    The recently created IETF 6TiSCH working group combines the high reliability and low-energy consumption of IEEE 802.15.4e Time Slotted Channel Hopping with IPv6 for industrial Internet of Things. We propose a distributed link scheduling algorithm, called Local Voting, for 6TiSCH networks that adapts the schedule to the network conditions. The algorithm tries to equalize the link load (defined as the ratio of the queue length over the number of allocated cells) through cell reallocation. Local Voting calculates the number of cells to be added or released by the 6TiSCH Operation Sublayer (6top). Compared to a representative algorithm from the literature, Local Voting provides simultaneously high reliability and low end-to-end latency while consuming significantly less energy. Its performance has been examined and compared to On-the-fly algorithm in 6TiSCH simulator by modeling an industrial environment with 50 sensors

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay

    Deep learning-based spectrum prediction collision avoidance for hybrid wireless environments

    Get PDF
    With a growing number of connected devices relying on the Industrial, Scientific, and Medical radio bands for communication, spectrum scarcity is one of the most important challenges currently and in the future. The existing collision avoidance techniques either apply a random back-off when spectrum collision is detected or assume that the knowledge about other nodes' spectrum occupation is known. While these solutions have shown to perform reasonably well in intra-Radio Access Technology environments, they can fail if they are deployed in dense multi-technology environments as they are unable to address the inter-Radio Access Technology interference. In this paper, we present Spectrum Prediction Collision Avoidance (SPCA): an algorithm that can predict the behavior of other surrounding networks, by using supervised deep learning; and adapt its behavior to increase the overall throughput of both its own Multiple Frequencies Time Division Multiple Access network as well as that of the other surrounding networks. We use Convolutional Neural Network (CNN) that predicts the spectrum usage of the other neighboring networks. Through extensive simulations, we show that the SPCA is able to reduce the number of collisions from 50% to 11%, which is 4.5 times lower than the regular Multiple Frequencies Time Division Multiple Access (MF-TDMA) approach. In comparison with an Exponentially Weighted Moving Average (EWMA) scheduler, SPCA reduces the number of collisions from 29% to 11%, which is a factor 2.5 lower

    An Analytical Model for Wireless Mesh Networks with Collision-Free TDMA and Finite Queues

    Full text link
    Wireless mesh networks are a promising technology for connecting sensors and actuators with high flexibility and low investment costs. In industrial applications, however, reliability is essential. Therefore, two time-slotted medium access methods, DSME and TSCH, were added to the IEEE 802.15.4 standard. They allow collision-free communication in multi-hop networks and provide channel hopping for mitigating external interferences. The slot schedule used in these networks is of high importance for the network performance. This paper supports the development of efficient schedules by providing an analytical model for the assessment of such schedules, focused on TSCH. A Markov chain model for the finite queue on every node is introduced that takes the slot distribution into account. The models of all nodes are interconnected to calculate network metrics such as packet delivery ratio, end-to-end delay and throughput. An evaluation compares the model with a simulation of the Orchestra schedule. The model is applied to Orchestra as well as to two simple distributed scheduling algorithms to demonstrate the importance of traffic-awareness for achieving high throughput.Comment: 17 pages, 14 figure

    D-SAR: A Distributed Scheduling Algorithm for Real-time, Closed-Loop Control in Industrial Wireless Sensor and Actuator Networks

    Get PDF
    Current wireless standards and protocols for industrial applications such as WirelessHART and ISA100.11a typically use centralized network management techniques for communication scheduling and route establishment. However, large-scale centralized systems can have several drawbacks. They have difficulty in coping with disturbances or changes within the network in real-time. Large-scale centralized systems can also have highly variable latencies thus making them unsuitable for closed-loop control applications. To address these problems, this paper describes D-SAR, a distributed resource reservation algorithm which would allow source nodes to meet the Quality-of-Service (QoS) requirements of the application in real-time, when carrying out peer-to-peer communication. The presented solution uses concepts derived from relevant networking-related domains such as circuit switching and Asynchronous Transfer Mode (ATM) networks and applies them to wireless sensor and actuator networks
    corecore