
1

D-SAR: A Distributed Scheduling Algorithm for
Real-time, Closed-Loop Control in Industrial

Wireless Sensor and Actuator Networks
Pouria Zand1 Supriyo Chatterjea1 Jeroen Ketema2 Paul Havinga1

Pervasive Systems Group1, Formal Methods and Tools Group2,
 Faculty of EEMCS, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands

{p.zand, s.chatterjea, j.ketema, p.j.m.havinga}@utwente.nl

ABSTRACT
Current wireless standards and protocols for industrial
applications such as WirelessHART and ISA100.11a
typically use centralized network management techniques
for communication scheduling and route establishment.
However, large-scale centralized systems can have several
drawbacks. They have difficulty in coping with
disturbances or changes within the network in real-time.
Large-scale centralized systems can also have highly
variable latencies thus making them unsuitable for closed-
loop control applications. To address these problems, this
paper describes D-SAR, a distributed resource reservation
algorithm which would allow source nodes to meet the
Quality-of-Service (QoS) requirements of the application in
real-time, when carrying out peer-to-peer communication.
The presented solution uses concepts derived from relevant
networking-related domains such as circuit switching and
Asynchronous Transfer Mode (ATM) networks and applies
them to wireless sensor and actuator networks.

1. Introduction
Industrial wireless technologies such as WirelessHART [1]
and ISA100.11a [2] use centralized network management
techniques for communication scheduling and establishing
routes. While such an approach may be easier in terms of
implementation, they have numerous disadvantages.
Centralized systems often perform poorly in terms of
reaction time as all updates need to be first sent to the
centralized system manager (i.e. gateway) for further
processing. The gateway then performs recalculations and
disseminates updated instructions to the relevant nodes in
the network. As the round-trip time for such decision-
making actions can be very high (especially when network
contention is high), centralized approaches are unable to
cope with highly dynamic situations (e.g. bursty data
traffic/varying link quality, and node mobility). This
problem is further exacerbated as the network is scaled up.
Moreover, the longer the route (in terms of hops) between
the source and the gateway, the higher the variability of the
latency of the data traffic between these two nodes. This
uncertainty makes centralized approaches especially
unsuitable for applications which require closed-loop
control as they require messages to be delivered within a
fixed time frame.

To mitigate these problems, this paper presents D-SAR
which is a distributed scheduling algorithm for enabling
real-time, closed-loop control that is suitable for harsh
industrial environments. The distributed nature of our
approach allows the system to adapt quickly to disturbances
or changes within the network in real-time. Our approach,
which focuses on allocating bandwidth resources, is based
on concepts derived from Asynchronous Transfer Mode
(ATM) networks. This is because ATM signaling protocols
also address certain performance issues in terms of
reliability and timeliness of packet delivery that are of
importance in industrial applications that require closed-
loop, real-time control. This paper presents initial ideas of
our approach which we believe will act as the foundation of
our future work in this area.

Section 2 describes the state-of-the-art in current
technologies for wireless sensing, actuation and control for
industrial automation. Section 3 provides some background
about ATM and the MAC layer which is used in this
algorithm. In addition, this article provides some details
about the D-SAR algorithm in section 4. Section 5
describes the steps we take to verify the design of the
protocol. Section 6 describes our future research directions
in this area. Finally, Section 7 concludes the paper.

2. State of the art
Resource reservation from the perspective of bandwidth
allocation is an essential part of a control system. As
mentioned previously, both WirelessHART and
ISA100.11a take centralized resource reservation
approaches. For example, ISA100.11a uses a combination
of resource reservation and traffic classification techniques
for providing different QoS requests. Resource reservation,
involves a device trying to establish communication with
the central system manager or another device, by sending a
contract request to the system manager. This contract
request includes input parameters such as communication
service type (scheduled or unscheduled), destination
address, traffic classification (best effort queued, real time
sequential, real time buffer and network control), etc. The
system manager then uses its centralized optimization
algorithm to determine the required allocation of the
network resources (such as graphs and links) and sends a
contract response to the source after all necessary network
resources have been configured and reserved along the

2

path. However, ISA100.11a does not specify the specific
optimization algorithms that can be used by the system
manager to allocate resources. In [3-5] the authors propose
a centralized scheduling algorithm in WirelessHART for
convergecast by considering linear and tree network
models.

In addition to resource reservation, reliability is also an
essential part of a control system. The link quality between
a source and destination node can heavily influence
whether closed-loop control can be carried out successfully.
One of the mechanisms used to improve link quality by
trying to eliminate or minimize interference is channel
hopping. Channel hopping can help prevent external
interference and multipath fading. Channel hopping
techniques are used in several industrial 802.15.4-based
standards such as WirelessHART, ISA100.11a, and IEEE
802.15.4e (Time Slotted Channel Hopping (TSCH) mode).
Among these, WirelessHART, ISA100.11a and IEEE
802.15.4e are designed using concepts derived from the
Time Synchronized Mesh Protocol (TSMP) [6]. TSMP is a
media access and networking protocol that is designed for
low power and low bandwidth reliable communication.
TSCH is a Medium Access Control (MAC) scheme which
is a subset of TSMP and enables robust communication
through channel hopping and high data rates through
synchronization. It is based on a time-slotted architecture,
where a schedule dictates on which slot and which channel
a node should transmit/receive data to/from a particular
neighbor. Unlike TSMP, TSCH does not address routing
issues and leaves this to the upper layers.

While TSCH describes the channel hopping mechanism, it
does not describe how the schedule is built, i.e. it does not

define when a node should communicate with a particular
neighbor. However, the next upper level (6LoWPAN) that
resides on top of TSCH, assumes that nodes are capable of
communicating with all their neighbors. This clearly
indicates that there is a “gap” that exists between these two
adjacent layers.

This paper presents a distributed scheduling algorithm that
would allow the TSCH MAC protocol to be glued to the
next higher layer. The presented approach defines how and
when nodes communicate with their neighbors. Also, as our
approach is based on techniques used in ATM networks,
our final aim is to develop techniques to support both
constant rate and bursty traffic. This paper, however, only
considers the case of constant rate traffic. Thus we assume
that the data traffic between sensors and actuators has a
constant rate.

3. Background
3.1 ATM networks and Circuit Switching
Large-scale, distributed, real-time control applications
require data to be transmitted over long distances through a
multi-hop network in a timely manner. A distributed
resource reservation algorithm is needed which would
allow source nodes, based on the requirements of the
application and traffic characteristic, to reserve network
resources for its peer communications along their paths for
addressing different QoS needs. The distributed nature
allows the system to adapt quickly to disturbances or
changes within the network in real-time. While such
mechanisms do not exist for present day sensor nodes,
relevant techniques from other networking-related domains
could potentially be adapted to develop solutions that are

Figure 1 Distributed timeslot and frequency allocation for different traffic flows

3

suitable for wireless sensor and actuator networks. QoS in
multi-hop networks can be supported by different
mechanisms and one of these techniques is ATM.

QoS in multi-hop networks can be provided using certain
mechanisms found in circuit and packet switching
protocols and the ATM protocol. Some of these
mechanisms allow a source node to request a special end-
to-end QoS for specific data flows or classes of data by
reserving the resources and setting up a path between the
source and destination(s).

Circuit switching is a technology primarily designed for
telecommunication networks. It establishes a dedicated link
between the source and destination for the duration of the
communication thus guaranteeing a certain level of QoS.
This reservation mechanism can play an important role in
transferring real-time traffic. However, reserving routes and
resources only for certain specific flows, means that the
routes cannot be used by other flows. In other words, the
route remains reserved even if it is not being actively used.
This makes it unsuitable for bursty traffic conditions.
Packet switching, however, is specifically designed for
delivering bursty traffic over a shared network by using
statistical multiplexing but it does not provide any QoS
guarantees.

The ATM protocol uses a switching technique that
combines the concepts of circuit switching and packet
switching. For example, similar to circuit switching, before
initiating data transfer, a virtual circuit is first established
between the source and destination. This is performed by
ensuring that time slots are available in each of the nodes
along the reserved route. The connection fails if the
required portion of the bandwidth cannot be allocated on
each of the links. The protocol also includes admission
control mechanisms that help determine whether the
required QoS guarantees can be provided. ATM uses
statistical multiplexing techniques, similar to those used in
packet switching in order to cope with variable bit rates
(i.e. bursty traffic).

3.2 Time Slotted Channel Hopping (TSCH)
TSCH is a MAC protocol that allows reliable
communication by using a channel hopping mechanism. It
divides the wireless channel into time and frequency. Time
is divided into discrete time slots. TSCH models the RF
space as a matrix of slot-channel cells. Figure 1 shows a
similar approach.

TSCH uses the concept of a superframe which is a
collection of cells which repeat at regular intervals. For
example, Figure 1 illustrates that a slot of length 10ms
repeats once every 250ms when the superframe consists of
25 slots. By scheduling each transaction (i.e. Tx-Rx
operation) in one cell, the hidden terminal problem is
prevented, as adjacent links never transmit simultaneously
on the same frequency. A link is a transaction that occurs
within a cell. It consists of a superframe ID, source and
destination IDs, a slot number referenced to the beginning

of the superframe, and a channel offset. The simplest
version of a link contains one transmitter and one receiver.
The two nodes at either end of the link communicate
periodically once every superframe. If only one transmitter
is scheduled, the link is contention-free, but a slotted
CSMA approach can be used if multiple transmitters are
scheduled to use the same cell simultaneously. TSCH links
hop pseudo-randomly over a set of predefined channels,
one packet at a time. Each time a link is activated, both
sides of the link calculate the radio channel of the
communication by taking (Absolute Slot Number +
Channel offset) % Number of channels. For example, in
Figure 1, Node E which has an offset of 4 will use channel
16 in slot 1 based on the frequency hopping pattern that is
provided in the figure.

4. The D-SAR Algorithm
As we focus specifically on applications that require
constant data traffic rates, our solution allocates a virtual
circuit for each traffic flow. This implies that the resources
reserved for each endpoint-to-endpoint connection will
depend on the traffic characteristics.

There are two separate approaches for carrying out resource
reservation. One approach based on the circuit switching
concept would be to dedicate specific links in the network
only for one particular traffic flow. The second approach
based on ATM networks would allow links in the network
to be shared between multiple traffic flows. For example,
let us consider Traffic b (involving nodes A, E, I, N, M, L)
and Traffic d (involving nodes C, F, E, I, O, P) in Figure 1.
Using the circuit switching concept, between nodes E and I,
Traffic b will only be allowed to flow through Link (i) and
Traffic d will only be allowed to flow through Link (ii).
However, based on the second approach, both Traffic b and
Traffic d will be allowed to use both Link (i) and Link (ii).
The advantage of this approach is that it allows for better
utilization of every individual link. In addition, a node
could also choose to send its data to multiple adjacent
neighbors (i.e. links) thus reducing latency. We follow the
second approach in this paper due to the above-mentioned
benefits. We now provide the details of our distributed
algorithm for resource reservation.

Similar to TSCH, we use a set of predefined frequency
hopping sequences. The number of possible channel offsets
is equal to the total number of channels used. Nodes
broadcast advertisements to enable network formation and
exchange timing information. An advertisement also
includes channel offset information about a node and its
immediate neighbors. This effectively allows a receiving
node to gather channel offset information about its two-hop
neighborhood. Each new node can choose a free channel
offset based on this information. In order to communicate,
a transmitter node switches its frequency to that of the
receiver using a combination of the neighboring node’s
channel offset and the predefined frequency hopping
sequence.

4

Existing technologies such as WirelessHART and
ISA100.11a carry out their scheduling in a centralized
manner by using the system manager to define the channel
offsets and hopping sequences of every link in the network.

Our distributed resource reservation algorithm has three
phases. The first phase, which involves network formation,
uses a mechanism based on TSCH. A new node joining the
network has to be assigned the appropriate resources so that
it can carry out tasks such as broadcasting advertisements,
receiving join requests, sending join responses, and
communicating with others. The following step is to define
the individual links between a node and all its adjacent
neighbors so that they can be used by the routing layer. A
handshaking mechanism is needed between the new device
and each of its neighbors in order to choose the free
timeslot (which was announced in their advertisement) thus
allowing neighboring nodes to agree to communicate in a
particular cell. As the network formation and route set up
are low priority operations as opposed to control data
traffic, we use shared instead of dedicated cells based on a
CSMA approach.

In the second phase, the routing layer will be responsible
for finding routes between the endpoints. We make the
assumption that the routing algorithm already exists.

The focus of the third phase is to establish the end-to-end
connection for transporting the application’s control data.
More importantly, this phase is responsible for allocating
bandwidth resources based on the traffic characteristics
requested by the source node. This is distinctly different
from the approach taken in [7] where the authors only focus
on defining the links but do not consider the traffic
characteristics. The message exchange operation used to set
up this connection is similar to the procedure followed by
the ATM signaling protocol [8]. The source node initiates
this phase by sending a SETUP message. The format of this
message is similar to the Contract Request in ISA100.11a.
However, unlike in ISA100.11a, which sends the Contract
Request to centralized system manager, the source node in
this protocol sends the SETUP message to the following
node along the route defined in phase two. The message
includes input parameters such as the selected timeslot
number for the communication with the next hop1 when
communication is established, destination address, traffic
classification (extended QoS parameters), end-to-end
transit delay, traffic ID, and requested period. The SETUP
message will be forwarded in the network along the path to
the destination through the links previously defined in the
first phase. The sender node sets Timer T1 after sending the
SETUP message and waits for the response in the form of a
CALL PROCEEDING message, from the following node
along the route defined in the second phase as shown in
Figure 2.

1 The sender selects this free timeslot by listening to the

receiver’s advertisement.

The receiver of the SETUP message then performs a check
of its available resources by performing an admission
control operation. This operation checks whether free
outgoing timeslots to the following hop are available. If the
required timeslots are available, a CALL PROCEEDING
message is sent to the sender. Upon receiving this message,
the sender stops the Timer T1 and starts Timer T2. Next, the
receiver of the SETUP message forwards the SETUP
message to the next hop in the route. This process is
continued until the SETUP message reaches the destination
node. At this stage, all reserved timeslots along the route
are only temporarily occupied.

If, however, the receiver of the SETUP message is unable
to accommodate the new connection, it refuses it by
responding with a RELEASE COMPLETE message.

Once the destination node receives the SETUP message it
can either accept or decline the new connection request
from the source node. Accepting the connection results in
the destination node responding with a CONNECT
message. This CONNECT message traverses along the
multihop network back to the source node. Every
intermediate node that receives a CONNECT message first
stops Timer T2 and then responds with a CONNECT
ACKNOWLEDGE message directed towards the previous
node in the direction of the destination node. When an
intermediate node confirms the connection using a
CONNECT ACKNOWLEDGEMENT message, it switches
all the temporary timeslot reservations to permanent
reservations. This two-step reservation is performed to
ensure that timeslot reservations are not carried out if the
connection request is unsuccessful. The destination node
sends a RELEASE COMPLETE message to the source
node if it decides to decline the connection request.

The details of the algorithm for the source, intermediate,
and destination node are provided in algorithms 1, 2, and 3
respectively.

Figure 2 Overview of connection establishment protocol

5

Algorithm 1: Connection establishment at the source node

1. Receive the Setuprequest primitive
2. Select the free timeslot by listening to the next hop advertisement

3. Send (SETUP) & Start Timer T1
4. if Timer T1 expires before CALL PROCEEDING received
5. if retry counter exceeded
6. Clear the connection
7. else
8. Send (SETUP) again
9. end if
10. else
11. Stop T1
12. Send the proceedingindication primitive
13. Start T2
14. Temporarily reserve the requested outgoing timeslot
15. if Timer T2 expires before CONNECT received
16. Clear the connection
17. else
18. Receive (CONNECT)
19. Stop T2
20. Send setupconfirm primitive
21. Send(CONNECT ACK)
22. Permanently reserve the requested outgoing timeslot
23. end if
24. end if

Algorithm 2: Connection establishment at the intermediate
node

1. The intermediate node receives SETUP message
2. Send setupindication primitive
3. if enough outgoing timeslots are available and the requested

timeslot is accepted for the new connection
4. Send (CALL PROCEEDING) to the previous node
5. Temporarily reserve the requested incoming timeslot
6. Select the free outgoing timeslot by listening to the next

hop advertisement
7. Forward (SETUP) to the next node
8. Start T1
9. if Timer T1 expires before CALL PROCEEDING or CONNECT

received from next node
10. if retry counter exceeded
11. Clear the connection
12. else
13. Forward (SETUP) again to the next node

14. end if
15. else if the CALL PROCEEDING received from next node
16. Stop T1
17. Send proceedingindication primitive
18. Start T2
19. Temporarily reserve the requested outgoing timeslot
20. if Timer T2 expires before CONNECT received
21. Clear the connection
22. else
23. goto line 26
24. end if
25. else if the CONNECT message received from next node
26. Stop T2 or T1
27. Send setupconfirm primitive
28. Send (CONNECT ACK) to next node
29. Permanently reserve the requested outgoing timeslot

30. Forward (CONNECT) to previous node
31. Start the Timer T3
32. if Timer T3 expires before receiving CONNECT ACK
33. Clear the connection
34. else
35. Receive (CONNECT ACK) from previous node
36. Permanently reserve the requested incoming timeslot

37. end if
38. end if
39. else Send (RELEASE COMPLETE) to previous node
40. end if

Algorithm 3: Connection establishment at the destination
node

1. The node received the SETUP message
2. Send setupindication primitive
3. If the node accepted the connection
4. if received proceedingrequest primitive
5. Send (CALL PROCEEDING)
6. Temporarily reserve the requested incoming timeslot
7. end if
8. if received setupresponse primitive
9. Send (CONNECT)
10. Start T3
11. if timer T3 expires before receiving CONNECT ACK
12. Clear the connection
13. else
14. Receive (CONNECT ACK)
15. Permanently reserve the requested incoming timeslot

16. Activate the connection
17. end if
18. end if
19. end if

We allow the network to cope with varying data traffic
rates by preventing established permanent connections to
remain even if the connection is not required by the source
and destination nodes or intermediate nodes which wish to
terminate the connection due to resource constraints. To
cope with this scenario, a node which wishes to end the
connection transmits a RELEASE message. This message
ensures that all nodes along the route release all the
resources previously allocated for the connection.

5. Verification of the D-SAR Algorithm
In order to increase our confidence in the design of the
protocol, we constructed a formal specification of the
connection establishment protocol in mCRL2 [9]. Using
this formal specification, we were able to verify almost
fully automatically that a connection is always eventually
established and that the protocol is deadlock free (both in
case of normal operation, i.e. without message loss).

Concretely, the properties were verified by means of model
checking: We considered a linear array of nodes from a
source to a destination and generated all possible states the
linear array can assume. The model checker of mCRL2 was
employed. This model checker was chosen from among
number of tools with almost identical functionality, such as
Spin [10] and Uppaal [11], as it is most familiar to the

6

authors. Like Spin, but unlike Uppaal, mCRL2 does not
support any notion of time. In our case, this means the
specification does not include exact durations until
timeouts occur; instead timeouts may happen at arbitrary
moments, which implies the system exhibits more
behavior. The additional behavior is such that the
properties we were interested in could still be verified
(essentially because only a finite number of timeouts are
possible during connection establishment).

The model checking is slightly complicated, as there is a
priori no bound on the number of intermediate nodes in a
linear array and, hence, no fixed linear array of a certain
size can be used. To handle this, we first used the model
checker to calculate a specification of all observable (or
black-box) behavior of an intermediate node (hiding
internal details of the node). Next, the generated
specification was composed with another intermediate node
and again a specification of the observable behavior was
generated (hiding also the messages passed between the
two nodes) as shown in Figure 3. Finally, it was established
that the observable behavior of intermediate node is in fact
identical to that of the composition. By mathematical
induction, the previous technique ensures that the number
of intermediate nodes is irrelevant and that it suffices to
consider a system composed of a source node, the
observable behavior of the intermediate nodes, and a
destination node. In this setting we were able to establish
that a connection is always eventually established and that
no deadlocks occur.

Note that we did not take into account either message loss
or information about the topology and routes within the
topology. Although the approach described above is easily
extended to take into account message loss, it cannot deal
with arbitrary topologies. To still gain some insight in the
behavior of the protocol within arbitrary topologies, we
plan to exhaustively generate all possible topologies up to a
certain small number of nodes (say up to ten) and to apply
model checking to all these topologies, similar to what is
done in, for example, [12]. Although this will not give a
full guarantee that the protocol works within every

topology, it is reasonable to assume that flaws will already
surface in these small topologies. Hence, this will still
increase our confidence in the protocol.

6. Future Work
Significant advances are required before this protocol can
be used for reliable, real-time, distributed control
operations. We now highlight some of the key areas which
need to be addressed to make this a reality.

6.1 Supporting bursty traffic
Our approach uses concepts from ATM networks to fulfill
the real-time requirements. While our present protocol
solely focuses on constant bit-rate traffic, we intend to
extend it to support bursty traffic as well. Thus, the network
can cope with the bursty nature of data traffic generated by
the applications in the case of event occurrence when the
large amount of traffic or report is needed to be forwarded
to their destination. For delivering bursty traffic over a
shared network, ATM provides the solution by considering
a virtual circuit with statistical multiplexing. A similar
mechanism can be applied to D-SAR to support bursty
traffic.

6.2 Applying multipath mechanism
Additionally, to ensure robust communication multiple
paths can be defined for each node to reach a particular
destination in the network. In this approach if
communication between a nodes and its next hop is
disrupted due to interference, an alternative path can be
used to transport the data. This approach is followed in
several industrial wireless standards such as
WirelessHART and ISA100.11a. We intend to consider this
capability in the routing layer, and modify the D-SAR
algorithm to support this approach.

6.3 Supporting point-to-multipoint
This paper focuses on establishing a point-to-point
connection between one sensor and one actuator node but
in certain industrial closed-loop control applications
involving a sensor and multiple actuators, raw sensor
readings are streamed from the sensor to the actuators. In
traditional Fieldbus technologies such as Foundation
Fieldbus, WorldFIP, and ControlNet, certain sensor nodes
(the publishers) produce information which they publish to
the network. Other groups of sensors or actuators (the
subscribers) that are interested in that information listen to
the publishers and update their local copy. This scenario
can also occur in the wireless approach. In this case we
have to consider establishing a point-to-multipoint
connection. A point-to-multipoint connection allows one
end point to send its traffic to two or more endpoints. The
endpoint which generates the traffic is referred to as the
root of the connection, whereas an endpoint that receives
this traffic is referred to as a leaf. This feature exists in
ATM networks and we intend to use the same concepts to
add this capability to D-SAR.

Figure 3 Visual representation of the proof technique used

in verification

7

6.4 Distributed collaborative power control
method
In our present protocol, we allow a receiving node to gather
channel offset information about its two-hop neighborhood,
and choose a free channel offset based on this information.
This scenario does not guarantee that the hidden terminal
problem is solved because even offset information from the
2-hop neighborhood does not guarantee that two nodes that
are in interference range do not transmit at the same time
and hence cause collisions. We intend to use distributed
and collaborative power control techniques to enable the
node detecting interference to instruct the interfering node
to re-adjust its Transmission power to reduce interference.

6.5 Considering adaptive channel hopping
(ACH) mechanism
Channel hopping is often used to mitigate external
interference and multipath fading. In this paper we
considered the blind channel hopping technique. The other
solution is using the adaptive channel hopping (ACH)
technique in which the channel is changed on link-by-link
basis only when necessary. There is a tradeoff between
using blind channel hopping and ACH. In the former, if the
node switches to another congested channel or switches
from a good channel to a congested one, this hopping does
not help to mitigate the interference and just wastes energy
[13], however in ACH, nodes only change their frequencies
when interference is detected on the current operating
channel. Using ACH instead of considering the blind
channel hoping can be helpful. However, nodes need to
collaborate to decide which channel to switch to and this
can introduce a significant overhead since nodes need to
continuously scan all channels for interference levels and
also because nodes need to ensure that while
communicating nodes choose the same frequency,
neighboring node pairs use different channels. We intend to
add ACH to D-SAR in the future.

6.6 Simulation
In addition to verifying the correctness of our approach, we
also intend to implement this protocol in a network
simulator (NS-2) so as to make performance comparisons
between our approach and existing technologies such as
WirelessHART. The IEEE 802.15.4 standard 2003 package
is available in NS and we intend to add IEEE 802.15.4e
(Time Slotted Channel Hopping (TSCH) mode) to this
package to support network-wide time synchronization,
channel hopping, dedicated slotted unicast communication
bandwidth, link layer ACKs, concurrent link activation, and
omitting the poor method for synchronization such as
sending Beacon. Several new MAC layer management
entity (MLME) primitive should be added to the existing
IEEE 802.15.4 standard 2003 package in NS in addition to
the changes that are considered in IEEE 802.15.4 standard
2006. Network formation mechanism such as advertising
and joining, network-wide time synchronization, and

channel hopping are the main changes which should be
applied in the existing NS package.

After adding the TSCH, D-SAR will be added to the
existing package.

The final goal will be to carry out performance evaluations
on actual sensor nodes in a harsh industrial environment.

7. Conclusion
This paper has described a distributed resource reservation
protocol that is designed specifically for sensor and
actuator networks that can be used in industrial applications
that require real-time, closed-loop control. Our approach
uses concepts from ATM networks to fulfill the real-time
requirements. Since this solution uses a distributed
approach, it can cope with disturbance or changes within
the network in real-time and large-scale networks can also
be supported. As our approach uses temporary connections
which can be terminated at any time by the source and
destination or intermediate nodes, the network can cope
with varying data traffic rates and resource constraints or
disturbances in the network. In addition to describing the
algorithm in detail, this paper also describes how we verify
the correctness of our approach using model checkers. We
also outline the following steps we intend to take in the
future to enhance the capabilities of D-SAR.

8. REFERENCES
[1] HART Communication Foundation. WirelessHART

Technical Data Sheet. http://www.hartcomm.org

[2] International Society of Automation. ISA-100.11a-2009,
Wireless Systems for Industrial Automation: Process Control
and Related Applications. http://www.isa.org

[3] H. Zhang, P. Soldati, and M. Johansson, “Optimal link
scheduling and channel assignment for convergecast in linear
WirelessHART networks,” IEEE WiOpt, Seoul, Korea, Jun
2009.

[4] P. Soldati, H. Zhang, and M. Johansson, “Deadline-
constrained transmission scheduling and data evacuation in
WirelessHART networks,” The European Control
Conference 2009 (ECC ’09)

[5] H. Zhang, P. Soldati, and M. Johansson, “Efficient Link
Scheduling and Channel Hopping for Convergecast in
WirelessHART Networks,” School of Electrical Engineering,
Royal Institute of Technology (KTH), Tech. Rep., 2009

[6] Kristofer S. J. Pister and Lance Doherty, TSMP: Time
Synchronized Mesh Protocol, Proceedings of the IASTED
International Symposium on Distributed Sensor Networks
(DSN08), Orlando, Florida, USA, November 2008.

[7] Andrew Tinka, Thomas Watteyne, Kris Pister. A
Decentralized Scheduling Algorithm for Time Synchronized
Channel Hopping. International Conference on Ad Hoc
Networks (ADHOCNETS), Victoria, BC, Canada, 18-20
August 2010.

[8] Harry G. Perros, Ed., “Connection-oriented Networks
SONET/SDH, ATM, MPLS and Optical Networks”. Wiley;
1 edition, May 6, 2005.

8

[9] Jan Friso Groote, Aad Mathijssen, Michel A. Reniers,
Yaroslav S. Usenko, Muck van Weerdenburg, “The Formal
Specification Language mCRL2,” Proc. of Methods for
Modelling Software Systems, 2007, Dagstuhl Seminar
Proceedings, 06351

[10] Gerard J. Holzmann, “The Spin Model Checker: Primer and
Reference Manual”, Addison-Wesley, 2004

[11] Kim G. Larsen, Paul Pettersson, Wang Yi, “Uppaal in a
Nutshell”, Int. Journal on Software Tools for Technology
Transfer, Springer-Verlag, 134-152, 1997

[12] A. Fehnker, L. van Hoesel and A. Mader, Modelling and
Verification of the LMAC Protocol for Wireless Sensor
Networks, In Proceedings of the 6th International Conference
on Integrated Formal Methods (IFM 2007). Springer, 2007.

[13] J. Ortiz and D. Culler, “Multichannel Reliability Assessment
in Real World WSNs”, IPSN '10 Proceedings of the ninth
ACM/IEEE International Conference on Information
Processing in Sensor Networks, 162-173.

