6 research outputs found

    A method of chained recommendation for charging piles in internet of vehicles

    Get PDF
    With the popularization of new energy electric vehicles (EVs), the recommendation algorithm is widely used in the relatively new field of charge piles. At the same time, the construction of charging infrastructure is facing increasing demand and more severe challenges. With the ubiquity of Internet of vehicles (IoVs), inter-vehicle communication can share information about the charging experience and traffic condition to help achieving better charging recommendation and higher energy efficiency. The recommendation of charging piles is of great value. However, the existing methods related to such recommendation consider inadequate reference factors and most of them are generalized for all users, rather than personalized for specific populations. In this paper, we propose a recommendation method based on dynamic charging area mechanism, which recommends the appropriate initial charging area according to the user's warning level, and dynamically changes the charging area according to the real-time state of EVs and charging piles. The recommendation method based on a classification chain provides more personalized services for users according to different charging needs and improves the utilization ratio of charging piles. This satisfies users' multilevel charging demands and realizes a more effective charging planning, which is beneficial to overall balance. The chained recommendation method mainly consists of three modules: intention detection, warning levels classification, and chained recommendation. The dynamic charging area mechanism reduces the occurrence of recommendation conflict and provides more personalized service for users according to different charging needs. Simulations and computations validate the correctness and effectiveness of the proposed method.This work is supported by the National Natural Science Foundation of China (U1636215, 61871140, 61872100), the National Key research and Development Plan (2018YFB0803504); the Beijing Municipal Natural Science Foundation (No. 4172006), the Guangdong Province Key Research and Development Plan (2019B010137004), and the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2019)

    FIMPA: A Fixed Identity Mapping Prediction Algorithm in Edge Computing Environment

    Get PDF
    Edge computing is a research hotspot that extends cloud computing to the edge of the network. Due to the recent developments in computation, storage and network technology for end devices, edge networks have become more powerful, making it possible to integrate locator/identity separation protocol (LISP) into these networks. Accordingly, in this paper, we introduce LISP into edge routers at the edge network, focusing primarily on the delay problem of mapping resolution and cache updating in LISP with the help of edge computing. To solve this delay problem, we first analyze the communication process of the locator/identity separation network and consider using the prediction method to underpin this research. In order to achieve a good prediction result, we propose and implement a Fixed Identity Mapping Prediction Algorithm (FIMPA) based on collaborative filtering, and further verify the effectiveness of the proposed algorithm through experiments on real-world data

    Automated vulnerability discovery and exploitation in the internet of things

    Get PDF
    Recently, automated software vulnerability detection and exploitation in Internet of Things (IoT) has attracted more and more attention, due to IoT’s fast adoption and high social impact. However, the task is challenging and the solutions are non-trivial: the existing methods have limited effectiveness at discovering vulnerabilities capable of compromising IoT systems. To address this, we propose an Automated Vulnerability Discovery and Exploitation framework with a Scheduling strategy, AutoDES that aims to improve the efficiency and effectiveness of vulnerability discovery and exploitation. In the vulnerability discovery stage, we use our Anti-Driller technique to mitigate the “path explosion” problem. This approach first generates a specific input proceeding from symbolic execution based on a Control Flow Graph (CFG). It then leverages a mutation-based fuzzer to find vulnerabilities while avoiding invalid mutations. In the vulnerability exploitation stage, we analyze the characteristics of vulnerabilities and then propose to generate exploits, via the use of several proposed attack techniques that can produce a shell based on the detected vulnerabilities. We also propose a genetic algorithm (GA)-based scheduling strategy (AutoS) that helps with assigning the computing resources dynamically and efficiently. The extensive experimental results on the RHG 2018 challenge dataset and the BCTF-RHG 2019 challenge dataset clearly demonstrate the effectiveness and efficiency of the proposed framework

    A data-driven method for future Internet route decision modeling

    No full text
    Simulating the BGP routing system of Internet is crucial to the analysis of Internet backbone network routing behavior, locating network failure and, evaluating network performance for future Internet. However, the existing BGP routing model lacks in the coarse modeling granularity and the priori knowledge based model. The analysis of BGP routing data that reflects the routing behaviors, directly impacts the BGP routing decision and forward strategy. The efficiency of such analysis dictates the time it takes to come up with such a time-critical decision and strategy. Under the existing model, BGP routing data analysis does not scale up. In this paper, we analyze the inter-domain routing decision making process, then present a prefix level route decision prediction model. More specifically, we apply deep learning methods to build a high-precision BGP route decision process model. Our model handles as much available routing data as possible to promote the prediction accuracy. It analyzes the routing behaviors without any prior knowledge. Beyond discussing the characteristics of the model, we also evaluate the proposed model using experiments explained in detailed cases. For the research community, our method could help in detecting routing dynamics and route anomalies for routing behavior analysis
    corecore