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ABSTRACT Edge computing is a research hotspot that extends cloud computing to the edge of the 
network. Due to the recent developments in computation, storage and network technology for end devices, 
edge networks have become more powerful, making it possible to integrate locator/identity separation 
protocol (LISP) into these networks. Accordingly, in this paper, we introduce LISP into edge routers at the 
edge network, focusing primarily on the delay problem of mapping resolution and cache updating in LISP 
with the help of edge computing. To solve this delay problem, we first analyze the communication process 
of the locator/identity separation network and consider using the prediction method to underpin this 
research. In order to achieve a good prediction result, we propose and implement a Fixed Identity Mapping 
Prediction Algorithm (FIMPA) based on collaborative filtering, and further verify the effectiveness of the 
proposed algorithm through experiments on real-world data. 

INDEX TERMS Edge computing; LISP; Mapping resolution; Prediction; Recommendation 

I. INTRODUCTION 
In recent years, an increasing number of computing 
technologies (such as cloud computing [1][2], cluster 
computing, IPTV [3], etc.) have emerged and been widely 
applied in various fields. However, all of them are designed 
so that the majority of functions are processed in the core 
(datacenter), while the terminal is relatively thin and 
sometimes even has no functions to process. Due to 
developments in the computation ability and storage 
technology of terminal devices, some tasks or functions 
may be offloaded to terminals from the core, which is the 
approach adopted by edge computing [4][5][6]. Edge 
computing, which has become a new research hotpot and an 
expansion of cloud computing, involves pushing computing, 
data, storage, and networking services away from 
centralized nodes to the logical extremes of a network. 

Edge computing is an efficient method for optimizing 
cloud computing by performing data processing at the edge 
of the network, near the source of the data. This approach has 
many advantages [4]: (a) it reduces the communication 
bandwidth required between edge nodes and the datacenter 

by performing computation and storage at or near the original 
location of the data; (b) it may limit or remove a major 
bottleneck and a potential point of failure in the cloud 
computing environment; (c) it improves data security, as data 
is encrypted before being moved to the network core; (d) it 
achieves good scalability due to the virtualization in most 
edge nodes. Fog computing [7][8], similar to edge computing, 
was first proposed by Cisco. It refers to extending cloud 
computing to the edge of an enterprise's network, facilitating 
the operation of computation, storage, and networking 
between end devices and cloud data centers. 

Researchers at Cisco proposed and implemented the LISP 
protocol in its routes deployed in some networks with the 
aim of resolving issues related to mobility, multi-homing and 
the IP semantic overload problem. The LISP protocol splits 
existing IP addresses into entity identity (EID) and router 
identifier/locator (RLOC); moreover, it describes the 
locator/identity separation protocol on the network 
perspective, meaning that it can prevent the end hosts’ 
network protocol architecture from changing while only 
changes the working mode of network devices. In a LISP 
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network, EID is independent of network topology, and is 
used to identify an end host when communicating with other 
hosts. EID can be allocated reasonably according to the 
deployment requirements of the mapping system. 

Moreover, since the computation, storage, and networking 
resources are offloaded from the datacenter to the edge 
network, it is also feasible for the edge network to solve the 
traditional problems associated with LISP, such as delay of 
mapping resolution, limited storage of mapping entries, and 
so on. Therefore, it represents a feasible way to integrate 
edge computing and LISP. Our aim is to solve some issues in 
the integration process. 

With the help of edge computing, we focus on the delay 
problem of mapping resolution; this problem arises when an 
identity cannot be resolved locally, which triggers a mapping 
resolution request to the mapping system and waits for the 
response. 

This paper first analyzes the communication process of the 
Locator/Identity separation network, focusing on the delay 
problem of mapping resolution in LISP and the update 
mechanism of mapping the cache in edge routers. 
Subsequently, we propose a Fixed Identity Mapping 
Prediction Algorithm (FIMPA) based on collaborative 
filtering. Finally, we verify the effectiveness of our proposed 
algorithm through experimentation. The experimental results 
illustrate that the FIMPA algorithm can significantly improve 
the hit rate and reduce the delay. 

The contribution of our work mainly lies in that solving 
some issues (such as delay problem of mapping resolution 
and cache updating) in LISP with the help of edge computing. 

The remainder of this paper is organized as follows. In 
section II, we introduce some background concepts, 
including the communication process of the LISP network 
and the delay problem. We provide our motivation in section 
III, while the FIMPA algorithm is proposed in section IV. In 
section V, we conduct some experiments and evaluations. 
Finally, we present the conclusion and discuss future work in 
section VI. 

II. BACKGROUND 

A. EDGE COMPUTING 
In recent years, there has been a large body of research 
focusing on cloud computing. Cloud computing is an on-
demand computing model that enables on-demand access to 
a shared pool of configurable networked resources (e.g., 
CPUs, storage, VMs, networks, applications, servers) that 
can be rapidly provisioned with minimal management effort. 
Service providers offer clouds with predefined quality of 
service (QoS) terms to interested clients through the Internet 
on a subscription basis, providing them with a set of easy-to-
use, scalable, and inexpensive services. In cloud computing, 
almost all functions are processed in the core (datacenter), 
while the client is relatively thin and may even have no 

processing functionality, making it a server-centric 
computing paradigm. 

Although cloud computing has several advantages 
including easy maintenance, centralized management, and 
high server utilization, its limitations have been exposed in 
the mobile Internet era: for example, the terminals should 
have higher processing capability, there are some security 
problems with the terminals, etc. Accordingly, transparent 
computing [16][17] proposes a promising solution for the 
mobile Internet. The core idea is that all data and software – 
including operation systems, apps, and user information – are 
stored on servers, with data computing being performed on 
terminals. This approach has a number of advantages: it 
reduces terminals’ complexity and cost, improves user 
experience, and offers high-level security and compatibility 
for cross-platform applications [17]. This is also suitable for 
access control [18]. 

Edge computing has become a research hotspot due to the 
rapid development of the IoT (Internet of Things) over the 
past three years, meaning that applications, data and 
networking services are being pushed away from centralized 
nodes in datacenters to the end devices. This approach takes 
advantage of the terminal's powerful computation and storage 
capabilities by offloading some tasks or functions to clients 
from the core; doing so has a number of advantages, 
including reducing the communications bandwidth between 
edge nodes and the datacenter, eliminating or removing 
bottlenecks and potential failures point in the cloud 
environment, improving data security, and achieving good 
scalability. Additional research into edge computing can be 
found in [19][20][21], which considers using blockchain [22]. 

B. CACHE UPDATE MECHANISM 
Regarding the update mechanism of the mapping cache in 
edge routers, the related research both at home and abroad 
can be broadly divided into two categories: namely, cache 
replacement algorithms and cache prediction/prefetching 
algorithms.  

Cache replacement algorithms are primarily focused on 
how to replace the mapping entries in the cache under 
conditions of limited space. Research in this area typically 
focuses on either temporal locality or spatial locality. 

LRU (Least Recently Used) [23] is a traditional algorithm, 
which assumes that recently visited objects are the most 
likely to be visited again in the future. Thus, it always 
removes the oldest object that has not been accessed from the 
cache. Although LRU is simple, it is also the most popular 
algorithm of its kind; however, due to involving the object 
time factor, its effectiveness is not high. The 2Q (Two queues) 
algorithm [25] is an improved approach based on the LRU-2 
algorithm that divides the cached pages into ‘cold’ and 
‘warm’, then maintains two FIFO queues to cache them. 
When a page is first accessed, it will be inserted into the cold 
page queue; if the accessed page is already in the cold queue, 
it may be considered a warm page and put into the warm 
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page queue. Both of these algorithms are based on temporal 
locality. However, they are not suitable for all situations. 

Moreover, the LFU (Least Frequently Used) algorithm [26] 
considers the access frequency of recent objects, taking full 
advantage of the historical scheduling information in the 
cache and removing the last least-visited objects from the 
cache. The LFU algorithm takes full advantage of the 
frequency characteristics of user access to preferred 
resources; however, it cannot distinguish between objects 
that are frequently accessed in the early stage or the later 
stage. In addition, it may keep "expired" objects to occupy 
the cache space, causing a serious cache pollution problem. 
The LFU-Aging algorithm is an improved optimization 
algorithm for LFU that solves one of its key problems, 
namely that the access frequency of resources in the cache is 
constantly increasing and never decreases. LFU-Aging [27] 
considers both the access frequency and the survival time of 
the resource in the cache, and therefore proposes that the 
value of access frequency is inversely proportional to the 
survival time. In the end, the access frequency of the long-
lost resources in the cache will become smaller and smaller 
until it is eliminated. These two algorithms are based on 
spatial locality; however, there are some cases in which these 
algorithms cannot work. 

Based on the spatial locality of resources, cache 
prediction/prefetching algorithms can predict which resource 
are to be accessed in the future using the current access, push 
the prediction content to the local cache, and replace the 
mapping item in the cache using the cache replacement 
algorithm. As the prefetching algorithm uses a prediction 
model to describe the mapping request, its prediction hit rate 
is closely related to that of the prediction model. At present, 
frequently used prefetching models include those based on 
data mining [28], multitask [29], Web semantics [30], the 
Markov model [24], probabilistic model [31], and so on. The 
prefetching model based on data mining predicts the users’ 
potential next page by mining a large amount of potential 
information contained in the users’ browsing history, while 
the model based on Web semantics extracts the feature key 
and analyzes user behavior to predict the next request. 
Moreover, the model based on the Markov model uses the 
transition probability matrix to describe the users' request 
behavior and thereby predicts the users' next request. 
However, the quality of these algorithms depends on the 
accuracy of the prediction algorithm. The feature key can be 
obtained using the method in [32]. 

III. MOTIVATION 
To solve the delay problem, we first analyze the 
communication process of the Locator/Identity Separation 
network. Subsequently, we discuss the delay problem in 
LISP.  

A. COMMUNICATION PROCESS OF THE LISP 
NETWORK 
Much like common networks, end hosts in a LISP network 
can also be divided into two types: namely, fixed hosts and 
mobile hosts. In order to quickly distinguish between these 
two host types, the LISP protocol uses a specific EID 
segment to represent mobile nodes, while the remaining 
address segments are assigned to fixed nodes.  

Considering the fixed hosts managed by an access router, 
their EIDs can be allocated regularly and aggregated into one 
EID-prefix, which can be used for EID mapping resolution. 
The mapping system stores the EID-to-RLOC (for mobile 
hosts) or EID-prefix-to-RLOC (for fixed hosts) mapping 
entries. The RLOC is the edge router's IP address used for 
forwarding packets in the core network, which is usually 
related to the network topology. The RLOC can be obtained 
by querying the EID-to-RLOC mapping database in a 
router’s local cache or mapping system, as shown in Fig.1. 

In addition, LISP introduces the concept of Ingress Tunnel 
Router (ITR) and Egress Tunnel Router (ETR), which are 
used to encapsulate/decapsulate packets for identifier 
communication. ITR is the first-hop access router of the 
sender end host, while ETR is the last-hop access router of 
the receiver end host. ITR receives a LISP packet sent by one 
end host, which contains the EID of both communication 
parties in the form of a source and destination address in a 
LISP header of the packet. ITR uses the destination EID as 
the keyword to query the EID-to-RLOC mapping, either 
locally or remotely, in order to obtain the RLOC of the 
access router served for the destination end host. After that, 
ITR constructs a new packet and forwards it to the core 
network, encapsulating this LISP packet with an outer header 
in the process. For the outer header, the destination address is 
the RLOC of the access router at the destination, and the 
source address is the RLOC of the ITR. ETR receives this 
new packet encapsulated by ITR, strips the outer header, and 
forwards the inner LISP packet to the destination end host 
indicated by the destination EID. 

If there is no mapping entry EID-to-RLOC of the 
destination EID in the ITR local buffer, it will wait for a long 
time to receive the mapping response from the mapping 
system after initiating a mapping query request to the 
mapping system; this increases the delay in the mapping 
resolution and affects the communication quality and 
performance. The key issue here is that of how to resolve the 
delay problem of mapping resolution. Some research has 
proposed a data-driven method to model the Internet route 
[10], adopted evolutionary game theory in the Internet of 
Vehicles [11], or used transformation-based process in IoT 
[12]. We consider deploying our work in a smart campus [13] 
and privacy issue [14] in the future. 
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FIGURE 1. An instance of Location/Identity separation network. 

B. THE DELAY PROBLEM IN LISP 
In the study of LISP architecture, we mainly use the local 
mapping cache and identity mapping prediction/prefetching 
technology to solve the identity mapping resolution delay 
problem. The local mapping caching technology requires the 
edge router to cache the mapping entry of the identity 
obtained by mapping resolution in its local cache. Because 
this technology uses the temporal locality principle of 
mapping requests, it can thus reduce sending the mapping 
resolution request to the mapping system in order to reduce 
the mapping resolution delay. 

However, given the increasing update frequency of 
network resources, the cache performance brought about by 
the upgrade cannot meet the performance needs. Accordingly, 
to further reduce the mapping resolution delay, mapping 
prediction/prefetching technology is introduced. This 
technology is used to forecast the future access according to 
the currently available historical information. However, 
successfully integrating the caching and forecasting 
technology to further reduce the mapping resolution delay 
remains a challenge. 

As shown in Fig.1, host EID1 in an edge network Site1 
wants to communicate with host EID2 in another edge 
network Site2. Their communication process can be 
described via the following steps: 
 Host EID1 sends a LISP packet (packet1) to the edge 

router ITR of Site1, setting its own EID1 and the host 
EID2 as the source and destination identifier of packet1, 
respectively. According to the local buffered EID-to-
RLOC mapping entries, the ITR of Site1 acquires the 
corresponding address RLOC of Host EID2 (for example, 
RLOC2 in Fig.1). If there is no local mapping entry for 
EID2, the ITR will send a mapping resolution request to 
the mapping system and store a new mapping entry in its 
local buffer after receiving the mapping response. 

 The ITR encapsulates packet1 with an outer packet 
header to construct a new packet (packet2), which uses 
RLOC1 (RLOC of ITR) as the source address, and 
chooses RLOC2 (RLOC of ETR) as the destination 

address. Subsequently, the ITR forwards packet2 to the 
core network. 

 This new packet (packet2) is routed to the ETR of Site2 
through the core network, according to the destination 
address RLOC2. 

 The ETR decapsulates this new packet (packet2) and 
sends the LISP packet (packet1) to Host EID2, according 
to the destination identifier EID2. 

If no mapping entry EID-to-RLOC of EID2 is found in the 
local mapping buffer of ITR, the ITR will initiate a mapping 
query request to the mapping system; it may then have to 
wait for a long time to obtain the mapping response from the 
mapping system. This may consequently increase the 
mapping resolution delay and thus affect the communication 
quality and performance. If we could accurately predict the 
destination identifiers with which a user will communicate in 
the future, and if the mapping system supported pushing the 
mapping entries of certain identifiers to edge routers, this 
could effectively reduce the mapping resolution delay. 
Furthermore, we could also integrate caching and forecasting 
technology together to reduce this delay even further. 

It should be noted here that Internet users in different edge 
networks may have different access interests. Depending on 
the social characteristics of the persons involved [33], a 
particular group of persons may exhibit particularly frequent 
patterns of access to certain network resources. For example, 
persons on a campus network may frequently visit Google 
Scholar or Baidu Academic to search for scientific papers. 
Similarly, if the access resources of the persons in two edge 
networks are similar, it is reasonable to push the resources 
frequently accessed by persons in one edge network to 
persons in another edge network. In the future, we will 
consider using the key management means in sensor 
networks [34][35] and blockchain technology [36] to design 
an effective mapping management system, and will consider 
using deep learning [37][38][39] to deal with unknown issues. 

IV. THE FIXED IDENTITY MAPPING PREDICTION 
ALGORITHM 
In a locator/identity separation network, the edge router xTR 
(denoting either ITR or ETR) in an edge network receives a 
packet from its inner interface (that is connected to devices in 
the edge network). It will first query the local cache for the 
related EID-to-RLOC (for mobile EID) or EID-prefix-to-
RLOC (for fixed EID) mapping entry for the destination 
identifier of the packet. If the local cache cannot find this 
related mapping entry, a mapping resolution request will be 
issued to the mapping system. Edge routers can record all 
resources accessed by persons in this edge network, since all 
the network’s import and export flows pass through them.  

In terms of recently recommended techniques and 
algorithms, collaborative methods based on collaborative 
filtering [40] have been widely recognized and promoted by 
researchers of late. The core idea behind these methods is to 
use group wisdom for prediction and recommendation, 
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determine the relevance of users or items by using 
information, e.g. users’ hobbies, and then making predictions 
and recommendations based on the correlation. Collaborative 
filtering is divided into user-based collaborative filtering [9], 
item-based collaborative filtering and matrix decomposition-
based collaborative filtering. 

In a locator/identity separation network, the users in an 
edge network have access preferences regarding network 
resources, causing some edge networks to have a correlation. 
We can use the idea of collaborative filtering to predict 
which resources in an edge network will be accessed next 
time and thus push the corresponding identity mapping to 
edge routers in advance. 

We use the collaborative filtering idea on the fixed end 
hosts case, and call this the Fixed Identity Mapping 
Prediction Algorithm (FIMPA). The idea behind FIMPA can 
be described as follows: 
 collect the packets received by an edge router over a 

given period of time; 
 using statistics of the packets, get the request frequency 

of different EID-prefixes over this period of time, then 
upload the request frequency information to the mapping 
system; 

 the mapping system calculates the prediction model 
based on the collaborative filtering method, and makes a 
fixed identification prediction for the edge router based 
on the front prediction model; 

 the mapping system actively pushes the correlation 
mapping entries to the edge router; 

 the edge router updates its mapping entries according to 
the cache replacement policy. 

A. SOME CRITICAL CONSIDERATIONS IN THE FIMPA 
ALGORITHM 

1)  THE FREQUENCY STATISTICS OF THE FIXED EID-
PREFIX FROM THE HISTORY PACKETS 
By using the request frequency statistics of the EID-prefixes 
recorded in an edge router over a given period of time, we 
can determine the data correlation, which is used as the basis 
for forecasting/prediction. It is therefore important to collect 
the packets received by an edge router over the specified 
period of time. 

For each packet in the fixed hosts case, the edge router 
maps its destination identifier to the corresponding EID-
prefix, and searches to determine whether there is an EID-
prefix-to-RLOC mapping entry in the local cache. We can 
thus record the corresponding request frequency of the EID-
prefixes accessed by the edge router over the specified period 
of time. The edge router then sends the EID-prefix request 
frequency data to the mapping system for centralized 
processing. 

The mapping system builds an array according to the EID-
prefix request frequency information from all edge routers in 
the edge networks in order to access different EID-prefixes. 
This array is presented in Table I. 

In this array, {S1, S2, ... , Sm} represents the set of m edge 
routers in the LISP network, while {D1, D2, ..., Dn} 
represents the set of n EID-prefixes in LISP network. The 
request frequency data of an EID-prefix accessed by an edge 
router is represented by a matrix m*n, where Hij represents 
that the edge router Si has accessed Hij times on the EID-
prefix Dj. 

2)  MAKING PREDICTIONS BASED ON THE REQUEST 
FREQUENCY INFORMATION 
After the mapping system collects the EID-prefix frequency 
information of all edge routers in the LISP network, it can 
carry out the prediction of EID-prefixes for the fixed end 
hosts based on collaborative filtering. More specifically, we 
use matrix decomposition-based collaborative filtering to 
handle all EID-prefix request frequency information. 

The relationship between an edge router and an EID-prefix 
can be implied by assessing the number of times that the 
edge router accesses this EID-prefix. In other words, the 
higher the number of times that the edge router accesses this 
EID-prefix, the greater the likelihood that the edge router will 
access this EID-prefix next time. 

In general, it is not possible for an edge router to access 
the whole set of EID-prefixes; thus, it can be seen that the 
request frequency of all EID-prefixes in one edge router is 
not all non-zero, meaning that the EID-prefix request 
frequency matrix Rm*n is sparse. 

3)  DEFINITIONS IN THE FIMPA ALGORITHM 
The problem to be solved here is the calculation of the 
missing values of the request frequency matrix Rm*n, after 
which prediction is carried out based on the missing values. 
We use a matrix decomposition method to calculate the 
missing values in the request frequency matrix. The idea here 
is that the request frequency matrix can be decomposed into 
the product of two small matrixes, with their product 
approximating the request frequency matrix. The request 
frequency matrix is sparse and contains a lot of zeros; 
however, the product of the small matrix is dense and 
complements the missing element. The key to FIMPA lies in 
the solution of the two small matrices. 

The request frequency matrix is denoted by Rm×n; 
moreover, Rm×n is approximated by the product of two small 
matrices Um×k and Vn×k: Rm×n ≈ Um×kVn×k

T, where k is much 
smaller than m and n. Um×k is the characteristic matrix of an 
edge router xTR, Vn×k is the characteristic matrix of an EID-
prefix, and k is the number of recessive factors. A target is 
the error generated by reconstructing R through U and V, 
which can be directly quantified. This can be done with other 
method, such as fast classification [41]. 
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TABLE I  
AN ARRAY OF REQUEST FREQUENCY DATA FROM EDGE ROUTERS 

EID-prefix 

xTR 
D1 D2 D3 D4 … Dn 

S1 H11 H12 H13 H14 … Hn1 

S2 H21 H22 H23 H24 … Hn2 

S3 H31 H32 H33 H34 … Hn3 

… … … … … … … 

Sm Hm1 Hm2 Hm3 Hm4 … Hmn 

We use the Frobenius norm ||R-UVT||2F to quantify the 
reconstruction error: that is, the score between each element 
and the reconstruction matrix. In fact, only non-zero 
frequency reconstruction error is required, meaning that the 
target or loss function can be written as follows:  

2

( , )

( )T
ij i j

i j R

r u v


  

For the reconstruction error, R is the set of (edge router, 
EID-prefix) corresponding to the non-zero request 
frequency, 

T
iu is the implied eigenvector representing the 

edge router i, jv  is the implied eigenvector representing the 
EID-prefix j, and ijr  represents the request frequency of the 
edge router i on the EID-prefix j. Moreover, the inner 
product of the vector sum T

i ju v  is the approximation of the 
request frequency of the edge router i on the EID-prefix j. 

In order to prevent over fitting, a regularization term is 
introduced, such that the loss function can ultimately be 
written as follows: 

2 2 2

( , )

[( ( ) ) (|| || || || )]ij i j i j
i j H

C r u v u v


        (1) 

Here, λ is the coefficient of the regularization term in (1). 
The matrix U and V can be solved by minimizing the loss 

function. To calculate the value of the matrix U and V, we 
introduce the ALS alternating least squares method. 

B. THE INTRODUCTION OF THE FIMPA ALGORITHM 
An overview of the algorithm is presented in Algorithm 1. 
Some details of the implementation are as follows: 

Step 1: randomly generate a U(0), which can be set as the 
global mean. 

Step 2:  fix U(0), and solve V(0). 
At this point, the loss function can be expressed via the 

following equation: 

(0) 2 (0) 2 2

( , )

[( ( ) ) (|| || || || )]ij i j i j
i j H

C r u v u v


           (2) 

Fixing j (j = 1,2, ...,n), the derivative of C is: 

(0) (0) (0)

1

2 [(( ) ) ) ]
m

T
i i j ij i

ij

C
u u v r u

v





  

          (3) 

Let 
j

C

v




=0; thus, we get  

(0) (0) (0)

1 1

[(( ) ) ]
m m

T
i i j ij i

i i

u u v r u
 

           (4) 

Equation (4) is equivalent to   

( )T T
j jUU E v Ur                          (5) 

We define M1=
TUU E , M2=

T
jUr , so that (5) can be 

converted to  

1
1 2jv M M                     (6) 

v1, v2, ..., vn are calculated in accordance with (6); thus, 
we obtain V(0), which consists of v1, v2, ..., vn. 

Step 3:  fix V(0), then solve U(1). 

The loss function at this time is: 

(0) 2 2 (0) 2

( , )

[( ( ) ) (|| || || || )]ij i j i j
i j H

C r u v u v


          (7) 

Similarly, we calculate the value of ui: 

(0) (0) (0)

1

2 [(( ) ) ) ]
n

T
j j i ij j

ji

C
v v u r v

u





  

         (8) 

Let 0
i

C

u




 ; thus, we get  

(0) (0) (0)

1 1

[(( ) ) ]
n n

T
j j i ij j

j j

v v u r v
 

          (9) 

Equation (9) is equivalent to   

( )T T
i iVV E u Vr         (10) 

We define M3= TVV E , M4= T
iVr , so that (10) can be 

converted to  

1
3 4iu M M       (11) 

u1, u2, ..., um are calculated in accordance with (11); thus, 
we obtain U(1), which consists of u1, u2, ..., um. 

The FIMPA algorithm loops the execution of Step 2 and 3, 
and stops after iterating N times. Following the execution, we 
obtain the optimal solution U and V. The sum of the optimal 
solution U and V complements the missing value for the 
request frequency matrix R. For the edge router x, we select 
the corresponding row of x from the matrix UVT and sort the 
elements in the row from large to small after removing the 
original values. The larger the value, the greater the 
likelihood that edge router x will make an access request to 
this EID-prefix in the future. 
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ALGORITHM 1. FIMPA ALGORITHM 
Input: request frequency matrix R, iteration number T, 

number of features k, an edge router x 
Output: the prediction result set S for the edge router x 
Data: U stands for the characteristic matrix of an edge 

router, V for the characteristic matrix of EID-prefixes, map 
for the key-value set of (EID-prefix i, prediction degree p) 

The pseudo code of the FIMPA algorithm is as follows: 
1. UinitM(k) 
2. for i=1 to T do 

VcalV(U) 
UcalU(V) 

end for 
3. for each EID-prefix i in getUnvisited(R, u) do 

pU[x]*V[i] 
map.add(i, p) 

end for 
4. SgetResult(map) 

We then take the Top-N EID-prefixes as the prediction for 
this edge router x. 

The mapping system establishes a time-push mapping 
table timer. When the setting time is reached, the mapping 
system generates EID-prefix-to-RLOC mapping entries 
according to the FIMPA algorithm and actively pushes them 
to the edge routers. When the edge routers receive these EID-
prefix-to-RLOC mapping entries, they will update the 
mapping cache according to their cache replacement strategy 
(e.g. LRU and LFU). It can be improved using semi-
supervised learning [42] in the future. 

The FIMPA algorithm decomposes the request frequency 
matrix into the product of two small matrices: the 
characteristic matrix of an edge router and the characteristic 
matrix of EID-prefixes. It then carries out the prediction 
based on the complete value of the product of these two 
matrices. Algorithm 1 presents the pseudo code of the 
FIMPA algorithm; here, initM(k) initializes the feature 
matrix according to the number of features, calV(U) 
calculates U using V, calU(V) calculates V using U, 
getUnvisited(R, u) returns a collection of EID-prefixes that 
edge router u has not accessed, and getResult(map) obtains 
the prediction by sorting the results. 

The correction of FIMPA algorithm can be guaranteed by 
the method of the matrix decomposition-based collaborative 
filtering, which is proved to be a feasible solution for the 
recommended problem.  

V. EXPERIMENTS AND EVALUATION 
In this paper, we implement the FIMPA algorithm with 

LRU and LFU as mapping replacement algorithms, then 
conduct comparisons with the existing LRU and LFU 
algorithms. 

In this section, we evaluate the FIMPA algorithm using 
two indicators: namely, the cache hit rate and the hit rate 
convergence time. The cache hit rate is the ratio of the 

number of requests hits in the local cache to the total number 
of access requests in the time period. 

The experimental data used in this simulation is real 
network traffic data collected from the Internet, namely the 
NLANR Auckland-VIII dataset, which represents the 
identity mapping request traffic. The data format of the 
dataset is ERF. In total, the dataset contains more than 6 
million packets collected over 60 minutes. In order to 
evaluate the cache performance and use this dataset with the 
FIMPA algorithm, we need to map the source and destination 
IP addresses of the packets to the corresponding prefixes. We 
use the BGP prefix as the EID-prefix and download the BGP 
core routing table from Route Views, which maps the IP 
addresses to prefixes. In this paper, we used Java to 
implement the FIMPA algorithm and ran the simulation 
program on a desktop PC, which has an Intel i5-7200U CPU, 
8GB memory and the Windows 7 operating system. 

According to the flow analysis statistics, the simulation 
sets the statistical period to 11 minutes, and further selects 60 
seconds as the prediction time period (hereafter ‘time period’ 
for short). The FIMPA algorithm makes a prediction based 
on historical packets every time period. The packet in the 
first time period is the initial input data. The packets in the 
same time period are divided into different subsets according 
to the address prefix mapped by the source IP address. The 
different subsets represent the messages received by different 
edge routers. Subsequently, the packets in each subset are 
processed as follows: map the destination IP address to the 
address prefix; count the number of packets belonging to 
different prefixes; and simulate the frequency with which the 
edge router accesses the end host. 

The simulator pushes all predicted results to the mapping 
cache of the edge router. In the initial case, the mapping 
cache table is empty and all predicted mappings are saved. 
For the second time period, the destination IP address of each 
packet is mapped to the BGP prefix. If the prefix is already in 
the mapping cache table, the simulator will increase the 
number of hits by one and process the next message; if no 
mapping is found in the mapping cache table, the simulator 
will record the mapping if the table is not full, or 
alternatively perform a mapping update using a mapping 
replacement algorithm if the table is full. After processing the 
second time period, the simulator continues to forecast and 
push the program forward using the second time period as 
the historical data. The subsequent 9 time periods of packet 
processing are similar. 

1)  EXPERIMENT FOR THE CACHE HIT RATE 
In this paper, the size of the mapping cache table is set to 

24K, 28K, and 36K respectively. We compare four 
algorithms (LFU, LRU, FIMPA+LFU, FIMPA+LRU) on the 
mapping cache table hit rate in the second to the eleventh 
periods, named t1 to t10, as shown in Fig. 2, Fig. 3, and Fig. 
4. 



 

VOLUME XX, 2017 9 

FIGURE 2. Hit rate results with 24K cache 
 

FIGURE 3. Hit rate results with 28K cache 

 

FIGURE 4. Hit rate results with 36K cache 
 
As shown in Fig. 2, when the size of the mapping cache 

table is 24K, the mapping cache table hit rate when 
FIMPA+LFU is used as the mapping strategy is 5% higher 
than when LFU alone is used; moreover, this result is 6% 
when comparing FIMPA+LRU to LRU. 

Furthermore, when the size of the mapping cache table is 
set to 28K or 36K, the mapping cache table hit rate when 
FIMPA+LFU or FIMPA+LRU is used is 7% higher than 
when LFU or LRU alone are used. 

2)  EXPERIMENT FOR THE HIT RATECONVERGENCE 
TIME  

In the second period, the mapping cache table is initially 
empty, and the hit rate of the mapping cache table gradually 
stabilizes from zero when new mappings are added into 
cache mapping table. The time duration from the initial state 
to the steady state is the convergence time. Figure 5 presents 

 FIGURE 5. Hit rate convergence time 
  

the comparison results of the convergence time for these four 
algorithms (LFU, LRU, FIMPA+LFU, FIMPA+LRU) while 
the cache map size is set to 24K. It can be seen from the 
figure that the convergence times for LFU and LRU are 45 
seconds and 54 seconds, respectively. Due to the prediction 
processes and active push in FIMPA+LFU and 
FIMPA+LRU, the hit rate of the mapping cache table 
stabilizes quickly for these algorithms, resulting in a 
convergence time of only 10 seconds and 13 seconds 
respectively. In short, these results show that the convergence 
time achieved by FIMPA+LFU and FIMPA+LRU is a full 3 
times faster than LFU and LRU. 

In summary, for these two indicators, the FIMPA 
algorithm achieves better performance than the traditional 
algorithm. In particular, FIMPA algorithm achieves a hit rate 
convergence time that is 3 times faster than the comparison 
algorithms. 

VI. CONCLUSION AND FUTURE WORK 
By combining the FIMPA prediction algorithm with the 

replacement strategies (LRU and LFU), the hit rate of the 
cache mapping table can be significantly improved, 
especially in the initial state. When the cache mapping table 
is empty, the hit rate rapidly achieves higher stability in a 
short convergence time. However, FIMPA gains this 
improvement in hit rate by sacrificing the algorithmic 
performance, meaning that the time complexity and spatial 
complexity of FIMPA are relatively high and increase 
exponentially with the number of edge routers. To address 
some security issues in our work, we will consider using 
technologies such as blockchain [43][44], the Tor network 
[45], covert communications [46], sensor networks [47][48] 
and SDN networks [49] in our future work. 

This paper aimed to solve the delay problem for the fixed 
end hosts; we will consider solutions for the mobile identity 
case in the future work. Possible solutions may include using 
a tree storage structure for mobile identity mappings or 
incorporating blockchain technology [50], SVM algorithm 
[51], among others. 
 
 



 

VOLUME XX, 2017 9 

ACKNOWLEDGMENTS 
First, we wish to thank Xunjun Zhang very much for his 

research work in the LISP delay problem, as well as 
Xianglilan Zhang for her help and useful suggestions in the 
revision of this paper. Finally, we wish to thank all the 
anonymous reviewers for their insightful comments and 
suggestions, which will help to improve this paper. 

REFERENCES 
[1] R. Buyya, C. S. Yeo, S. Venugopal, et al., “Cloud computing and 

emerging IT platforms: Vision, hype, and reality for delivering 
computing as the 5th utility,” Future Generation Computer 
Systems,vol. 25, no. 6, pp. 599-616, 2009. 

[2] M. Armbrust, A. Fox, R. Griffith, et al., “Above the clouds: A 
Berkeley view of cloud computing,” Univ. of California, Berkeley, 
CA, USA, Tech. Rep. No. UCB/EECS-2009-28, Feb. 2009. 

[3] Y. Xiao, X. Du, J. Zhang, and S. Guizani, “Internet Protocol 
Television (IPTV): The killer application for the next generation 
Internet,” IEEE Communications Magazine, vol. 45, no. 11, pp. 126–
134, 2007. 

[4] Edge computing. https://en.wikipedia.org/wiki/Edge_computing. 
[5] W. Shi, J. Cao, Q. Zhang, et al., “Edge computing: Vision and 

challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-
646, 2016. 

[6] Y. Yin, L. Chen, Y. Xu, J. Wan, et al, “QoS Prediction for Service 
Recommendation with Deep Feature Learning in Edge Computing 
Environment,” Mobile Networks and Applications, 2019, 
https://doi.org/10.1007/s11036-019-01241-7. 

[7] Fog computing. https://en.wikipedia.org/wiki/Fog_computing. 
[8] S. Ivan, S. Wen, X. Huang, H. Luan, “An Overview of Fog 

Computing and its Security Issues”, Concurrency and Computation: 
Practice and Experience, vol. 28, no.10, pp. 2991-3005, 2015. 

[9] X. Tan and Y. Kim, “User acceptance of SaaS-based collaboration 
tools: A case of Google Docs,”Journal of Enterprise Information 
Management, vol. 28, no. 3, pp. 423-442, 2015. 

[10] Z. Tian, S. Su, W. Shi, X. Du, M. Guizaniand X. Yu, “A data-driven 
method for future internet route decision modeling,” Future 
Generation Computer Systems,vol.95, pp. 212-220, June, 2019. 

[11] Z. Tian, X. Gao, S. Su, J. Qiu, X. Du and M. Guizani, “Evaluating 
reputation management schemes of internet of vehicles based on 
evolutionary game theory,” IEEE Transactions on Vehicular 
Technology, vol. 68, no. 6, pp. 5971-5980, 2019. 

[12] H. Gao, Y. Duan, L. Shao, X. Sun, “Transformation-based processing 
of typed resources for multimedia sources in the IoT environment,” 
Wireless Networks, 2019, https://doi.org/10.1007/s11276-019-02200-6. 

[13] Z. Tian, Y. Cui, L. An, S. Su, X. Yin, L. Yin and X. Cui, “A real-time 
correlation of host-level events in cyber range service for smart 
campus,” IEEE Access, vol. 6, pp. 35355-35364, 2018. 

[14] K. Yan, W. Shen, Q. Jin and H. Lu, “Emerging Privacy Issues and 
Solutions in Cyber-Enabled Sharing Services: From Multiple 
Perspectives,” IEEE Access, vol. 7, pp. 26031–26059, 2019. 

[15] J. Yu, Z. Kuang, B. Zhang, et al, “Leveraging Content Sensitiveness 
and User Trustworthiness to Recommend Fine-Grained Privacy 
Settings for Social Image Sharing,” IEEE Transactions on 
Information Forensics and Security, vol. 13, no. 5, pp. 1317-1332, 
2018. 

[16] Y. Zhang and Y. Zhou, “Transparent computing: a new paradigm for 
pervasive computing,” in Proc. International Conference on 
Ubiquitous Intelligence and Computing, Wuhan, Hubei, P.R.China, 
2006, pp. 1-11. 

[17] Y. Zhang, K. Guo, J. Ren, et al, “Transparent computing: A promising 
network computing paradigm,” Computing in Science and 
Engineering, vol. 19, no. 1, pp. 7-20, 2017. 

[18] Y. Xu, Q. Zeng, G. Wang, C. Zhang, J. Ren, and Y. Zhang, “An 
Efficient Privacy-Enhanced Attribute-Based Access Control 
Mechanism,” Concurrency and Computation: Practice and 
Experience, DOI: https://doi.org/10.1002/cpe.5556. 

[19] Z. Tian, W. Shi, Y. Wang, C. Zhu, X. Du, S. Su, Y. Sun and N. 
Guizani, “Real time lateral movement detection based on evidence 
reasoning network for edge computing environment,” IEEE 

Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4285-4294, 
2019. 

[20] Y. Xu, G. Wang, J. Ren, and Y. Zhang, “An adaptive and configurable 
protection framework against android privilege escalation threats,” 
Future Generation Computer Systems, vol. 92, pp.210-224, 2019. 

[21] Y. Xu, G. Wang, J. Yang, J. Ren, Y. Zhang, and C. Zhang, “Towards 
secure network computing services for lightweight clients using 
blockchain,” Wireless Communications and Mobile Computing, pp.1-
12, 2018. 

[22] Y. Xu, J. Ren, Y. Zhang, C. Zhang, B. Shen and Y. Zhang, 
“Blockchain Empowered Arbitrable Data Auditing Scheme for 
Network Storage as a Service,” IEEE Transactions on Services 
Computing, DOI: https://doi.org/10.1109/TSC.2019.2953033. 

[23] A. Dan and D. Towsley, “An approximate analysis of the LRU and 
FIFO buffer replacement schemes,”in Proc. ACM SIGMETRICS 
Conference on Measurement and Modeling of Computer Systems, 
Boulder, CO, USA,1990, pp. 143-152. 

[24] I. Zukerman, D. W. Albrecht and A. E. Nicholson, “Predicting users’ 
requests on the WWW,”in Proc. International Conference on User 
Modeling, New York, USA,1999, pp. 275-284. 

[25] Johnson, Theodore, Shasha, et al., “2Q: A Low overhead high 
performance buffer management replacement algorithm,” in Proc. 
VLDB, Santiago, Chile, 1994,  pp. 439-450. 

[26] G. Karakostas, O. St and D. N. Serpanos, “Practical LFU 
implementation for web caching,” Princeton University, USA, Tech. 
Rep. TR-622-00, June, 2000. 

[27] B. Feng, H. Zhou, G. Li, et al., “Least popularly used: A cache 
replacement policy for information-centric networking,” Journal of 
Internet Technology, vol. 17, no. 1, pp. 1-10, 2016. 

[28] A. Nanopoulos, D. Katsaros and Y. Manolopoulos, “A data mining 
algorithm for generalized web prefetching,” IEEE Transactions on 
Knowledge & Data Engineering, vol. 15, no. 5, pp. 1155-1169, 2003. 

[29] J. Yu, C. Hong, Y. Rui, D. Tao, “Multitask Autoencoder Model for 
Recovering Human Poses,” IEEE Transactions on Industrial 
Electronics, vol. 65, no. 6, pp. 5060-5068, 2018. 

[30] C. Z. Xu and T. I. Ibrahim, “A keyword-based semantic prefetching 
approach in internet news services,” IEEE Transactions on 
Knowledge & Data Engineering, vol. 16, no. 5, pp. 601-611, 2004. 

[31] H. Gao, W. Huang, X. Yang, “Applying Probabilistic Model 
Checking to Path Planning in an Intelligent Transportation System 
Using Mobility Trajectories and Their Statistical Data,” Intelligent 
Automation And Soft Computing, vol. 25, no. 3, pp. 547–559, 2019. 

[32] J. Yu, M. Tan, H. Zhang, et al, “Hierarchical Deep Click Feature 
Prediction for Fine-grained Image Recognition,” IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 2019. DOI: 
10.1109/TPAMI.2019.2932058. 

[33] Y. Yin, J. Xia, Y. Li, Y. Xu, et al, “Group-Wise Itinerary Planning in 
Temporary Mobile Social Network,” IEEE Access, vol. 7, pp.83682-
83693, 2019. 

[34] Y. Xiao, V. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A survey 
of key management schemes in wireless sensor networks,” Journal of 
Computer Communications, vol. 30, no. 11-12, pp. 2314-2341, 2007. 

[35] X. Du, Y. Xiao, M. Guizani, and H. H. Chen, “An effective key 
management scheme for heterogeneous sensor networks,” Ad Hoc 
Networks, vol. 5, no. 1, pp. 24–34, 2007. 

[36] A. Al Omar, M. Z. A. Bhuiyan, A. Basu, S. Kiyomoto and M. S. 
Rahman, “Privacy-friendly platform for healthcare data in cloud-based 
on blockchain environment,” Future Generation Computer Systems, 
vol. 95, pp. 511-521, 2019. 

[37] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and 
K. Ren, "Android HIV: A Study of Repackaging Malware for Evading 
Machine-Learning Detection," IEEE Transactions on Information 
Forensics and Security, vol. 15, no. 1, pp. 987-1001, 2020. 

[38] K. Yan, C. Zhong, Z. Ji, J. Huang, “Semi-supervised learning for early 
detection and diagnosis of various air handling unit faults,” Energy 
and Buildings, vol. 181, pp. 75-83, 2018. 

[39] X. Yan, B. Cui, Y. Xu, P. Shi and Z. Wang, "A method of information 
protection for collaborative deep learning under GAN model attack," 
IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, DOI: https://doi.org/10.1109/TCBB.2019.2940583. 

[40] H. Gao, Y. Xu, Y. Yin, W. Zhang, et al, “Context-aware QoS 
Prediction with Neural Collaborative Filtering for Internet-of-Things 



 

VOLUME XX, 2017 9 

Services,” IEEE Internet of Things Journal, 2019, 
https://doi.org/10.1109/JIOT.2019.2956827. 

[41] K. Yan, Z. Ji, H. Lu, J. Huang, W. Shen and Y. Xue, “Fast and 
Accurate Classification of Time Series Data using Extended ELM: 
Application in Fault Diagnosis of Air Handling Units,” IEEE 
Transactions on Systems, Man and Cybernetics: Systems, 2017. 

[42] K. Yan, C. Zhong, J. Huang and Z. Ji, “Semi-supervised Learning for 
Early Detection and Diagonsis of Various Air Handling Unit Faults,” 
Energy and Buildings, vol. 181, pp. 75–83, 2018. 

[43] Z. Tian, M. Li, M. Qiu, Y. Sun and S. Su, “Block-DEF: A secure 
digital evidence framework using blockchain,” Information Sciences, 
vol. 491, pp. 151-165, July 2019. 

[44] Y. Xu, J. Ren, G. Wang, C. Zhang, J. Yang, and Y. Zhang, “A 
blockchain-based nonrepudiation network computing service scheme 
for industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 
15, no. 6, pp. 3632-3641, 2019. 

[45] Q. Tan, Y. Gao, J. Shi, X. Wang, B. Fang and Z. Tian, “Toward a 
comprehensive insight into the eclipse attacks of Tor hidden services,” 
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1584-1593, 2019. 

[46] S. Yan, Y. Cong, S. Hanly and X. Zhou, “Gaussian signalling for 
covert communications,” IEEE Trans. Wireless Commun., vol. 18, no. 
7, pp. 3542-3553, 2019. 

[47] X. Du, M. Guizani, Y. Xiao and H. H. Chen, “A routing-driven 
elliptic curve cryptography based key management scheme for 
heterogeneous sensor networks,” IEEE Transactions on Wireless 
Communications, vol. 8, no. 3, pp. 1223-1229, 2009. 

[48] X. Du and H. H. Chen, “Security in wireless sensor network,” IEEE 
Wireless Communications Magazine, vol. 15, no. 4, pp. 60-66, 2008. 

[49] L. Zhu, X. Tang, M. Shen, X. Du and M. Guizani, “Privacy-
preserving DDoS attack detection using cross-domain traffic in 
software defined networks,” IEEE Journal on Selected Areas in 
Communications, vol. 36, no. 3, pp. 628-643, 2018. 

[50] G.-J. Ra, D. See, M. Z. A. Bhuiyan and I.-Y. Lee, “A study on 
anonymous protocol in a permission blockchain with ensure privacy 
for a member,” In Proc. of the 12th International Conference on 
Security, Privacy and Anonymity in Computation, Communication and 
Storage, Atlanta, USA, 2019. 

[51] K. Yan, Z. Ji, W. Shen, “Online Fault Detection Methods for Chillers 
Combining Extended Kalman Filter and Recursive One-class SVM,” 
Neurocomputing, vol. 228, pp. 205-212, 2016. 

 
 
 
 

 
Shuo Zhang received the B.S. degree and the Ph.D. 
degree in computer science from National University 
of Defense Technology, Changsha, China, in 2008 
and 2014.  He is currently an associate professor of 
Cyberspace Institute of Advanced Technology, 
Guangzhou University, Guangzhou, China. His 
research interests on the computer network, cloud 
computing, and distributed system. 
 
 
 
 

Yaping Liu received the B.S., M.S., and Ph.D. 
degrees from the College of Computer, National 
University of Defense Technology, China, in 1994, 
1997, and 2006, respectively. She joined the College 
of Computer, National University of Defense 
Technology, as a Faculty Member, in 1997, and 
received an Associate Professor promotion and Full 
Professor promotion in 2004 and 2013, respectively. 
She is currently a Professor of Cyberspace Institute of 
Advanced Technology, Guangzhou University, 
Guangzhou, China. Her current research interests 
include network architecture, inter-domain routing, 
network virtualization and network security. 

Shudong Li received M.S. degree in applied 
mathematics from Tongji University (China) in June 
2005 and his Ph.D. degree from Beijing University of 
Posts and Telecommunications (China) in July 2012. 
From 2013-2018, He was the postdoc of National 
University of Defense Technology China. Now, he is 
associate professor in Cyberspace Institute of 
Advanced Technology, Guangzhou University, China. 
His current research includes Big Data and its security, 
malware identification, information security and 
cryptography, the robustness of complex networks.   

 
 
 

Zhiyuan Tan received his Ph.D. degree from the 
University of Technology Sydney, Australia, in 2014. 
He was a Postdoctoral Researcher with the University 
of Twente between 2014 and 2016. He is an IEEE 
Member, EAI Member and BCS Member. His 
research contribution on cyber security is 
internationally recognised. He has received various 
research awards, including the Best paper awards from 
the SecurIT'12 and SmartIoT 2019, the National 
Research Award 2017 from the Research Council of 
the Sultanate of Oman, the IEEE Outstanding Service 
Award and an Honourable Mention in SICSA 
Supervisor of the Year 2019 award, over the past 
years. He is currently a Lecturer with the School of 
Computing, Edinburgh Napier University, UK. His 
research focuses on Cyber security, Machine Learning, 
Data Analytics, Virtualisation and Cyber-Physical 
System. 

 
 
 

Xiaomeng Zhao received the B.S. degree and the 
Master degree in Optical engineering science from 
National University of Defense Technology, 
Changsha, China, in 2003 and 2008.  He is currently 
a Senior Engineer of Guangdong Provincial Key 
Laboratory of High Performance Computing, 
Guangdong Science & Technology Infrastructure 
Center, Guangzhou, China. His research interests on 
the Optical communication, computer network and 
cloud computing. 

 
 
 

Junjie Zhou received the Master degree in optical 
engineering from Jinan University, Guangzhou, 
China, in 2017. He is currently an information 
engineer in Guangdong Science & Technology 
Infrastructure Center, Guangzhou, China. His recent 
research interests include management of science 
and technology, transfer Learning, pattern 
recognition and information security. 

 
 

 


