393 research outputs found

    A Cut-Free Sequent Calculus for Defeasible Erotetic Inferences

    Get PDF
    In recent years, the effort to formalize erotetic inferences (i.e., inferences to and from questions) has become a central concern for those working in erotetic logic. However, few have sought to formulate a proof theory for these inferences. To fill this lacuna, we construct a calculus for (classes of) sequents that are sound and complete for two species of erotetic inferences studied by Inferential Erotetic Logic (IEL): erotetic evocation and regular erotetic implication. While an attempt has been made to axiomatize the former in a sequent system, there is currently no proof theory for the latter. Moreover, the extant axiomatization of erotetic evocation fails to capture its defeasible character and provides no rules for introducing or eliminating question-forming operators. In contrast, our calculus encodes defeasibility conditions on sequents and provides rules governing the introduction and elimination of erotetic formulas. We demonstrate that an elimination theorem holds for a version of the cut rule that applies to both declarative and erotetic formulas and that the rules for the axiomatic account of question evocation in IEL are admissible in our system

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    Intensional Models for the Theory of Types

    Get PDF
    In this paper we define intensional models for the classical theory of types, thus arriving at an intensional type logic ITL. Intensional models generalize Henkin's general models and have a natural definition. As a class they do not validate the axiom of Extensionality. We give a cut-free sequent calculus for type theory and show completeness of this calculus with respect to the class of intensional models via a model existence theorem. After this we turn our attention to applications. Firstly, it is argued that, since ITL is truly intensional, it can be used to model ascriptions of propositional attitude without predicting logical omniscience. In order to illustrate this a small fragment of English is defined and provided with an ITL semantics. Secondly, it is shown that ITL models contain certain objects that can be identified with possible worlds. Essential elements of modal logic become available within classical type theory once the axiom of Extensionality is given up.Comment: 25 page

    Grafting Hypersequents onto Nested Sequents

    Full text link
    We introduce a new Gentzen-style framework of grafted hypersequents that combines the formalism of nested sequents with that of hypersequents. To illustrate the potential of the framework, we present novel calculi for the modal logics K5\mathsf{K5} and KD5\mathsf{KD5}, as well as for extensions of the modal logics K\mathsf{K} and KD\mathsf{KD} with the axiom for shift reflexivity. The latter of these extensions is also known as SDL+\mathsf{SDL}^+ in the context of deontic logic. All our calculi enjoy syntactic cut elimination and can be used in backwards proof search procedures of optimal complexity. The tableaufication of the calculi for K5\mathsf{K5} and KD5\mathsf{KD5} yields simplified prefixed tableau calculi for these logic reminiscent of the simplified tableau system for S5\mathsf{S5}, which might be of independent interest

    On the Completeness of Interpolation Algorithms

    Full text link
    Craig interpolation is a fundamental property of classical and non-classic logics with a plethora of applications from philosophical logic to computer-aided verification. The question of which interpolants can be obtained from an interpolation algorithm is of profound importance. Motivated by this question, we initiate the study of completeness properties of interpolation algorithms. An interpolation algorithm I\mathcal{I} is \emph{complete} if, for every semantically possible interpolant CC of an implication A→BA \to B, there is a proof PP of A→BA \to B such that CC is logically equivalent to I(P)\mathcal{I}(P). We establish incompleteness and different kinds of completeness results for several standard algorithms for resolution and the sequent calculus for propositional, modal, and first-order logic

    Iterated reflection principles over full disquotational truth

    Get PDF
    Iterated reflection principles have been employed extensively to unfold epistemic commitments that are incurred by accepting a mathematical theory. Recently this has been applied to theories of truth. The idea is to start with a collection of Tarski-biconditionals and arrive by finitely iterated reflection at strong compositional truth theories. In the context of classical logic it is incoherent to adopt an initial truth theory in which A and 'A is true' are inter-derivable. In this article we show how in the context of a weaker logic, which we call Basic De Morgan Logic, we can coherently start with such a fully disquotational truth theory and arrive at a strong compositional truth theory by applying a natural uniform reflection principle a finite number of times

    A Defeasible Calculus for Zetetic Agents

    Get PDF
    The study of defeasible reasoning unites epistemologists with those working in AI, in part, because both are interested in epistemic rationality. While it is traditionally thought to govern the formation and (with)holding of beliefs, epistemic rationality may also apply to the interrogative attitudes associated with our core epistemic practice of inquiry, such as wondering, investigating, and curiosity. Since generally intelligent systems should be capable of rational inquiry, AI researchers have a natural interest in the norms that govern interrogative attitudes. Following its recent coinage, we use the term ``zetetic'' to refer to the properties and norms associated with the capacity to inquire. In this paper, we argue that zetetic norms can be modeled via defeasible inferences to and from questions---a.k.a erotetic inferences---in a manner similar to the way norms of epistemic rationality are represented by defeasible inference rules. We offer a sequent calculus that accommodates the unique features of ``erotetic defeat" and that exhibits the computational properties needed to inform the design of zetetic agents. The calculus presented here is an improved version of the one presented in Millson (2019), extended to cover a new class of defeasible erotetic inferences

    Modular labelled calculi for relevant logics

    Get PDF
    In this article, we perform a detailed proof theoretic investigation of a wide number of relevant logics by employing the well-established methodology of labelled sequent calculi to build our intended systems. At the semantic level, we will characterise relevant logics by employing reduced Routley-Meyer models, namely, relational structures with a ternary relation between worlds along with a unique distinct element considered as the real (or actual) world. This paper realizes the idea of building a variety of modular labelled calculi by reflecting, at the syntactic level, semantic informations taken from reduced Routley-Meyer models. Central results include proofs of soundness and completeness, as well as a proof of cut- admissibility
    • …
    corecore