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Abstract

In this article, we perform a detailed proof theoretic investigation of a
wide number of relevant logics by employing the well-established method-
ology of labelled sequent calculi to build our intended systems. At the
semantic level, we will characterise relevant logics by employing reduced
Routley-Meyer models, namely, relational structures with a ternary rela-
tion between worlds along with a unique distinct element considered as the
real (or actual) world. This paper realizes the idea of building a variety
of modular labelled calculi by reflecting, at the syntactic level, semantic
informations taken from reduced Routley-Meyer models. Central results
include proofs of soundness and completeness, as well as a proof of cut-
admissibility.

1 Introduction
§1 Relevant logics are a well-known family of non-classical logics introduced
to cope with so-called paradoxes of material and strict implication. According
to relevantists, → is intended to express a more fine-grained and philosophically
motivated notion of conditional. Part of the philosophical intuition of relevant
logics, at least in the early development by Anderson and Belnap [1], was that
the antecedent and consequent of a valid conditional must be relevant to each
other, in the sense that, in expressions of the form A → B, there must be a strong
connection between antecedent and consequent.
Relevant logics have attracted a lot of attention among logicians and many formal
structures were applied to offer detailed and systematic characterizations. For
the purposes of this paper, however, we will introduce relevant logics in terms of
reduced Routley-Meyer models, i.e., by means of relational structures employing
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a ternary relation between states (see, e.g., [33, 34]), along with a distinct element
interpreted as the real (or actual) world. Intuitively, in Routley-Meyer models,
a relevant implication A → B is true at world a just in case, for all worlds b,c,
related to a, if A is true at b, then B is true at c. The aim of this article is
to define modular proof systems for a variety of relevant logics on the basis of
these models. More specifically, we will introduce a family of labelled sequent
calculi for relevant logic B and its extensions, namely, DW, DJ, TW, T, RW,
R and RM. The calculi are based on Routley-Meyer semantics, in the sense
that, by following the well-established methodology proposed by [20], sequents
internalize, by means of syntactic tools, semantic informations taken exactly from
reduced Routley-Meyer models.

§2 Proof theoretic studies on relevant logics have a long and troubled his-
tory.1 Gentzen-style sequents were proposed, among others, in [1, 28]. For what
concerns generalizations of sequents, instead, there are different trends in the
literature. To cite a few of them: cognate sequents ([16]), hypersequents ([2, 3]),
Dunn-Mints calculi ([6]), consecution calculi ([5]), display sequents [31, 32, 5].
From the perspective of labelled proof systems, instead, there is a variety of ap-
proaches. Among the early significant contributions, one finds A. Urquhart and
S. Giambrone’s U - and G-systems for some positive fragments of a family of rele-
vant logics (called semilattice logics) in [10]. Urquhart and Giambrone’s systems
correspond to a weakly labelled calculus in the sense of [13, 204], that is, labels
are limited technical devices supporting proof construction. Indeed, no special
rules operating on labels are introduced. More precisely, the behaviour of labels
in derivations is subject only to some specific restrictions, established directly
on the application of rules. Moreover, the labelling of formulas in the rules for
→ refers to a different treatment of the ternary relation Rabc at the semantic
level, that is, by putting c = a ∪ b. In other words, rules of U - and G-systems
employ the union of worlds a and b as element of the ternary relation, rather
than a third distinct state c. An analogous work was conducted by R. Kashima
in [15, 14] always in the context of semilattice relevant logics. L. Viganò [37]
pursued a characterization of some relevant logics by using a calculus enriched
with rules acting on labels and which restates the presence of the third element
c, rather than a ∪ b. Similarly in [17], H. Kurokawa and S. Negri introduced a
wide range of labelled calculi constructed with reference to the original (or non
reduced) ternary relational semantics proposed by Routley and Meyer.

Layout of the article In Section 2, relevant logics are introduced in terms of
both, reduced Routley-Meyer models and axiomatic systems. Sections 3 and 4
present the rules of the labelled calculi for a variety of relevant logics and some
related preliminary results, as well as a comparison with Kurokawa and Negri’s
article [17] mentioned above. Section 5 includes a proof of soundness, while

1The remarks that follows are not meant to be a comprehensive historical source, but just
a sketchy introduction to the vast realm of sequent-based calculi for relevant logics.
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Section 6 contains proofs of completeness. Finally, in Section 7, we will proceed
towards the proof of cut-admissibility.

2 Preliminaries
2.1 Semantics and axioms for relevant logic B
In this section, we will introduce Routley-Meyer relational semantics and an ax-
iomatic system for relevant logic B (standing for basic). The former structures,
employing a ternary relation between states, can be considered as generaliza-
tions of Kripke models for intuitionistic and modal logics. Notice that the in-
terpretation of ternary relations is a controversial topic and there are different
orientations in the literature.2 Some possible readings are (notations adapted):

“Well, to say that x determines A → B is to say that whenever we can
conclude A on the basis of a piece of information y, we can conclude
B on the basis of x and y jointly, that is, on the basis of x ∪ y.” [36,
160]

“Consider a natural English rendering of Kripke’s binary R. xRy
‘says’ that ‘world’ y is possible relative to world x. An interesting
ternary generalization is to read xRyz to say that ‘worlds’ y and z are
compossible (better, maybe, compatible) relative to x. (The reading
is suggested by Dunn.)” [33, 200]

“Rabc iff b and c are pairwise accessible from a, or, to take a more
revealing modal analogue, iff a and b are compatible relative to c, or
conversely iff c is compatible with a and b.” [34, 299-300]

“[...] we may read Rxyz as meaning that z contains all the informa-
tion obtainable by pooling the information x and y. [Alternatively,]
Rxyz is [...] interpreted as saying that the information in y is carried
to z by x.” [29, 207]

Let’s turn to the formal details.

Definition 2.1. Let L be the language of B. We denote by At a set of atomic
formulas p,q, . . . . The set of B formulas, denoted Form, is defined recursively for
all A as follows:

A ::= p | ∼A | A∧A | A∨A | A → A

Definition 2.2. A reduced Routley-Meyer frame for relevant logic B, denoted
F , is a quadruple ⟨W,0,∗,R⟩, where W is a set of points, with 0 denoting its

2A detailed overview can be found in [4].
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base element, ∗ is a unary function W 7→ W . Finally, R ⊆ W 3 and satisfies the
following conditions:

a∗∗ = a (F1)
R0aa (F2)
R0ab∧R0bc =⇒ R0ac (F3)
R0da∧Rabc =⇒ Rdbc (F4)
R0ab =⇒ R0b∗a∗ (F5)

Notice that relations of the form R0ab and R0ab ∧ R0ba can be abbreviated
by writing a ≤ b and a = b, respectively. However, given that both symbols, ≤
and =, are precisely defined in terms of the ternary accessibility relation, we can
employ only R to characterize relevant logics.

Definition 2.3. A reduced Routley-Meyer model for B, denoted M, is a pair
⟨F ,v⟩, where F is a reduced Routley-Meyer frame and v : At 7→ ℘(W ) is a
valuation function on atomic formulas, such that, if R0ab and a ∈ v(p), then
b ∈ v(p), for all p ∈ At. The valuation is then extended to the whole language in
the following way:

M,a ⊩ p iff a ∈ v(p) (1)
M,a ⊩∼A iff M,a∗ ̸⊩ A (2)

M,a ⊩ A∧B iff M,a ⊩ A and M,a ⊩B (3)
M,a ⊩ A∨B iff M,a ⊩ A or M,a ⊩B (4)

M,a ⊩ A → B iff ∀b,c ∈ W, if Rabc and M, b ⊩ A, then M, c ⊩B (5)

Finally, we say that a formula A is satisfied in a model M = ⟨F ,v⟩ iff M,0 ⊩A
and that ‘A entails B in M’ iff, for all a ∈ W , if a ⊩ A, then a ⊩ B. A formula
A is valid in a frame F = ⟨W,0,∗,R⟩ iff, for all valuations v, the formula A is
satisfied in M.

Observation 1. In the previous definitions we have introduced a so-called re-
duced model for relevant logics (see e.g., [35, 9]). These models were introduced
as alternative structures to what might be called non reduced models, see e.g.,
[33, 34].3 There are some main differences to consider. Let F ′ and M′ be denot-
ing non reduced frames and models, respectively. F ′ is the following structure
⟨W,0,T,∗,R⟩, where, 0 is taken to be a subset of W , rather than a singleton, and
T is a distinct element T ∈ 0, called designated situation. The members of 0 are
referred to as regular situations. A model M′ is the structure ⟨F ′,v⟩. Finally,
satisfaction in a model is defined with respect to regular situations, i.e., A is satis-
fied in a model M′ iff M′,x⊩A, for all x ∈ 0. Validity on F ′ is defined as before.

An important, standard lemma is that preservation of truth along the heredity
ordering holds for arbitrary formulas:

3According to [9, 442], “reduced models are technically and practically important for the
practicing logician. They are simpler and hence easier to use”.
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Lemma 2.1 ([30, 32, 7]). If R0ab and M,a ⊩ A, then M, b ⊩ A.

Furthermore, we state a result showing the equivalence between the satisfac-
tion of an implication in a model and the notion of entailment in that model.
This results is often referred to as verification lemma (see [7]).

Lemma 2.2 ([30, 32, 7]). A entails B in a given model M iff A → B is satisfied
in that model, i.e., for all a ∈ W , (M,a ⊩ A =⇒ M,a ⊩B) iff M,0 ⊩ A → B.

From the perspective of axiomatic systems, B is the least set of formulas
containing all instances of the following axioms and closed under the following
rules. (We employ ⇛ as a rule-forming operator, distinct from both, the meta-
level symbol =⇒ and the sequent arrow ⇒.)

(A1) A → A (R1) A,A → B⇛B
(A2) A1 ∧A2 → Ai (R2) A,B⇛ A∧B
(A3) (A → B)∧ (A → C) → (A → (B ∧C)) (R3) A → B⇛ (C → A) → (C → B)
(A4) Ai → (A1 ∨A2) (R4) A → B⇛ (B → C) → (A → C)
(A5) (A → C)∧ (B → C) → ((A∨B) → C) (R5) A → B⇛∼B → ∼A
(A6) A∧ (B ∨C) → (A∧B)∨ (A∧C)
(A7) ∼∼A → A

2.2 Stronger relevant logics
In this subsection, we will present some Hilbert systems for some common
stronger relevant logics, which can be obtained by the addition of axioms to the
system for B. Likewise, frames for B, FB, can be extended to capture stronger
relevant logics by adding some further constraints on R. In what follows, we dis-
play a list of axioms and the frame conditions imposed on Routley-Meyer frames
to validate them. Some of these conditions appeal to the standard definitions,
Rabcd ::= ∃x(Rabx∧Rxcd) and Ra(bc)d ::= ∃x(Raxd∧Rbcx):

(A8) (A → B) → (∼B → ∼A) (F6) Rabc =⇒ Rac∗b∗

(A9) (A → B)∧ (B → C) → (A → C) (F7) Rabc =⇒ Ra(ab)c
(A10) (A → B) → ((B → C) → (A → C)) (F8) Rabcd =⇒ Rb(ac)d
(A11) (A → B) → ((C → A) → (C → B)) (F9) Rabcd =⇒ Ra(bc)d
(A12) (A → (A → B)) → (A → B) (F10) Rabc =⇒ Rabbc
(A13) (A∧ (A → B)) → B (F11) Raaa
(A14) (A → ∼A) → ∼A (F12) Raa∗a
(A15) (A → (B → C)) → (B → (A → C)) (F13) Rabcd =⇒ Racbd
(A16) A → ((A → B) → B) (F14) Rabc =⇒ Rbac
(A17) A∨∼A (F15) R00∗0
(A18) ((A → A) → B) → B (F16) Ra0a
(A19) A → (A → A) (F17) Rabc =⇒ (R0ac∨R0bc)

The following well known relevant logics can be obtained by combinations of the
indicated axioms and frame conditions.
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B = (A1)− (A7)+(R1)− (R5) FB = (F1)− (F5)
DW = B+(A8) FDW = FB +(F6)
DJ = DW +(A9) FDJ = FDW +(F7)
TW = DJ+(A10)+(A11) FTW = FDJ +(F8)+(F9)
T = TW +(A12)+(A13)+(A14)+(A17) FT = FTW +(F10)+(F11)+(F12)+(F15)
RW = TW +(A15)+(A16) FRW = FTW +(F13)+(F14)
R = B+(A8)− (A18) FR = FB +(F6)− (F16)
RM = R +(A19) FRM = FR +(F17)

Let X = {B,DW,DJ,TW,T,RW,R,RM}.

Theorem 2.3 ([30, 32, 7]). A formula A is a theorem of X if and only if A is
valid in all Routley-Meyer frames, FX.

Let us now proceed towards the construction of our intended labelled calculi.

3 Proof System
In this section, we shall define a family of modular calculi for relevant logics. First
of all, we enrich our language with labels (a,b,c, . . . ,x,y,z, ...) denoting states
in Routley-Meyer models and an expression to formalize the forcing relation.
Formally:

Definition 3.1. Let W be a set of labels, including a distinguished label denoted
0, and L be the language of B. To express the forcing relation a⊩A via sequents
we use the notation a : A, for A ∈ Form and a ∈ W . The set of well-formed
formulas consists of (1) labelled formulas a : A and (2) relational atoms Rabc,
for all A ∈ Form and a,b,c ∈ W . Finally, given two multisets Γ,∆ of labelled
formulas and relational atoms, a labelled sequent is an object of the following
form: Γ ⇒ ∆.

Furthermore, the labelled rules of our sequent system are subject to the fol-
lowing closure condition. Consider a rule R of the following form:

A,B1, . . . ,Bn,Bn+1,Bn+1,Γ ⇒ ∆
R

B1, . . . ,Bn,Γ ⇒ ∆

Applying the closure condition on R means to substitute the multiple occurrences
Bn+1,Bn+1 with a single one to obtain a rule R∗ of the following shape:

A,B1, . . . ,Bn,Bn+1,Γ ⇒ ∆
R∗

B1, . . . ,Bn,Γ ⇒ ∆

We remark that the rules of G3rB are defined by analysing the semantic condi-
tions of Definition 2.3 of the corresponding operators. More precisely, the sequent
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Axioms For p atomic:

R0ab,a : p,Γ ⇒ ∆, b : p

(possibly, a∗, b∗)
Logical rules

Γ ⇒ ∆,a∗ : A
L∼

a : ∼A,Γ ⇒ ∆
a∗ : A,Γ ⇒ ∆

R∼
Γ ⇒ ∆,a : ∼A

a : A,a : B,Γ ⇒ ∆
L∧

a : A∧B,Γ ⇒ ∆
Γ ⇒ ∆,a : A Γ ⇒ ∆,a : B

R∧
Γ ⇒ ∆,a : A∧B

a : A,Γ ⇒ ∆ a : B,Γ ⇒ ∆
L∨

a : A∨B,Γ ⇒ ∆
Γ ⇒ ∆,a : A,a : B

R∨
Γ ⇒ ∆,a : A∨B

Rabc,a : A → B,Γ ⇒ ∆, b : A Rabc,a : A → B,c : B,Γ ⇒ ∆
L →

Rabc,a : A → B,Γ ⇒ ∆
Rabc,b : A,Γ ⇒ ∆, c : B

(b,c fresh) R →
Γ ⇒ ∆,a : A → B

Relational rules for R

R0a∗∗a,R0aa∗∗,Γ ⇒ ∆
R1

Γ ⇒ ∆

R0aa,Γ ⇒ ∆
R2

Γ ⇒ ∆
R0ac,R0ab,R0bc,Γ ⇒ ∆

R3
R0ab,R0bc,Γ ⇒ ∆

Rdbc,R0da,Rabc,Γ ⇒ ∆
R4

R0da,Rabc,Γ ⇒ ∆
R0b∗a∗,R0ab,Γ ⇒ ∆

R5
R0ab,Γ ⇒ ∆

Figure 1: G3rB
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Rac∗b∗,Rabc,Γ ⇒ ∆
R6

Rabc,Γ ⇒ ∆
Rabx,Raxc,Rabc,Γ ⇒ ∆

(x fresh) R7
Rabc,Γ ⇒ ∆

Rbyd,Racy,Rabx,Rxcd,Γ ⇒ ∆
(y fresh) R8

Rabx,Rxcd,Γ ⇒ ∆

Rayd,Rbcy,Rabx,Rxcd,Γ ⇒ ∆
(y fresh) R9

Rabx,Rxcd,Γ ⇒ ∆

Rabx,Rxbc,Rabc,Γ ⇒ ∆
(x fresh) R10

Rabc,Γ ⇒ ∆

Raaa,Γ ⇒ ∆
R11

Γ ⇒ ∆
Raa∗a,Γ ⇒ ∆

R12
Γ ⇒ ∆

Racy,Rybd,Rabx,Rxcd,Γ ⇒ ∆
(y fresh) R13

Rabx,Rxcd,Γ ⇒ ∆
Rbac,Rabc,Γ ⇒ ∆

R14
Rabc,Γ ⇒ ∆

R00∗0,Γ ⇒ ∆
R15

Γ ⇒ ∆
Ra0a,Γ ⇒ ∆

R16
Γ ⇒ ∆

R0ac,Rabc,Γ ⇒ ∆ R0bc,Rabc,Γ ⇒ ∆
R17

Rabc,Γ ⇒ ∆

Figure 2: Further mathematical rules for R

Australasian Journal of Logic (20:1) 2023, Article no. 3



55

system is obtained by formulating the rules according to the methodology intro-
duced for modal and intermediate logics in [20, 21]. We remark that axiomatic
sequents are stated in their weakening-absorbing version, while the premises of
L → are contraction-absorbing. Importantly, R → has the eigenvariable condi-
tion, that is, each root-first application of the rule requires the introduction of
fresh (i.e., not previously used) labels.
In addition to the newly introduced rules for →, there are also rules for R con-
structed through the method of conversion of frame conditions into sequent calcu-
lus rules. More precisely, we first have observed that all frame conditions are for-
mulated either as universal axioms or geometric implications and, then, by follow-
ing the methodology described in [20] (but previously also in [19, 23, 27]), we have
transformed them into well-constructed sequent-style rules. Universal axioms are
first turned into conjunctive normal form, namely, P1 ∧ ·· · ∧ Pi → Q1 ∨ ·· · ∨ Qj

and, then, into suitably formulated rules. Geometric implications, instead, are
formulas of the following shape ∀z(A → B), where A and B are geometric formu-
las, i.e., they do not contain neither ∀ nor →. As before, we first turn them into
conjunctive normal form, namely, ∀x(P1 ∧ ·· · ∧ Pi → ∃y1M1 ∨ ·· · ∨ ∃yjMj) and,
then, convert them into the corresponding rule-schemes. Notice that according
to this strategy, we are allowed to obtain modular extensions of G3rB (Figure
1) by transforming further frame conditions (see list on p. 51) into sequent-style
rules (Figure 2). Such extensions can be characterised as follows:

G3rDW = G3rB+R6 G3rDJ = G3rDW +R7
G3rTW = G3rDJ+R8+R9 G3rT = G3rTW +R10+R11+R12+

R15
G3rRW = G3rTW +R14+R13 G3rR = G3rRW +G3rT+R16
G3rRM = G3rR +R17

Observation 2. Kurokawa and Negri [17] developed a family of labelled calculi
for a wide range of relevant logics by using non reduced Routley-Meyer models
as starting point. We recall that in these latter (i) 0 is taken to be a subset of
W , rather than a singleton, and (ii) there is an element T ∈ 0. Although we
followed the same methodology to obtain our intended systems, there are some
substantial differences.

1. The notion of validity is not defined at the base element T , but it refers to
all regular situations (see Observation 1 and [17, §3.2]) and this is reflected
at the calculus level as follows: for all x ∈ 0, if x⊩A, then 0x ⇒ x : A (see
[17, §6]).

2. The formulations of the rules for relevant implication involves an auxiliary
unary operator, i.e., the indexed modality □a. The index a gives a ternary
relation, denoted bRac, which is taken as an assignment of a binary rela-
tion to an index, rather than expressing a compossibility relation between
situations. However, as the authors themselves remark, this “choice is not
mandatory, i.e., the ternary relation for implication could be directly han-
dled without using the indexed modality. But via the indexed modality
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we can obtain a uniformity with [...] works on conditional logics” [17, §1],
i.e., with labelled systems proposed for conditional logics, for example, in
[24, 11].

3. The semantic condition for indexed modalities is b ⊩□aA iff ∀c(bRac =⇒
a⊩A) and it is used to to formulated the clause for → as follows a⊩A → B
iff ∀b(b⊩A =⇒ b⊩□aB). Accordingly, the rules for both, □a and →, are
formulated as follows:

a : A → B,Γ ⇒ ∆, b : A b :□aB,a : A → B,Γ ⇒ ∆
L2 →

a : A → B,Γ ⇒ ∆
b : A,Γ ⇒ ∆, b :□aB

(b fresh) R2 →
Γ ⇒ ∆,a : A → B

c : A,bRac,b :□aA,Γ ⇒ ∆, b :□aB
L□a

bRac,b :□aA,Γ ⇒ ∆
bRac,Γ ⇒ ∆, c : A

(c fresh) R□a

Γ ⇒ ∆, b :□aA

4. Axiomatic sequents are only of the form a : p,Γ ⇒ ∆,a : p and, in order to
preserve the heredity property at the calculus level, the following rule is
included:

b : p,a ≤ b,a : p,Γ ⇒ ∆
AtHer

a ≤ b,a : p,Γ ⇒ ∆

Since this rule is a form of contraction, it is preferable to have a system in
which this rule is height-preserving admissible (proved in Lemma 4.3). This
is the reason why we have heredity incorporated in axioms. Moreover, in
the presence of Proposition 4.2 (below) the generalized version of AtHer
can be derived using (admissible) cut and contraction (see Proposition
4.4).

Although the non reduced Routley-Meyer semantics allows for a characterization
of a wider range of relevant logics, the labelled systems constructed out of it can
be shown to be semantically complete only indirectly (at least for the moment),
and this is mainly due to the definition of validity on regular situations (elements
of 0), see [17, §6]. Nonetheless, Kurokawa and Negri observe that the lack
of a direct proof seems to be far from being an insurmountable problem and
argue that such “a proof of completeness by proof-search must be possible, since
labelled sequent calculi are in general suitable for proof-search and invertible
rules preserve countermodels” [17, §8]. Instead, notice that if validity is defined
w.r.t. the distinct element 0 ∈ W (considered as a singleton), we can lay out a
direct completeness proof without encountering the difficulties connected to the
presence of regular situations. Indeed, in [26, 276], it was noticed:

“The labelled approach allows for a fine distinction between various
notions of logical consequence that can be adopted: actualistic log-
ical consequence is logical consequence relative to the actual world,
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whereas universal (or strong) consequence is relative to an arbitrary
world.”

By keeping this distinction in mind, we will provide an actualistic completeness
proof, i.e., we will show that if a formula A is valid at the actual world 0, then
the sequent ⇒ 0 : A is derivable (see Section 6).
Before going ahead, let us summarize the central results contained in the follow-
ing sections.

1. A is a theorem of X.
2. A is provable in G3rX+cut, and cut has the following shape:

Γ ⇒ ∆,a : A a : A,Γ′ ⇒ ∆′
cut

Γ,Γ′ ⇒ ∆,∆′

3. A is provable in G3rX.
4. A is valid in every Routley-Meyer frame for X.

The equivalence between 1 and 4 is stated in Theorem 2.3. 1 =⇒ 2 and 4 =⇒ 3
are both proved in Section 6 (Theorems 6.2 and 6.3); 2 =⇒ 3 is proved in Section
7 (Theorem 7.4), 3 =⇒ 4 is proved in Section 5 (Theorem 5.1).

4 Preliminary results
In this section, we show some preliminary results. Let us start by introducing
the notions of weight of formulas and height of derivations in the standard way.
(Let X = {B,DW,DJ,TW,T,RW,R,RM}.)

Definition 4.1. Let A be any labelled formula of the form a : A. We denote by
l(A) the label of a formula A, and by p(A) the pure part of the formula, that is,
the part of the formula without the label. The weight (or complexity) of a labelled
formula is defined as a lexicographically ordered pair: ⟨w(p(A)),w(l(A))⟩, where:

1. for all state labels a ∈ W , w(a) = 1;
2. for all p ∈ At, w(p) = 1;
3. w(∼A) = w(A)+1;
4. w(A◦B) = w(A)+w(B)+1, for ◦ ∈ {∧,∨,→}.

Definition 4.2. We denote by h(δ) the natural number indicating the height
of a derivation. We associate the height with the longest branch in a proof-tree
δ −1. The height of a derivation h(δ) is defined by induction on the construction
of δ:

δ ≡ { Γ ⇒ ∆ h(δ) = 0
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δ ≡


.... }δ1

Γ′ ⇒ ∆′
R

Γ ⇒ ∆

h(δ) = h(δ1)+1

δ ≡


.... }δ1

R′

Γ′ ⇒ ∆′

.... }δ2

R′′

Γ′′ ⇒ ∆′′
R

Γ ⇒ ∆

h(δ) = h(δ1)+1, h(δ2)+1

Finally, let S be a sequent. The notation ‘δ ⊢ S’ stands for ‘δ is a proof/derivation
of S’ with h(δ) ≤ n and ‘ ⊢nS ’ stands for ‘S has a derivation δ of height n’.

Definition 4.3. A rule R is height-preserving admissible just in case: if there is
a derivation of the premise(s) of R, then there is a derivation of the conclusion
of R that contains no application of R (with the height at most n, where n is
the maximal height of the derivation of the premise(s)).

Definition 4.4. We define substitution as follows:

• Rabc(d/e) ≡ Rabc, if e ̸= a, e ̸= b and e ̸= c.
• Rabc(d/a) ≡ Rdbc, if a ̸= b and a ̸= c.
• Rabc(d/b) ≡ Radc, if b ̸= a and b ̸= c.
• Rabc(d/c) ≡ Rabd, if c ̸= a and c ̸= b.
• Raac(d/a) ≡ Rddc, if a = b and a ̸= c.
• Rabb(d/b) ≡ Radd, if b = c and b ̸= a.
• Rcbc(d/c) ≡ Rdbd, if c = a and c ̸= b.
• Raaa(d/a) ≡ Rddd, if a = b and a = c.
• a : A(d/b) ≡ a : A, if b ̸= a.
• a : A(d/a) ≡ d : A.

Next we extend this definition to multisets. Similar proofs for labelled calculi
for logics characterised by ternary relations are included, e.g., in [24, 12, 17].

Lemma 4.1. Let the variable e stand for either a, b or c. If G3rX ⊢n Γ ⇒ ∆
and, provided d is free for e in Γ,∆, then G3rX ⊢n Γ(d/e) ⇒ ∆(d/e) (allowing
∗-variables to be substituted to variables as well).

Proof. Let n = 0. If Γ ⇒ ∆ is an axiom and (d/e) is not a vacuous substitution,
then the substitution Γ(d/e) ⇒ ∆(d/e) is also an axiom. Let n > 0. If we
are considering a propositional rule, we apply the inductive hypothesis to the
premise(s) of the rule, and then the rule again. For example, let Γ = e : ∼A,Γ′

and e = a,b,c:
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⊢nΓ′ ⇒ ∆, e∗ : A
L∼

⊢n+1
e : ∼A,Γ′ ⇒ ∆

In this case, in order to apply L∼, we substitute d∗/e∗ by the inductive hypoth-
esis, and get the following derivation of the same height:

⊢nΓ′(d∗/e∗) ⇒ ∆(d∗/e∗),d∗ : A
L∼

⊢n+1
d : ∼A,Γ′(d∗/e∗) ⇒ ∆(d∗/e∗)

We proceed similarly if the last rule is L → (without the variable condition).
Finally, let’s consider the only rule with the eigenvariable condition, namely R →.
(1) If the substitution is vacuous (e ̸= a,b,c), then there’s nothing to do.
(2) Assume the substitution d/e is not vacuous and d is not a fresh variable. We
have to consider the case where d is substituted for a. Let ∆ = a : A → B,∆′:

⊢n
Razx,z : A,Γ ⇒ ∆′,x : B

R →
⊢n+1Γ ⇒ ∆′,a : A → B

By the application of the inductive hypothesis (d/a) we obtain the following
application of R → with the same derivation height:

⊢n
Rdzx,z : A,Γ(d/a) ⇒ ∆′(d/a),x : B

R →
⊢n+1Γ(d/a) ⇒ ∆′(d/a),d : A → B

(3) The substitution is non-vacuous, and d is an eigenvariable. So, our deriva-
tion ends as follows:

⊢n
Radc,d : A,Γ ⇒ ∆′, c : B

R →
⊢n+1Γ ⇒ ∆′,a : A → B

⊢n
Rabd,b : A,Γ ⇒ ∆′,d : B

R →
⊢n+1Γ ⇒ ∆′,a : A → B

First, we rename the fresh variables d,c and b,d with z,x and x,z, respectively.
By the variable condition the substitution does not affect Γ,∆′. Indeed, we get
the following premise of height n:

Raxz,x : A,Γ ⇒ ∆′, z : B and Razx,z : A,Γ ⇒ ∆′,x : B

. So, by applying inductive hypothesis, we substitute the labels d/b and d/c,
respectively, to conclude:

⊢n
Razx,z : A,Γ(d/b) ⇒ ∆′(d/b),x : B

R →
⊢n+1Γ(d/b) ⇒ ∆′(d/b),a : A → B

⊢n
Raxz,x : A,Γ(d/c) ⇒ ∆′(d/c), z : B

R →
⊢n+1Γ(d/c) ⇒ ∆′(d/c),a : A → B

Analogous results follow also for relational rules. Some of them subject to the
eigenvariable condition and, as usual, more care is needed. Roughly, the cases
for such relational rules follow the pattern of case 3 above: to avoid clashes of
variables, we apply height-preserving substitution before the inductive hypothesis
and conclude the argument by finally applying the rule.
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As in the case of other labelled calculi for intermediate logics (e.g., [8, 18]),
the heredity property of the forcing relation (Lemma 2.1) can be expressed by
means of formal derivations in the calculus:

Proposition 4.2. Sequents of the following form are derivable in G3rX: R0ab,a :
A,Γ ⇒ ∆, b : A.

Proof. By induction on A. Let A = ∼B and consider the following derivation:
R0b∗a∗,R0ab,b∗ : B,Γ ⇒ ∆,a∗ : B

R5
R0ab,b∗ : B,Γ ⇒ ∆,a∗ : B

L∼
R0ab,b∗ : B,a : ∼B,Γ ⇒ ∆

R∼
R0ab,a : ∼B,Γ ⇒ ∆, b : ∼B

where the premises are derivable by inductive hypothesis.
If A = B → C, then we obtain the following derivation:

R0cc,Racd,S, c : B,Γ ⇒ ∆,d : C,c : B
R2

Racd,S, c : B,Γ ⇒ ∆,d : C,c : B

R0dd,Racd,S,d : C,c : B,Γ ⇒ ∆,d : C
R2

Racd,S,d : C,c : B,Γ ⇒ ∆,d : C
L →

Racd,R0ab,Rbcd,a : B → C,c : B,Γ ⇒ ∆,d : C
R4

R0ab,Rbcd,a : B → C,c : B,Γ ⇒ ∆,d : C
(c,d fresh) R →

R0ab,a : B → C,Γ ⇒ ∆, b : B → C

where S abbreviates R0ab,Rbcd,a : B → C. The cases for A being B ∧C or B ∨C
are straightforward.

Lemma 4.3. The following rules:
b : p,R0ab,a : p,Γ ⇒ ∆

AtHer-l
R0ab,a : p,Γ ⇒ ∆

R0ab,Γ ⇒ ∆, b : p,a : p
AtHer-r

R0ab,Γ ⇒ ∆, b : p

are height-preserving admissible.

Proof. We display the details for AtHer-l, but the argument is the same for
AtHer-r. By induction on the height of δ, we prove that for any proof of
b : p,R0ab,a : p,Γ ⇒ ∆, there exists a proof of R0ab,a : p,Γ ⇒ ∆ of the same (or
smaller) height. The base cases are obtained as follows:

⊢n
b : p,R0ab,a : p,Γ ⇒ ∆, b : p

i.h.
⇝ ⊢n

R0ab,a : p,Γ ⇒ ∆, b : p

⊢n
R0aa∗∗,R0a∗∗a,b : p,R0ab,a : p,Γ ⇒ ∆, b : p

R1
⊢n+1

b : p,R0ab,a : p,Γ ⇒ ∆, b : p

i.h.
⇝

⊢n
R0aa∗∗,R0a∗∗a,R0ab,a : p,Γ ⇒ ∆, b : p

R1
⊢n+1

R0ab,a : p,Γ ⇒ ∆, b : p

⊢n
R0aa,b : p,R0ab,a : p,Γ ⇒ ∆, b : p

R2
⊢n+1

b : p,R0ab,a : p,Γ ⇒ ∆, b : p

i.h.
⇝

⊢n
R0aa,R0ab,a : p,Γ ⇒ ∆, b : p

R2
⊢n+1

R0ab,a : p,Γ ⇒ ∆, b : p

⊢n
R0ac,R0bc,b : p,R0ab,a : p,Γ ⇒ ∆, b : p

R3
⊢n+1

R0bc,b : p,R0ab,a : p,Γ ⇒ ∆, b : p

i.h.
⇝

⊢n
R0ac,R0bc,R0ab,a : p,Γ ⇒ ∆, b : p

R3
⊢n+1

R0bc,R0ab,a : p,Γ ⇒ ∆, b : p
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⊢n
Racd,Rbcd,b : p,R0ab,a : p,Γ ⇒ ∆, b : p

R4
⊢n+1

Rbcd,b : p,R0ab,a : p,Γ ⇒ ∆, b : p

i.h.
⇝

⊢n
Racd,Rbcd,R0ab,a : p,Γ ⇒ ∆, b : p

R4
⊢n+1

Rbcd,R0ab,a : p,Γ ⇒ ∆, b : p

⊢n
R0b∗a∗, b : p,R0ab,a : p,Γ ⇒ ∆, b : p

R5
⊢n+1

b : p,R0ab,a : p,Γ ⇒ ∆, b : p

i.h.
⇝

⊢n
R0b∗a∗,R0ab,a : p,Γ ⇒ ∆, b : p

R5
⊢n+1

R0ab,a : p,Γ ⇒ ∆, b : p

The remaining cases are dealt with analogously. The inductive step is completed
by permutation of the rules.

Proposition 4.4. The following rules:

b : A,R0ab,a : A,Γ ⇒ ∆
GenHer-l

R0ab,a : A,Γ ⇒ ∆
R0ab,Γ ⇒ ∆, b : A,a : A

GenHer-r
R0ab,Γ ⇒ ∆, b : A

corresponding to the heredity rules for compound formulas, are admissible.

Proof. GenHer-l can be derived as follows:
R0ab,a : A,Γ ⇒ ∆, b : A b : A,R0ab,a : A,Γ ⇒ ∆

cut+lc+rc+lcL
R0ab,a : A,Γ ⇒ ∆

For GenHer-r we have the following derivation:
R0ab,Γ ⇒ ∆, b : A,a : A R0ab,a : A,Γ ⇒ ∆, b : A

cut+lc+rc+lcL
R0ab,Γ ⇒ ∆, b : A

where the leftmost (resp., rightmost) premise is derivable by Proposition 4.2,
while the applications of contraction and cut are admissible by Lemma 7.3 and
Theorem 7.4.4

5 Soundness
This section is devoted to the proof of the soundness theorem for our systems
(3 =⇒ 4, p. 57). We will show that the rules of each labelled calculus G3rX
preserve validity over Routley-Meyer frames obeying the conditions appropriate
for each relevant logic X. In order to do that, we start by extending semantic
notions to sequents as follows:

Definition 5.1. Let M = ⟨W,0,∗,RM,v⟩ be a model and let S be the sequent
Γ ⇒ ∆. We define a S-interpretation in M is a mapping J·K from the labels in
S to the set W of states in M, such that (i) 0 = J0K and (ii) if Rabc is in Γ, then
RMJaKJbKJcK. Now we can define:

4We observe that this proposition can be proved in the same way as we proved admissibility
of AtHer-l and AtHer-r, i.e., by induction on the height of the derivation. This, in fact
would provide us with a stronger result, namely that GenHer-l and GenHer-r are height-
preserving admissible in G3rX. However, here we omit the details of such a proof as we do
not need this result throughout the paper.
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M,J·K ⊩ S iff if for all a : A ∈ Γ, we have M,JaK ⊩ A, then there exists
b : B ∈ ∆, such that M,JbK ⊩B.

Definition 5.2. A sequent S is satisfied in M = ⟨W,0,∗,R,v⟩ if for all S-
interpretations J·K we have M,J·K ⊩ S. A sequent S is valid in a frame F =
⟨W,0,∗,R⟩, if for all valuations v, the sequent S is satisfied in M = ⟨W,0,∗,R,v⟩.

Finally, we can prove the soundness theorem:
Theorem 5.1. If a sequent S is provable in G3rX, then it is valid in every
Routley-Meyer frame for X.
Proof. We proceed by induction on the height of the derivation of S. We show
that for each rule R of the form P1, . . . ,Pn/C, if the premises P1, . . . ,Pn are valid
in all Routley-Meyer frames, then so is C. It follows from a case analysis on R:
Ax. By way of contradiction, assume that R0ab,a : p,Γ ⇒ ∆, b : p is not valid in

all Routley-Meyer frames. This means that there is a model M and an in-
terpretation J·K, such that M,J·K ̸⊩R0ab,a : p,Γ ⇒ ∆, b : p, i.e., RMJ0KJaKJbK
and M,a ⊩ p, but M, b ̸⊩ p. However, this is not possible given heredity
(lemma 2.1).

L∼. By way of contradiction, assume that Γ ⇒ ∆,a∗ : A is valid in all Routley-
Meyer frames, but a : ∼A,Γ ⇒ ∆ is not. The latter means that there is
a model M and an interpretation J·K, such that M,J·K ̸⊩ a : ∼A,Γ ⇒ ∆,
i.e., M,a ⊩ ∼A, but M,d ̸⊩ C for all d : C ∈ ∆. However, by the forcing
clause (2), we also have M,a∗ ̸⊩ A. Consequently, M,J·K ̸⊩ Γ ⇒ ∆,a∗ : A.
Contradiction.

R∼. By way of contradiction, assume that a∗ : A,Γ ⇒ ∆ is valid in all Routley-
Meyer frames, but Γ ⇒ ∆,a : ∼A is not. The latter means that there is a
model M and an interpretation J·K, such that M,J·K ̸⊩ Γ ⇒ ∆,a : ∼A, i.e.,
M,d⊩ C, for all d : C ∈ Γ but M,a ̸⊩∼A. However, by the forcing clause
(2), we also have M,a∗ ⊩A. Then, M,J·K ̸⊩ a∗ : A,Γ ⇒ ∆. Contradiction.

L →. By way of contradiction, assume that Rabc,Γ ⇒ ∆, b : A and Rabc,c : B,Γ ⇒
∆ are valid in all Routley-Meyer frames, but Rabc,a : A → B,Γ ⇒ ∆ is not.
The latter means that there is a model M and an interpretation J·K, such
that M,J·K ̸⊩Rabc,a : A → B,Γ ⇒ ∆, i.e., RMJaKJbKJcK and M,a⊩A → B,
but M,d ̸⊩ C for all d : C ∈ ∆. However, by the forcing clause (5), we also
have M, b ̸⊩ A or M, c ⊩ B. Consequently, M,J·K ̸⊩ Rabc,Γ ⇒ ∆, b : A or
M,J·K ̸⊩Rabc,c : B,Γ ⇒ ∆. Contradiction.

R →. By way of contradiction, assume that Rabc,b : A,Γ ⇒ ∆, c : B is valid in all
Routley-Meyer frames, but Γ ⇒ ∆,a : A → B is not, where b,c /∈ Γ,∆. The
latter means that there is a model M and an interpretation J·K, such that
M,J·K ̸⊩ Γ ⇒ ∆,a : A → B. In particular, we know that there are worlds b′

and c′ such that RMJaKb′c′ and M, b′ ⊩ A, but M, c′ ̸⊩ B. Now we define
an extension J·K′ of J·K such that JbK′ = b′, JcK′ = c′ and J·K′ = J·K. Then,
M,J·K′ ̸⊩Rabc,b : A,Γ ⇒ ∆, c : B. Contradiction.
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The other cases are similar and simpler. In particular, note that the cases for
the mathematical rules are trivial, as all Routley-Meyer frames have to obey the
corresponding conditions.

6 Completeness
In this section, we will show the completeness of G3rB, and its extensions, by
deriving the axioms of the corresponding logics (1 =⇒ 2, p. 57).
Let X = {B,DW,DJ,TW,T,RW,R,RM}.
Before turning to the proof the theorem, we show a syntactic version of Lemma
2.2 within our labelled calculi:

Lemma 6.1. G3rX+cut ⊢ a : A ⇒ a : B iff G3rX+cut ⊢⇒ 0 : A → B.

Proof. (=⇒)
a : A ⇒ a : B R0ab,a : B ⇒ b : B

cut
R0ab,a : A ⇒ b : B

R →
⇒ 0 : A → B

(⇐=)

⇒ 0 : A → B

R0aa,0 : A → B,a : A ⇒ a : A,a : B R0aa,0 : A → B,a : A,a : B ⇒ a : B
L →

R0aa,0 : A → B,a : A ⇒ a : B
cut

R0aa,a : A ⇒ a : B
R2

a : A ⇒ a : B

where, in both derivations, the rightmost premise(s) is (are) derivable by Propo-
sition 4.2.

Theorem 6.2. If a formula A is provable in an axiomatic system X, then the
sequent ⇒ 0 : A is derivable in the corresponding labelled system G3rX+cut.

Proof. The proof proceeds by deriving root-first the axioms of each relevant logic
X in the corresponding labelled system G3rX+cut. As the derivations occupy
much space, we display them in Appendix A.

Alternatively, one might be interested in proving a theorem of semantic com-
pleteness, that is, for every sequent S, the proof search either terminates in a
proof or fails, and the failed proof tree is used to obtain a countermodel for S.
Intuitively, to see whether A is derivable, we check if it is valid at the actual
world 0 ∈ W , i.e., 0 ⊩ A. This, indeed, will amount to have the sequent ⇒ 0 : A
in our calculus. As said above, this correspond to reflect, at the calculus level,
the actualistic notion of validity employed in reduced Routley-Meyer models.
Finally, notice that the countermodel construction argument, allows us to show
completeness directly (although non-constructively, as the proof relies on König’s
lemma), for any labelled sequent and not only specifically for formulas.
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Theorem 6.3. Let Γ ⇒ ∆ be a sequent of G3rX. Then either the sequent is
derivable in G3rX or it has a countermodel with the frame properties peculiar
for X.

Proof. We follow the pattern of the completeness proof in [22, 25]. We proceed
with the construction of a derivation tree for Γ ⇒ ∆ by applying the rules of
G3rX root-first (see Appendix B). If the reduction tree is finite, i.e., all leaves
are axiomatic sequents, we have a proof in G3rX. Assume that the derivation
tree is infinite. By König’s lemma, it has an infinite branch that is used to build
the needed counterexample. Suppose that Γ ⇒ ∆ ≡ Γ0 ⇒ ∆0,Γ1 ⇒ ∆1, . . . ,Γi ⇒
∆i . . . is one of such branches. Consider the sets Γ ≡ ⋃Γi and ∆ ≡ ⋃∆i, for
i ≥ 0. We now construct a countermodel, i.e. a model that makes all labelled
formulas and relational atoms in Γ true and all labelled formulas in ∆ false. Let
FX be a frame, whose elements are all the labels occurring in Γ. FX is defined
as follows:

• for all a : p in Γ it holds that a ⊩ p in FX.
• for all Rabc in Γ it holds that RMabc in FX.
• for all a : p in ∆ it holds that a ̸⊩ p in FX.

It can then be shown that A is forced in the model at 0 if 0 : A is in Γ and A
is not forced at 0 if 0 : A is in ∆. We will end up with a countermodel to the
endsequent.

1. If p is atomic, the claim holds by definition of the model.
2. If 0 : ∼A is in Γ, then 0∗ : A is in ∆. By the inductive hypothesis 0∗ ̸⊩ A,

i.e., 0 ⊩∼A.
3. If 0 : ∼A is in ∆, then 0∗ : A is in Γ. By the inductive hypothesis 0∗ ⊩ A,

i.e., 0 ̸⊩∼A.
4. If 0 : A ∧ B is in Γ, then there exists i such that 0 : A ∧ B appears first in

Γi, and, therefore, for some j ≥ 0, we have 0 : A and 0 : B in Γi+j . By the
inductive hypothesis 0 ⊩ A and 0 ⊩ B and, consequently, 0 ⊩ A ∧ B. (The
case for 0 : A∨B in ∆ is analogous.)

5. If 0 : A ∧ B is in ∆, then either 0 : A or 0 : B in ∆. By the inductive
hypothesis either 0 ̸⊩ A or 0 ̸⊩ B and, therefore, 0 ̸⊩ A ∧ B. (The case for
0 : A∨B in Γ is analogous.)

6. If 0 : A → B is in Γ, we consider all the relational atoms R0ab that occur
in Γ. If there’s no relational atom, the accessibility condition is vacuously
satisfied and, therefore, 0 ⊩ A → B is in the model. For any occurrence
of R0ab in Γ, by construction of the tree a : A is in ∆ or b : A is in Γ.
By the inductive hypothesis a ̸⊩ A or b ⊩ B, and since RM0ab, we obtain
0 ⊩ A → B in the model.

7. If 0 : A → B is in ∆, at the successive step of the reduction tree we find that
R0ab and a : A in Γ, whereas b : B is in ∆. By the inductive hypothesis
we obtain RM0ab and a ⊩ A but b ̸⊩B, that is, 0 ̸⊩ A → B in the model.
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This result directly implies the implication 4 =⇒ 3 stated on p. 57.

Corollary 6.3.1. If a sequent Γ ⇒ ∆ is valid in every Routley-Meyer frame for
X, then it is derivable in the system G3rX.

7 Proof analysis and Cut-admissibility
In this section we prove the cut-admissibility theorem for our labelled sequent
calculi. The general proof presented here is similar to the proof for labelled
systems for modal and intermediate logics (see, e.g., [20, 25, 8, 12, 17, 18]). More
precisely, we proceed with the proofs of weakening and contraction admissibility.
In conclusion, we show the central theorem of the section, i.e., cut-admissibility.
As there are many cases to be analysed in these proofs, we only outline the
important parts here.

Lemma 7.1. The rules of weakening:

Γ ⇒ ∆ lw
d : C,Γ ⇒ ∆

Γ ⇒ ∆ rw
Γ ⇒ ∆,d : C

Γ ⇒ ∆ lwL
Rabc,Γ ⇒ ∆

are height-preserving admissible in G3rX.

Proof. By induction on the height of the derivation. (1) For n = 0, the case is
trivial. For n > 0, we simultaneously display the transformed derivations for lw
and rw. (Analogous results hold for lwL)
(2) For rules without variable condition, the lower sequent of the transformed
derivation is the same as the lower one of the original derivation, obtained by
applying several times weakening. This is also the case for L →.
(3) Consider the rules with the variable condition, e.g., R →. The derivations
end as follows:

⊢n
Radc,d : A,Γ ⇒ ∆′, c : B

R →
⊢n+1Γ ⇒ ∆′,a : A → B

⊢n
Rabd,b : A,Γ ⇒ ∆′,d : B

R →
⊢n+1Γ ⇒ ∆′,a : A → B

To avoid clashes of variables we apply height-preserving substitution (x/d)
to obtain:

Raxc,x : A,Γ(x/d) ⇒ ∆′(x/d), c : B and Rabx,b : A,Γ(x/d) ⇒ ∆′(x/d),x : B

Finally, by applying the inductive hypothesis (on the left and on the right) to
the premise and, finally, also the rule, we obtain the requested derivations:
⊢n

d : C,Raxc,x : A,Γ ⇒ ∆′, c : B
R →

⊢n+1
d : C,Γ ⇒ ∆′,a : A → B

⊢n
Raxc,x : A,Γ ⇒ ∆′, c : B,d : C

R →
⊢n+1Γ ⇒ ∆′,a : A → B,d : C

and
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⊢n
d : C,Rabx,b : A,Γ ⇒ ∆′,x : B

R →
⊢n+1

d : C,Γ ⇒ ∆′,a : A → B

⊢n
Rabx,b : A,Γ ⇒ ∆′,x : B,d : C

R →
⊢n+1Γ ⇒ ∆′,a : A → B,d : C

where, in all cases, the lower derivations are the result of applying weakening
(on the left and on the right) to the premises of the derivations displayed above.
If we consider relational rules without variable condition, the proof follows straight-
forwardly by applications of the inductive hypothesis.
For relational rules with eigenvariable conditions, we always are in need to con-
sider possible clashes of variables. As an example, suppose that the rule applied
is R7:

⊢n
Rabx,Raxc,Rabc,Γ ⇒ ∆

R7
⊢n+1

Rabc,Γ ⇒ ∆
If d ̸= x, that is, the variable condition is not violated, then desired derivations
follow by the inductive hypothesis and an application of the rule:

⊢n
d : C,Rabx,Raxc,Rabc,Γ ⇒ ∆

R7
⊢n+1

d : C,Rabc,Γ ⇒ ∆

⊢n
Rabx,Raxc,Rabc,Γ ⇒ ∆,d : C

R7
⊢n+1

Rabc,Γ ⇒ ∆,d : C

If the fresh variable condition is violated, we substitute the clashing vari-
able with a fresh one, apply the inductive hypothesis and then the rule. If the
application of the rule looks like:

⊢n
Rabd,Radc,Rabc,Γ ⇒ ∆

R7
⊢n+1

Rabc,Γ ⇒ ∆
we substitute d with a fresh one, say y, to obtain the following premise

⊢n

Raby,Rayc,Rabc,Γ(y/d) ⇒ ∆(y/d)

By applying the inductive hypothesis and the rule, we obtain the desired deriva-
tions:

⊢n
d : C,Raby,Rayc,Rabc,Γ ⇒ ∆

R7
⊢n+1

d : C,Rabc,Γ ⇒ ∆

⊢n
Raby,Rayc,Rabc,Γ ⇒ ∆,d : C

R7
⊢n+1

Rabc,Γ ⇒ ∆,d : C

where, as before, the lower derivations are the results of applying weakening (on
the left and on the right) to the premise of the rule displayed above.

Definition 7.1. A rule R is height-preserving invertible just in case: if there is
a derivation of the conclusion of R, then there is a dedrivation of premise(s) of
R (with the height at most n, where n is the maximal height of the derivation
of the conclusion).

Lemma 7.2. All rules of G3rX are height-preserving invertible.
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Proof. For each rule R, we have to show that if there is a derivation δ of the
conclusion, then there is a derivation δ′ of the premise(s), of the same height.
For L∼, R∼, L∨, R∨, R∧, L∧ and L → we use a standard induction on the
height of δ. For R → as well, but we need to be sure that in the transformed
derivation we make use of a fresh label by applying the substitution lemma inside
δ′, if needed. The same procedures apply to all relational rules (R1-R17).
As an interesting example, we show height-preserving invertibility of R →. It
is proved by induction on the height n of the derivation of Γ ⇒ ∆,a : A → B.
We distinguish three main cases. (1) If n = 0, Γ ⇒ ∆,a : A → B is an axiom,
and then also Rabc,b : A,Γ ⇒ ∆, c : B is an axiom. Let n > 0. (2) If ⊢n+1

Γ ⇒ ∆,a : A → B is concluded by any rule R other than R →, we apply the
inductive hypothesis to the premise(s) Γ′ ⇒ ∆′,a : A → B (Γ′′ ⇒ ∆′′,a : A → B)
to obtain derivation(s) of height n of Rabc,b : A,Γ′ ⇒ ∆′, c : B (Rabc,b : A,Γ′′ ⇒
∆′′, c : B). By applying R we obtain a derivation of height n + 1 of Rabc,b :
A,Γ ⇒ ∆, c : B, as desired. (3) If ⊢n+1 Γ ⇒ ∆,a : A → B is concluded by R →,
then Rabc,b : A,Γ ⇒ ∆, c : B is the requested conclusion of height n, possibly
with different eigenvariables, but the desired ones can be obtained by height-
preserving substitutions (Lemma 4.1). As an example for relational rules, we
only deal with R7, i.e., a rule with eigenvariable. (1) If n = 0, Rabc,Γ ⇒ ∆ is an
axiom, and then also Rabx,Raxc,Rabc,Γ ⇒ ∆ is an axiom. If ⊢n+1 Rabc,Γ ⇒ ∆
is concluded by any rule R other than R7, we apply the inductive hypothesis to
the premise(s) Rabc,Γ′ ⇒ ∆′ (Rabc,Γ′′ ⇒ ∆′′) to obtain derivation(s) of height
n of Rabx,Raxc,Rabc,Γ′ ⇒ ∆′ (Rabx,Raxc,Rabc,Γ′′ ⇒ ∆′′). By applying R we
obtain a derivation of height n + 1 of Rabx,Raxc,Rabc,Γ ⇒ ∆, as desired. (3)
If ⊢n+1 Rabc,Γ ⇒ ∆ is concluded by R7, then Rabx,Raxc,Rabc,Γ ⇒ ∆ is the
requested conclusion of height n (possibly by applying Lemma 4.1).

Lemma 7.3. The rules of contraction:
a : C,a : C,Γ ⇒ ∆

lc
a : C,Γ ⇒ ∆

Γ ⇒ ∆,a : C,a : C
rc

Γ ⇒ ∆,a : C

Rabc,Rabc,Γ ⇒ ∆
lcL

Rabc,Γ ⇒ ∆

are height-preserving admissible in G3rX.

Proof. By induction on the height of derivation. As usual, if n = 0, then the
premise is an axiomatic sequent and so also the contracted sequent is an ax-
iomatic one. If n > 0, we consider the last rule applied to the premise of contrac-
tion. If the contraction formula is not principal in the premise of some R, then
both occurrences are found in the premises of the rule and they have a smaller
derivation height. By applying the induction hypothesis, we contract them and
apply R to obtain a derivation of the conclusion with the same derivation height.
If the contraction formula is principal, we distinguish three cases: (1) R is a rule
where active formulas are proper subformulas of the principal formula (all rules
for ∼,∧,∨); (2) R is a rule where both, labels Rabc and proper subformulas of
the principal formula, are active formulas (R →); (3) R is a rule in which the
principal formula is repeated also in the premises of the rule (L →).
(1) In the cases for ∼,∧,∨ the contraction is reduced to contraction on formulas
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of smaller complexity (as in the cases for modal and intermediate logics, see, e.g.,
[20, 21, 8]).
(2) We consider a rule where the principal formula and relational atoms are both
active, for instance:

⊢n
Rabc,b : A,Γ ⇒ ∆,a : A → B,c : B

R →
⊢n+1Γ ⇒ ∆,a : A → B,a : A → B

By height-preserving invertibility (Lemma 7.2) applied to the premise, we obtain
the following derivation:

⊢n
Rabc,b : A,Rabc,b : A,Γ ⇒ ∆, c : B,c : B

i.h.
⊢n

Rabc,b : A,Γ ⇒ ∆, c : B
R →

⊢n+1Γ ⇒ ∆,a : A → B

as requested. Notice that if both contraction formulas are principal in R →, we
apply the closure condition.
(3) Finally, we consider a rule in which only the labelled formula is principal,
namely L →:

⊢n
Rabc,a : A → B,a : A → B,Γ ⇒ ∆, b : A ⊢n

Rabc,c : B,a : A → B,a : A → B,Γ ⇒ ∆
L →

⊢n+1
Rabc,a : A → B,a : A → B,Γ ⇒ ∆

Again, by applying the inductive hypothesis to the premises, we obtain the de-
sired derivation:

⊢n
Rabc,a : A → B,Γ ⇒ ∆, b : A ⊢n

Rabc,c : B,a : A → B,Γ ⇒ ∆
L →

⊢n+1
Rabc,a : A → B,Γ ⇒ ∆

Finally, we can prove that cut is an admissible rule. This theorem directly
entails the implication 2 =⇒ 3 stated on p. 57:

Theorem 7.4. The rule of cut:

Γ ⇒ ∆,a : A a : A,Γ′ ⇒ ∆′
cut

Γ,Γ′ ⇒ ∆,∆′

is admissible in G3rX.

Proof. The proof is by a lexicographic induction on the complexity of the cut-
formula a : A and the sum of the heights h(δ1) + h(δ2). We perform a case
analysis on the last rule used in the derivation above the cut and whether
it applies to the cut-formula or not. We show that each application of cut
can either be eliminated, or be replaced by one or more applications of cut of
smaller complexity. The proof proceeds similarly to the cut-elimination proofs
for several logics, e.g., [20, 25, 12, 18]. Intuitively, we eliminate the left- and
topmost cut first, and proceed by repeating the procedure until we reach a
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cut-free derivation. We start by showing that cut can be eliminated if one
of the cut premises is an axiom (case 1). Then we show that the cut-height
can be reduced in all cases in which the cut-formula is not principal in at least
one of the cut-premises (case 2). Finally, we show that if the cut-formula is
principal in both cut-premises, then the cut is reduced to one or more cuts
on less complex formulas or on shorter derivations (case 3). The complete case
analysis is performed in Appendix C.
Here, we present two interesting cases where the cut-formula A is principal in
both premises. We start by considering a derivation where the last rules applied
to obtain the cut-premises are R∼ and L∼, respectively. Let A = ∼B:

a∗ : B,Γ ⇒ ∆
R∼

Γ ⇒ ∆,a : ∼B

Γ′ ⇒ ∆′,a∗ : B
L∼

a : ∼B,Γ′ ⇒ ∆′
cut

Γ,Γ′ ⇒ ∆,∆′

It is transformed into the following derivation:
Γ′ ⇒ ∆′,a∗ : B a∗ : B,Γ ⇒ ∆

cut
Γ,Γ′ ⇒ ∆,∆′

where cut is applied on a formula of smaller complexity.
Assume that the premises of cut are derived by R → and L →, respectively.
Let A = B → C:

Rabc,b : B,Γ ⇒ ∆, c : C
(b,c fresh) R →

Γ ⇒ ∆,a : B → C

Rade,a : B → C,Γ′ ⇒ ∆′,d : B Rade,e : C,a : B → C,Γ′ ⇒ ∆′
L →

Rade,a : B → C,Γ′ ⇒ ∆′
cut

Rade,Γ,Γ′ ⇒ ∆,∆′

It is transformed into the following derivation:
..... δ1

Rade,Γ,Γ′ ⇒ ∆,∆′, e : C

..... δ2

Rade,e : C,Γ,Γ′ ⇒ ∆,∆′
cut

Rade,Rade,Γ,Γ,Γ′,Γ′ ⇒ ∆,∆,∆′,∆′
(Lemma 7.3) lc+rc+lcL

Rade,Γ,Γ′ ⇒ ∆,∆′

where the conclusion of δ1 is derived by:

Γ ⇒ ∆,a : B → C Rade,a : B → C,Γ′ ⇒ ∆′,d : B
cut

Rade,Γ,Γ′ ⇒ ∆,∆′d : B

Rabc,b : B,Γ ⇒ ∆, c : C
(Lemma 4.1) sub(e/c)

Rabe,b : B,Γ ⇒ ∆, e : C
(Lemma 4.1) sub(d/b)

Rade,d : B,Γ ⇒ ∆, e : C
cut

Rade,Rade,Γ,Γ,Γ′ ⇒ ∆,∆,∆′, e : C
(Lemma 7.3) lc+rc+lcL

Rade,Γ,Γ′ ⇒ ∆,∆′, e : C

while the conclusion of δ2 is derived by:
Γ ⇒ ∆,a : B → C Rade,e : C,a : B → C,Γ′ ⇒ ∆′

cut
Rade,e : C,Γ,Γ′ ⇒ ∆,∆′
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Notice that the two topmost cuts, those on a : B → C, are derived with a
shorter derivation height, while the other two are applied on formulas of smaller
complexity, i.e., d : B and e : C.

8 Conclusions
In this paper, we have presented labelled sequent calculi for a wide range of
relevant logics by reflecting at the syntactic level semantic informations taken
from reduced Routley-Meyer models, and have proved soundness and (syntactic
and semantic) completeness. Least but not last, we have shown height-preserving
invertibility of the rules, height-preserving admissibility of structural rules, and
cut-admissibility.
To conclude, we would like to point out some further topics of research, directly
connected to the work developed so far:

• Along with labelled calculi, many generalizations of sequent systems have
been proposed over the years. This flourishing of systems has also paved
the way to investigations concerning the relations between them. In this
context, an interesting task for future work is represented by establishing
correspondences between the calculi presented in this work with other char-
acterizations obtained by application of different proof-theoretic structures,
e.g., hypersequents and display sequents.

• Notice that relevant logics face some troubles when it comes to establish
decidability results and, indeed, many of them are undecidable. Given the
subtleties that such a discussion might involve, we leave (un)decidability
issues out from this investigation and we limit ourselves to some obser-
vations. One of the main consequences that can be drawn from cut-
elimination proofs is a fundamental trait of sequent systems, namely the
so-called subformula property. This ensures that all formulas in a deriva-
tion are subformulas of formulas in the endsequent. Unfortunately, labelled
sequent calculi, given the presence of geometrical rules in which relational
atoms disappear from premise to conclusion, do not have a full subformula
property. Nonetheless, by following the considerations expressed in [20], we
observe that all of our calculi enjoy a weak version of the property, namely:
All formulas in a derivation are either subformulas of formulas in the end-
sequent or formulas of the form Rabc. This property alone, however, is not
enough to prove syntactic decidability. Firstly, in order to provide such a
proof, one needs to find a bound on the number of eigenvariables (fresh
labels) in a derivation of a given sequent. Secondly, since the repetition of
the principal formula in the premises of L → is another source of poten-
tially non-terminating proof search, there’s also the need of finding a bound
on applications of L →. This amounts to binding the number of applica-
tions of L → with principal formula a : A → B to the number of relational
atoms of the form Rabc that appear on the left-hand side of sequents in
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the derivation. This number, in turn, will be bounded by the number of
existing relational atoms of that form and relational atoms that can be
introduced by applications of R → with principal formula a : A → B.

• Throughout our paper, we have considered labelled rules for the follow-
ing connectives ∼, ∧, ∨ and →. However, occasionally, relevant logics are
presented also with further connectives, such as for example, ‘fusion’ (also
known as ‘intensional conjunction’) and ‘fission’ (also known as ‘intensional
disjunction’). Some other relevantists would also welcome the addition of
the so-called ‘Ackerman truth constant’ (often denote as t). Nonetheless,
given our intentions in this paper, we have preferred to omit the consid-
eration of wider sets of connectives and have decided to leave this topic
for further research. We only notice that all connectives mentioned above
can be, in line of principle, treated according to the methodology we have
adopted so far.
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A Appendix
Proof of Theorem 6.2 (Syntactic Completeness). We show that (Ax1)-(Ax16) can
be derived in the calculi G3rX:
G3rB ⊢⇒ 0 : A → A

R0ab,a : A ⇒ b : A
(a,b fresh) R →

⇒ 0 : A → A

G3rB ⊢⇒ 0 : A∧B → A and G3rB ⊢⇒ 0 : A∧B → B.
R0ab,a : A,a : B ⇒ b : A

L∧
R0ab,a : A∧B ⇒ b : A

(a,b fresh) R →
⇒ 0 : A∧B → A

R0ab,a : A,a : B ⇒ b : B
L∧

R0ab,a : A∧B ⇒ b : B
(a,b fresh) R →

⇒ 0 : A∧B → B

G3rB ⊢⇒ 0 : (A → B) ∧ (A → C) → (A → (B ∧ C)). We have the following
derivation:

..... δ1

Racd,S, c : A,a : A → B ⇒ d : B

..... δ2

Racd,S, c : A,a : A → C ⇒ d : C
R∧

Racd,Rbcd,R0ab,c : A,a : A → B,a : A → C ⇒ d : B ∧C
R4

Rbcd,R0ab,c : A,a : A → B,a : A → C ⇒ d : B ∧C
(c,d fresh) R →

R0ab,a : A → B,a : A → C ⇒ b : A → (B ∧C)
L∧

R0ab,a : (A → B)∧ (A → C) ⇒ b : A → (B ∧C)
(a,b fresh) R →

⇒ 0 : (A → B)∧ (A → C) → (A → (B ∧C))

where the conclusion of δ1 is obtained by:

R0cc,Racd,S ′, c : A ⇒ d : B,c : A
R2

Racd,S ′, c : A ⇒ d : B,c : A

R0dd,Racd,S ′,d : B,c : A ⇒ d : B
R2

Racd,S ′,d : B,c : A ⇒ d : B
L →

Racd,S, c : A,a : A → B ⇒ d : B

while the conclusion of δ2 is derived by:

R0cc,Racd,S ′′, c : A ⇒ d : C,c : A
R2

Racd,S ′′, c : A ⇒ d : C,c : A

R0dd,Racd,S ′′,d : C,c : A ⇒ d : C
R2

Racd,S ′′,d : C,c : A ⇒ d : C
L →

Racd,S, c : A,a : A → C ⇒ d : C

where S = Rbcd,R0ab, S ′ = Rbcd,R0ab,a : A → B and S ′ = Rbcd,R0ab,a : A → C.
G3rB ⊢⇒ 0 : A → (A∨B) and G3rB ⊢⇒ 0 : B → (A∨B).

R0ab,a : A ⇒ b : A,b : B
R∨

R0ab,a : A ⇒ b : A∨B
(a,b fresh) R →

⇒ 0 : A → (A∨B)

R0ab,a : B ⇒ b : A,b : B
R∨

R0ab,a : B ⇒ b : A∨B
(a,b fresh) R →

⇒ 0 : B → (A∨B)

G3rB ⊢⇒ 0 : (A → C)∧ (B → C) → ((A∨B) → C) .
The derivation is as follows:
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..... δ1

Racd,S, c : A∨B,a : B → C ⇒ d : C,c : A Racd,S,d : C,c : A∨B,a : B → C ⇒ d : C

Racd,Rbcd,R0ab,c : A∨B,a : A → C,a : B → C ⇒ d : C
R4

Rbcd,R0ab,c : A∨B,a : A → C,a : B → C ⇒ d : C
L∧

Rbcd,R0ab,c : A∨B,a : (A → C)∧ (B → C) ⇒ d : C
(c,d fresh) R →

R0ab,a : (A → C)∧ (B → C) ⇒ b : (A∨B) → C
(a,b fresh) R →

⇒ 0 : (A → C)∧ (B → C) → ((A∨B) → C)
where the conclusion of δ1 is derived by:

R0cc,Racd,S, c : A,a : B → C ⇒ d : C,c : A
R2

Racd,S, c : A,a : B → C ⇒ d : C,c : A

..... δ′
1

Racd,S, c : B,a : B → C ⇒ d : C,c : A
L∨

Racd,S, c : A∨B,a : B → C ⇒ d : C,c : A

while δ′
1 is derived by:

R0cc,Racd,S ′, c : B ⇒ d : C,c : A,c : B
R2

Racd,S ′, c : B ⇒ d : C,c : A,c : B

R0dd,Racd,S ′,d : C,c : B ⇒ d : C,c : A
R2

Racd,S ′,d : C,c : B ⇒ d : C,c : A
L →

Racd,S, c : B,a : B → C ⇒ d : C,c : A

with S = Rbcd,R0ab,a : A → C and S ′ = Rbcd,R0ab,a : A → C,a : B → C.
G3rB ⊢⇒ 0 : A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C). We obtain the following deriva-
tion:

..... δ1

R0ab,a : A,a : B ⇒ b : A∧B,b : A∧C

..... δ2

R0ab,a : A,a : C ⇒ b : A∧B,b : A∧C
L∨

R0ab,a : A,a : B ∨C ⇒ b : A∧B,b : A∧C
L∧

R0ab,a : A∧ (B ∨C) ⇒ b : A∧B,b : A∧C
R∨

R0ab,a : A∧ (B ∨C) ⇒ b : (A∧B)∨ (A∧C)
(a,b fresh) R →

⇒ 0 : A∧ (B ∨C) → (A∧B)∨ (A∧C)
where the conclusion of δ1 is derived by:

R0ab,a : A,a : B ⇒ b : A,b : A∧C R0ab,a : A,a : B ⇒ b : B,b : A∧C
R∧

R0ab,a : A,a : B ⇒ b : A∧B,b : A∧C

while the conclusion of δ2 is obtained by:
R0ab,a : A,a : C ⇒ b : A,b : A∧B R0ab,a : A,a : C ⇒ b : C,b : A∧B

R∧
R0ab,a : A,a : C ⇒ b : A∧B,b : A∧C

G3rB ⊢⇒ 0 : ∼∼A → A.
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R0a∗∗b,R0a∗∗a,R0aa∗∗,R0ab,a∗∗ : A ⇒ b : A
R3

R0a∗∗a,R0aa∗∗,R0ab,a∗∗ : A ⇒ b : A
R1

R0ab,a∗∗ : A ⇒ b : A
R∼

R0ab ⇒ b : A,a∗ : ∼A
L∼

R0ab,a : ∼∼A ⇒ b : A
(a,b fresh) R →

⇒ 0 : ∼∼A → A

If G3rB ⊢⇒ 0 : A, G3rB ⊢⇒ 0 : A → B, then G3rB ⊢⇒ 0 : B.

⇒ 0 : A

⇒ 0 : A → B
(Lemma 6.1)

a : A ⇒ a : B
(Lemma 4.1) sub(0/a)

0 : A ⇒ 0 : B cut
⇒ 0 : B

If G3rB ⊢⇒ 0 : A, G3rB ⊢⇒ 0 : B, then G3rB ⊢⇒ 0 : A∧B.

⇒ 0 : B ⇒ 0 : A
R∧

⇒ 0 : A∧B

If G3rB ⊢⇒ 0 : A → B, then G3rB ⊢⇒ 0 : (C → A) → (C → B). We have the
following derivation:

R0bb,Rabc,a : C → A,b : C ⇒ c : B,b : C
R2

Rabc,a : C → A,b : C ⇒ c : B,b : C

⇒ 0 : A → B
(Lemma 6.1)

c : A ⇒ c : B
(Lemma 7.1) lw+lwL

Rabc,c : A,a : C → A,b : C ⇒ c : B
L →

Rabc,a : C → A,b : C ⇒ c : B
(b,c fresh) R →

a : C → A ⇒ a : C → B
(Lemma 6.1)

⇒ 0 : (C → A) → (C → B)

If G3rB ⊢⇒ 0 : A → B, then G3rB ⊢⇒ 0 : (B → C) → (A → C). We have the
following derivation:

⇒ 0 : A → B
(Lemma 6.1)

b : A ⇒ b : B
(Lemma 7.1) lw+rw+lwL

Rabc,a : B → C,b : A ⇒ c : C,b : B

R0cc,Rabc,c : C,a : B → C ⇒ c : C
R2

Rabc,c : C,a : B → C ⇒ c : C
L →

Rabc,a : B → C,b : A ⇒ c : C
(b,c fresh) R →

a : B → C ⇒ a : A → C
(Lemma 6.1)

⇒ 0 : (B → C) → (A → C)

If G3rB ⊢⇒ 0 : A → B, then G3rB ⊢⇒ 0 : ∼B → ∼A.

⇒ 0 : A → B
(Lemma 6.1)

a : A ⇒ a : B
(Lemma 4.1) sub(a∗/a)

a∗ : A ⇒ a∗ : B
L∼

a∗ : A,a : ∼B ⇒
R∼

a : ∼B ⇒ a : ∼A
(Lemma 6.1)

⇒ 0 : ∼B → ∼A
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where S = R0ab,0 : A → B. This completes the completeness proof for G3rB.
G3rDW ⊢⇒ 0 : (A → B) → (∼B → ∼A).

R0d∗d∗,Rad∗c∗,S,d∗ : A ⇒ c∗ : B,d∗ : A
R2

Rad∗c∗,S,d∗ : A ⇒ c∗ : B,d∗ : A

R0c∗c∗,Rad∗c∗,S, c∗ : B,d∗ : A ⇒ c∗ : B
R2

Rad∗c∗,S, c∗ : B,d∗ : A ⇒ c∗ : B
L →

Rad∗c∗,Rbd∗c∗,Rbcd,R0ab,d∗ : A,a : A → B ⇒ c∗ : B
R4

Rbd∗c∗,Rbcd,R0ab,d∗ : A,a : A → B ⇒ c∗ : B
R6

Rbcd,R0ab,d∗ : A,a : A → B ⇒ c∗ : B
L∼

Rbcd,R0ab,d∗ : A,a : A → B,c : ∼B ⇒
R∼

Rbcd,R0ab,a : A → B,c : ∼B ⇒ d : ∼A
(c,d fresh) R →

R0ab,a : A → B ⇒ b : ∼B → ∼A
(a,b fresh) R →

⇒ 0 : (A → B) → (∼B → ∼A)

where S = Rbd∗c∗,Rbcd,R0ab,a : A → B.
G3rDJ ⊢⇒ 0 : (A → B)∧ (B → C) → (A → C).

R0cc,Racx,Raxd,S ′, c : A ⇒ d : C,c : A
R2

Racx,Raxd,S ′, c : A ⇒ d : C,c : A

..... δ1

Racx,Raxd,S,x : B,a : B → C,⇒ d : C
L →

Racx,Raxd,Racd,Rbcd,R0ab,c : A,a : A → B,a : B → C ⇒ d : C
(x fresh) R7

Racd,Rbcd,R0ab,c : A,a : A → B,a : B → C ⇒ d : C
R4

Rbcd,R0ab,c : A,a : A → B,a : B → C ⇒ d : C
(c,d fresh) R →

R0ab,a : A → B,a : B → C ⇒ b : A → C
L∧

R0ab,a : (A → B)∧ (B → C) ⇒ b : A → C
(a,b fresh) R →

⇒ 0 : (A → B)∧ (B → C) → (A → C)

and δ1 is derived by:

R0xx,Racx,Raxd,S ′,x : B ⇒ d : C,x : B
R2

Racx,Raxd,S ′,x : B ⇒ d : C,x : B

R0dd,Racx,Raxd,S,d : C,x : B ⇒ d : C
R2

Racx,Raxd,S,d : C,x : B ⇒ d : C
L →

Racx,Raxd,S,x : B,a : B → C,⇒ d : C

where S = Racd,Rbcd,R0ab,a : A → B and S ′ = Racd,Rbcd,R0ab,a : A → B,a :
B → C.
G3rTW ⊢⇒ 0 : (A → B) → ((B → C) → (A → C)).
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R0ee,S,a : A → B,e : A ⇒ e : A,f : C
R2

S,a : A → B,e : A ⇒ e : A,f : C

..... δ1

Raex,Rcxf,S ′,x : B,c : B → C ⇒ f : C
L →

Raex,Rcxf,Rbex,Rdef,Rbcd,R0ab,a : A → B,c : B → C,e : A ⇒ f : C
R4

Rcxf,Rbex,Rdef,Rbcd,R0ab,a : A → B,c : B → C,e : A ⇒ f : C
(x fresh) R8

Rdef,Rbcd,R0ab,a : A → B,c : B → C,e : A ⇒ f : C
(e,f fresh) R →

Rbcd,R0ab,a : A → B,c : B → C ⇒ d : A → C
(c,d fresh) R →

R0ab,a : A → B ⇒ b : (B → C) → (A → C)
(a,b fresh) R →

⇒ 0 : (A → B) → ((B → C) → (A → C))

and δ1 is derived by:

R0xx,Raex,Rcxf,S ′′,x : B ⇒ f : C,x : B
R2

Raex,Rcxf,S ′′,x : B ⇒ f : C,x : B

R0ff,Raex,Rcxf,S ′′,f : C,x : B ⇒ f : C
R2

Raex,Rcxf,S ′′,f : C,x : B ⇒ f : C
L →

Raex,Rcxf,S ′,x : B,c : B → C ⇒ f : C

where S = Raex,Rcxf,Rbex,Rdef,Rbcd,R0ab,c : B → C,
S ′ = Rbex,Rdef,Rbcd,R0ab,e : A,a : A → B and S ′′ = Rbex,Rdef,Rbcd,R0ab,e :
A,a : A → B,c : B → C.
G3rTW ⊢⇒ 0 : (A → B) → ((C → A) → (C → B)).

R0ee,Rcex,S, e : C,⇒ f : B,e : C
R2

Rcex,S, e : C,⇒ f : B,e : C

..... δ1

Raxf,Rcex,S ′,x : A,e : C,a : A → B ⇒ f : B
L →

Raxf,Rcex,Racd,Rdef,Rbcd,R0ab,e : C,a : A → B,c : C → A ⇒ f : B
(x fresh) R9

Racd,Rdef,Rbcd,R0ab,e : C,a : A → B,c : C → A ⇒ f : B
R4

Rdef,Rbcd,R0ab,e : C,a : A → B,c : C → A ⇒ f : B
(e,f fresh) R →

Rbcd,R0ab,a : A → B,c : C → A ⇒ d : C → B
(c,d fresh) R →

R0ab,a : A → B ⇒ b : (C → A) → (C → B)
(a,b fresh) R →

⇒ 0 : (A → B) → ((C → A) → (C → B))

where the conclusion of δ1 is derived by:

R0xx,Raxf,Rcex,S ′,x : A,e : C ⇒ f : B,x : A
R2

Raxf,Rcex,S ′′,x : A,e : C ⇒ f : B,x : A

R0ff,Raxf,Rcex,S ′,f : B,x : A,e : C ⇒ f : B
R2

Raxf,Rcex,S ′′,f : B,x : A,e : C ⇒ f : B
L →

Raxf,Rcex,S ′, e : C,a : A → B ⇒ f : B

with S = Raxf,Racd,Rdef,Rbcd,R0ab,a : A → B,c : C → A,
S ′ = Racd,Rdef,Rbcd,R0ab,c : C → A and S ′′ = Racd,Rdef,Rbcd,R0ab,c : C →
A,a : A → B.
G3rT ⊢⇒ 0 : (A → (A → B)) → (A → B).
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R0cc,Racx,Rxcd,S, c : A ⇒ d : B,c : A
R2

Racx,Rxcd,S, c : A ⇒ d : B,c : A

..... δ1

Racx,Rxcd,S,x : A → B,c : A ⇒ d : B
L →

Racx,Rxcd,Racd,Rbcd,R0ab,a : A → (A → B), c : A ⇒ d : B
(x fresh) R10

Racd,Rbcd,R0ab,a : A → (A → B), c : A ⇒ d : B
R4

Rbcd,R0ab,a : A → (A → B), c : A ⇒ d : B
(c,d fresh) R →

R0ab,a : A → (A → B) ⇒ b : A → B
(a,b fresh) R →

⇒ 0 : (A → (A → B)) → (A → B)
and δ1 is derived by:

R0cc,Racx,Rxcd,S ′, c : A ⇒ d : B,c : A
R2

Racx,Rxcd,S ′, c : A ⇒ d : B,c : A

R0dd,Racx,Rxcd,S ′,d : B,c : A ⇒ d : B
R2

Racx,Rxcd,S ′,d : B,c : A ⇒ d : B
L →

Racx,Rxcd,S,x : A → B,c : A ⇒ d : B

where S = Racd,Rbcd,R0ab,a : A → (A → B) and S ′ = Racd,Rbcd,R0ab,a : A →
(A → B),x : A → B.
G3rT ⊢⇒ 0 : (A∧ (A → B)) → B.
R0aa,Raaa,S,a : A ⇒ b : B,a : A

R2
Raaa,S,a : A ⇒ b : B,a : A Raaa,R0ab,a : B,a : A,a : A → B ⇒ b : B

L →
Raaa,R0ab,a : A,a : A → B ⇒ b : B

R11
R0ab,a : A,a : A → B ⇒ b : B

L∧
R0ab,a : A∧ (A → B) ⇒ b : B

(a,b fresh) R →
⇒ 0 : (A∧ (A → B)) → B

where S = R0ab,a : A → B.
G3rT ⊢⇒ 0 : (A → ∼A) → ∼A.

R0b∗a∗,R0ab,S, b∗ : A,⇒ a∗ : A
R5

R0ab,S, b∗ : A,⇒ a∗ : A
R∼

R0ab,S ⇒ a∗ : A,b : ∼A

R0b∗a∗,R0ab,S, b∗ : A ⇒ a∗ : A
R5

R0ab,S, b∗ : A ⇒ a∗ : A
R∼

R0ab,S ⇒ b : ∼A,a∗ : A
L∼

R0ab,S,a : ∼A ⇒ b : ∼A
L →

Raa∗a,R0ab,a : A → ∼A ⇒ b : ∼A
R12

R0ab,a : A → ∼A ⇒ b : ∼A
(a,b fresh) R →

⇒ 0 : (A → ∼A) → ∼A

where S = Raa∗a,a : A → ∼A.
G3rT ⊢⇒ 0 : A∨∼A.

R00∗0,0∗ : A ⇒ 0 : A
R15

0∗ : A ⇒ 0 : A
R∼

⇒ 0 : A,0 : ∼A
R∨

⇒ 0 : A∨∼A
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G3rRW ⊢⇒ 0 : (A → (B → C) → (B → (A → C)).

R0ee,Raey,Rycf,S, e : A,c : B ⇒ f : C,e : A
R2

Raey,Rycf,S, e : A,c : B ⇒ f : C,e : A

..... δ1

Raey,Rycf,S,y : B → C,e : A,c : B ⇒ f : C
L →

Raey,Rycf,Racd,Rdef,Rbcd,R0ab,e : A,c : B,a : A → (B → C) ⇒ f : C
(y fresh) R13

Racd,Rdef,Rbcd,R0ab,e : A,c : B,a : A → (B → C) ⇒ f : C
R4

Rdef,Rbcd,R0ab,e : A,c : B,a : A → (B → C) ⇒ f : C
(e,f fresh) R →

Rbcd,R0ab,c : B,a : A → (B → C) ⇒ d : A → C
(c,d fresh) R →

R0ab,a : A → (B → C) ⇒ b : B → (A → C)
(a,b fresh) R →

⇒ 0 : (A → (B → C)) → (B → (A → C))

and δ1 is derived by:

R0cc,Raey,Rycf,S ′, e : A,c : B ⇒ f : C,c : B
R2

Raey,Rycf,S ′, e : A,c : B ⇒ f : C,c : B

R0ff,Raey,Rycf,S ′,f : C,e : A,c : B ⇒ f : C
R2

Raey,Rycf,S ′,f : C,e : A,c : B ⇒ f : C
L →

Raey,Rycf,S,y : B → C,e : A,c : B ⇒ f : C

where S = Racd,Rdef,Rbcd,R0ab,a : A → (B → C) and S ′ = Racd,Rdef,Rbcd,R0ab,a :
A → (B → C),y : B → C.
G3rRW ⊢⇒ 0 : A → ((A → B) → B).

R0aa,Rcad,S,a : A ⇒ d : B,a : A
R2

Rcad,S,a : A ⇒ d : B,a : A

R0dd,Rcad,S,d : B,a : A ⇒ d : B
R2

Rcad,S,d : B,a : A ⇒ d : B
L →

Rcad,Racd,Rbcd,R0ab,a : A,c : A → B ⇒ d : B
R14

Racd,Rbcd,R0ab,a : A,c : A → B ⇒ d : B
R4

Rbcd,R0ab,a : A,c : A → B ⇒ d : B
(c,d fresh) R →

R0ab,a : A ⇒ b : (A → B) → B
(a,b fresh) R →

⇒ 0 : A → ((A → B) → B)

where S = Racd,Rbcd,R0ab,c : A → B.
G3rR ⊢⇒ 0 : ((A → A) → B) → B.

R0cd,Ra0a,R0ab,c : A ⇒ b : A,d : A
(c,d fresh) R →

Ra0a,R0ab ⇒ b : B,0 : A → A Ra0a,R0ab,a : B ⇒ b : B
L →

Ra0a,R0ab,a : (A → A) → B ⇒ b : B
R16

R0ab,a : (A → A) → B ⇒ b : B
(a,b fresh) R →

⇒ 0 : ((A → A) → B) → B

G3rRM ⊢⇒ 0 : A → (A → A).
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R0ad,Racd,S,a : A,c : A ⇒ d : A R0cd,Racd,S,a : A,c : A ⇒ d : A
R17

Racd,Rbcd,R0ab,a : A,c : A ⇒ d : A
R4

Rbcd,R0ab,a : A,c : A ⇒ d : A
(c,d fresh) R →

R0ab,a : A ⇒ b : A → A
(a,b fresh) R →

⇒ 0 : A → (A → A)
where S = Rbcd,R0ab.

B Appendix
Proof of Theorem 6.3 (Semantic Completeness cont.) In this appendix we con-
struct a reduction tree for an arbitrary sequent S, by applying, root-first, all
rules for G3rX according to a specific order. This construction is used to define
a countermodel to S (displayed above). Importantly, recall that, to reflect the
notion of validity at the actual world, we will consider derivability at 0.
The reduction tree is defined inductively in stages as follows: (1) If n = 0, then
Γ ⇒ ∆ stands at the root of the tree. (2) If n > 0, we distinguish two subcases.
(2.1) If every topmost sequent is an axiomatic sequent reduction the tree termi-
nates; (2.2) If no axiomatic sequent is reached, the construction of the reduction
tree does not terminate and we continue applying, root-first, all rules of G3rX
according to a specific order. There are 8+ j different stages: 8 for the rules for
the propositional connectives and j for the mathematical rules. We start, for
n = 1, with L∼ and consider topmost sequents of the following form:

0 : ∼B1, . . . ,0 : ∼Bk,Γ′ ⇒ ∆

where 0 : ∼B1, . . . ,0 : ∼Bk, are all formulas in Γ with ∼ as outermost connective.
By applying, root-first, k times, L∼ we obtain the following sequent:

Γ′ ⇒ ∆,0∗ : B1, . . . ,0∗ : Bk

placed on top of the former.
For n = 2, we consider sequents of the form:

Γ ⇒ ∆′,0 : ∼B1, . . . ,0 : ∼Bk

By applying, root-first, k times, R∼ we obtain the following sequent:

0∗ : B1, . . . ,0∗ : Bk,Γ ⇒ ∆′

placed on top of the former.
For n = 3, we consider sequents of the form:

0 : B1 ∧C1, . . . ,0 : Bk ∧Ck,Γ′ ⇒ ∆

By applying, root-first, k times, L∧ we obtain the following sequent:

0 : B1,0 : C1, . . . ,0 : Bk,0 : Ck,Γ′ ⇒ ∆
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The case for n = 6, with R∨ is symmetric.
For n = 4, we consider sequents of the form:

Γ ⇒ ∆′,0 : B1 ∧C1, . . . ,0 : Bk ∧Ck

By applying, root-first, k times, R∧ we obtain the following sequents:

Γ ⇒ ∆′,0 : B1, . . . ,0 : Bk and Γ ⇒ ∆′,0 : C1, . . . ,0 : Ck

placed on top of the former as its premises. The case for n = 5, with L∨ is
symmetric.
For n = 7, we consider topmost sequents of the following form:

R0a1b1, . . . ,R0akbk, 0 : B1 → C1, . . . ,0 : Bk,→ Ck, Γ′ ⇒ ∆

where labels and principal formulas are in Γ′. By applying, root-first, k times,
L → (with R0a1b1, . . . ,R0akbk,0 : B1 → C1, . . . ,0 : Bk,→ Ck principal) we obtain
the following sequent:

R0a1b1, . . . ,R0akbk, bm1 : Cm1 , . . . , bml
: Cml

, Γ′ ⇒ ∆, ajl+1 : B,. . . ,ajk
: B

where {m1, . . . ,ml} ⊆ {1, . . . ,k} and jl+1, . . . , jk ∈ {1, . . . ,k} − {m1, . . . ,ml}, and
placed on top of the former as its premises.
For n = 8, we consider all the labelled sequents that have implications in the
succedent. We consider topmost sequents of the following form:

Γ ⇒ ∆′,0 : B1 → C1, . . . ,0 : Bk,→ Ck

Let a1, ...,ak and b1, . . . , bk be fresh variables, not yet used in the reduction tree
and apply, root-first, k times, R → to obtain the following sequent:

R0a1b1, . . . ,R0akbk, a1 : B,. . . ,ak : B, Γ ⇒ ∆′, b1 : C1, . . . , bk : Ck

placed on top of the former as its premise.
Finally, we consider relational rules. If it is a rule without eigenvariable condition,
we write on top of the lower sequent the result of applying the relational rule
under consideration. For relational rules with eigenvariable condition, the proof
proceeds analogously to the proof at stage n = 8. As an example, consider R7
and a topmost sequent of the following form:

Ra1b1c1, . . . ,Rakbkck,Γ′ ⇒ ∆

Let x1, . . . ,xk be variables not yet used in the reduction tree. By applying k times,
root-first, R7, we obtain the following sequent, placed on top of the former:

Ra1b1x1,Ra1x1c1,Ra1b1c1, . . . ,Rakbkxk,Rakxkck,Rakbkck,Γ′ ⇒ ∆

This construction is then used in the development of the second part of the proof
displayed in Section 6.
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C Appendix
Proof of Theorem 7.4 (cut-admissibility cont.). We finish the proof of cut-
admissibility by displaying some other salient examples.We distinguish three
main cases.
Case 1: If at least one of the premises of cut is an axiom, we distinguish 4
subcases:
Case 1.1: The left premise of cut is an axiom and the cut-formula is not
principal. If the derivation has the following shape:

R0bc,b : B,Γ ⇒ ∆, c : B,a : A a : A,Γ′ ⇒ ∆′
cut

R0bc,b : B,Γ,Γ′ ⇒ ∆,∆′, c : B

It is transformed into:

R0bc,b : B,Γ,Γ′ ⇒ ∆,∆′, c : B

without applications of cut.
Case 1.2: The left premise of cut is an axiom and the cut-formula is principal.
The derivation:

R0ba,b : A,Γ ⇒ ∆,a : A a : A,Γ′ ⇒ ∆′
cut

R0ba,b : A,Γ,Γ′ ⇒ ∆,∆′

is transformed into:
a : A,Γ′ ⇒ ∆′

(Lemma 4.1) sub(b/a)
b : A,Γ′ ⇒ ∆′

(Lemma 7.1) lw+rw+lwL

R0ba,b : A,Γ,Γ′ ⇒ ∆,∆′

Case 1.3: The right premise of cut is an axiom and the cut-formula is not
principal. The derivation:

Γ ⇒ ∆,a : A a : A,R0bc,b : B,Γ′ ⇒ ∆′, c : B
cut

R0bc,b : B,Γ,Γ′ ⇒ ∆,∆′, c : B

It is transformed into:

R0bc,b : B,Γ,Γ′ ⇒ ∆,∆′, c : B

without applications of cut.
Case 1.4: The right premise of cut is an axiom and the cut-formula is prin-
cipal. The derivation:

Γ ⇒ ∆,a : A R0ab,a : A,Γ′ ⇒ ∆′, b : A
cut

R0ab,Γ,Γ′ ⇒ ∆,∆′, b : A

is transformed into:
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Γ ⇒ ∆,a : A
(Lemma 4.1) sub(b/a)

Γ ⇒ ∆, b : A
(Lemma 7.1) lw+rw+lwL

R0ab,Γ,Γ′ ⇒ ∆,∆′, b : A

Case 2: The cut-formula A is not principal in at least one premise. The proof
proceeds by permuting the application of cut with the rule under consideration,
to move the cut upwards in the transformed derivation.
Case 2.1: A is not principal in the left premise. We distinguish two subcases.
Subcase 2.1.1: Let Γ = x : ∼B,Γ′′:

Γ′′ ⇒ ∆,a : A,x∗ : B
L∼

x : ∼B,Γ′′ ⇒ ∆,a : A a : A,Γ′ ⇒ ∆′
cut

x : ∼B,Γ′′,Γ′ ⇒ ∆,∆′

and transform it into the following one:

Γ′′ ⇒ ∆,a : A,x∗ : B a : A,Γ′ ⇒ ∆′
cut

Γ′′,Γ′ ⇒ ∆,∆′,x∗ : B
L∼

x : ∼B,Γ′′,Γ′ ⇒ ∆,∆′

where the cut-height is reduced.
Let Γ = Rxbc,x : B → C,Γ′′ and consider as an example L →. We have the
following derivation:

Rxbc,x : B → C,Γ′′ ⇒ ∆,a : A,b : B Rxbc,c : C,x : B → C,Γ′′ ⇒ ∆,a : A
L →

Rxbc,x : B → C,Γ′′ ⇒ ∆,a : A a : A,Γ′ ⇒ ∆′
cut

Rxbc,x : B → C,Γ′′,Γ′ ⇒ ∆,∆′

and transform it into the following one:
Rxbc,x : B → C,Γ′′ ⇒ ∆,a : A,b : B a : A,Γ′ ⇒ ∆′

cut
Rxbc,x : B → C,Γ′′,Γ′ ⇒ ∆,∆′, b : B

Rxbc,c : C,x : B → C,Γ′′ ⇒ ∆,a : A a : A,Γ′ ⇒ ∆′
cut

Rxbc,c : C,x : B → C,Γ′′,Γ′ ⇒ ∆,∆′
L →

Rxbc,x : B → C,Γ′′,Γ′ ⇒ ∆,∆′

with two cuts of lower height.
Subcase 2.1.2: Let ∆ = ∆′′,x : ∼B:

x∗ : B,Γ ⇒ ∆′′,a : A
R∼

Γ ⇒ ∆′′,x : ∼B,a : A a : A,Γ′ ⇒ ∆′
cut

Γ,Γ′ ⇒ ∆′′,∆′,x : ∼B

it is transformed into the following application of cut with a shorter derivation
height:

x∗ : B,Γ ⇒ ∆′′,a : A a : A,Γ′ ⇒ ∆′
cut

x∗ : B,Γ,Γ′ ⇒ ∆′′,∆′
R∼

Γ,Γ′ ⇒ ∆′′,∆′,x : ∼B
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Let ∆ = ∆′′,x : A → B:

Rxbc,b : B,Γ ⇒ ∆′′, c : C,a : A
(b,c fresh) R →

Γ ⇒ ∆′′,x : B → C,a : A a : A,Γ′ ⇒ ∆′
cut

Γ,Γ′ ⇒ ∆′′,∆′,x : B → C

it is transformed into the following application of cut with a shorter derivation
height:

Rxbc,b : B,Γ ⇒ ∆′′, c : C,a : A a : A,Γ′ ⇒ ∆′
cut

Rxbc,b : B,Γ,Γ′ ⇒ ∆′′,∆′, c : C
(b,c fresh) R →

Γ,Γ′ ⇒ ∆′′,∆′,x : B → C

As an example for the relational rules, we deal with R7 (with variable condition).
Let Γ = Rabc,Γ′′:

Rabx,Raxc,Rabc,Γ′′ ⇒ ∆,a : A
R7

Rabc,Γ′′ ⇒ ∆,a : A a : A,Γ′ ⇒ ∆′
cut

Rabc,Γ′′,Γ′ ⇒ ∆,∆′

(x is a fresh variable) It is transformed in the following one:

Rabx,Raxc,Rabc,Γ′′ ⇒ ∆,a : A a : A,Γ′ ⇒ ∆′
cut

Rabx,Raxc,Rabc,Γ′′,Γ′ ⇒ ∆,∆′
R7

Rabc,Γ′′,Γ′ ⇒ ∆,∆′

The other cases for relational rules are dealt with analogously.
Case 2.2: A is principal in the left premise only. We distinguish two subcases.
Subcase 2.2.1: Similarly to the preceding subcase. Let Γ′ = x : ∼B,Γ′′:

Γ ⇒ ∆,a : A

a : A,Γ′′ ⇒ ∆′,x∗ : B
L∼

a : A,x : ∼B,Γ′′ ⇒ ∆′
cut

x : ∼B,Γ,Γ′′ ⇒ ∆,∆′

is transformed into:
Γ ⇒ ∆,a : A a : A,Γ′′ ⇒ ∆′,x∗ : B

cut
Γ,Γ′′ ⇒ ∆,∆′,x∗ : B

L∼
x : ∼B,Γ,Γ′′ ⇒ ∆,∆′

with a shorter derivation height.
Let Γ′ = Rxbc,x : B → C,Γ′′ and consider L →. We have the following derivation:

Γ ⇒ ∆,a : A

a : A,Rxbc,x : B → C,Γ′′ ⇒ ∆′, b : B a : A,Rxbc,c : C,x : B → C,Γ′′ ⇒ ∆′
L →

a : A,Rxbc,x : B → C,Γ′′ ⇒ ∆′
cut

Rxbc,x : B → C,Γ,Γ′′ ⇒ ∆,∆′

is reduced to the following one:
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Γ ⇒ ∆,a : A a : A,Rxbc,x : B → C,Γ′′ ⇒ ∆′, b : B
cut

Rxbc,x : B → C,Γ,Γ′′ ⇒ ∆,∆′, b : B

Γ ⇒ ∆,a : A a : A,Rxbc,c : C,x : B → C,Γ′′ ⇒ ∆′
cut

Rxbc,c : C,x : B → C,Γ,Γ′′ ⇒ ∆,∆′
L →

Rxbc,x : A → B,Γ,Γ′′ ⇒ ∆,∆′

with two cuts of lower height.
Subcase 2.2.2: Let ∆′ = ∆′′,x : ∼B:

Γ ⇒ ∆,a : A

x∗ : B,a : A,Γ′ ⇒ ∆′′
R∼

a : A,Γ′ ⇒ ∆′′,x : ∼B
cut

Γ,Γ′ ⇒ ∆,∆′′,x : ∼B

it is transformed into:
Γ ⇒ ∆,a : A x∗ : B,a : A,Γ′ ⇒ ∆′′

cut
x∗ : B,Γ,Γ′ ⇒ ∆,∆′′

R∼
Γ,Γ′ ⇒ ∆,∆′′,x : ∼B

with a shorter derivation height.
Let ∆′ = ∆′′,a : B → C and the derivation:

Γ ⇒ ∆,a : A

Rxbc,a : A,b : B,Γ′ ⇒ ∆′′, c : C
(b,c fresh) R →

a : A,Γ′ ⇒ ∆′′,x : B → C
cut

Γ,Γ′ ⇒ ∆,∆′′,x : B → C

It is reduced to the following one:

Γ ⇒ ∆,a : A Rxbc,a : A,b : B,Γ′ ⇒ ∆′′, c : C
cut

Rxbc,b : B,Γ,Γ′ ⇒ ∆,∆′′, c : C
(b,c fresh) R →

Γ,Γ′ ⇒ ∆,∆′′,x : B → C

with a shorter derivation height.
Case 3: The procedure for A being ∼B or B → C, can be found on p. 68.
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