1,704 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Magneto inductive communication system for underwater wireless sensor networks

    Get PDF
    Underwater wireless sensor networks have found a number of applications in underwater environment monitoring, infrastructure monitoring, military applications and ocean exploration. Among the four possible means of underwater wireless communication, namely acoustic, electromagnetic (EM), magneto-inductive (MI) and optics communication, MI communication enjoys the advantages of being low cost and robust equally in air, water and soil. This dissertation presents design and implementation of a low-power and low-cost MI sensor network node that is suited for long-term deployment of underwater and underground infrastructure monitoring, such as bridge scour and levee scour monitoring. The designed MI sensor node combat the directionality of the single coil MI communication by utilizing 3D coil to both transmit and receive. The presented MI sensor node is tested in air and underwater to show robustness and reliability. The sensor node is designed after thorough analysis and evaluation of various MI challenges such as directionality, short range, decoupling due to mis-alignment of coils, and effect of metal structure. A communication range of 40 m has been achieved by the prototype sensor node. The prototyping cost of a sensor node is less than US$100 and will be drastically reduced at volume production. A novel and an energy efficient medium access control (MAC) protocol based on the carrier sense medium access (CSMA) has also been implemented for the designed sensor node to improve throughput in a dense network --Abstract, page iv

    Wireless Sensing System for Load Testing and Rating of Highway Bridges

    Get PDF
    Structural capacity evaluation of bridges is an increasingly important topic in the effort to deal with the deteriorating infrastructure. Most bridges are evaluated through subjective visual inspection and conservative theoretical rating. Diagnostic load test has been recognized as an effective method to accurately assess the carrying capacity of bridges. Traditional wired sensors and data acquisition (DAQ) systems suffer drawbacks of being labor intensive, high cost, and time consumption in installation and maintenance. For those reasons, very few load tests have been conducted on bridges.;This study aims at developing a low-cost wireless bridge load testing & rating system that can be rapidly deployed on bridges for structural evaluation and load rating. Commercially available wireless hardware is integrated with traditional analogue sensors and the appropriate rating software is developed. The wireless DAQ system can work with traditional strain gages, accelerometers as well as other voltage producing sensors. A wireless truck position indicator (WVPI) is developed and used for measuring the truck position during load testing. The software is capable of calculating the theoretical rating factors based on AASHTO Load Resistance Factor Rating (LRFR) codes, and automatically produces the adjustment factor through load testing data. A simplified finite element model was used to calculate deflection & moment distribution factors in order to reduce the amount of instrumentation used in field tests. The system was used to evaluate the structural capacity of Evansville Bridge in Preston County, WV. The results show that the wireless bridge load testing & rating system can effectively be implemented to evaluate the real capacity of bridges with remarkable advantages: low-cost, fast deployment and smaller crew

    Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Get PDF
    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system

    Ultra-Low Power Wake Up Receiver For Medical Implant Communications Service Transceiver

    Get PDF
    This thesis explores the specific requirements and challenges for the design of a dedicated wake-up receiver for medical implant communication services equipped with a novel “uncertain-IF†architecture combined with a high – Q filtering MEMS resonator and a free running CMOS ring oscillator as the RF LO. The receiver prototype, implements an IBM 0.18μm mixed-signal 7ML RF CMOS technology and achieves a sensitivity of -62 dBm at 404MHz while consuming \u3c100 μW from a 1 V supply
    • …
    corecore