3,551 research outputs found

    Some results on homoclinic and heteroclinic connections in planar systems

    Get PDF
    Consider a family of planar systems depending on two parameters (n,b)(n,b) and having at most one limit cycle. Assume that the limit cycle disappears at some homoclinic (or heteroclinic) connection when Φ(n,b)=0.\Phi(n,b)=0. We present a method that allows to obtain a sequence of explicit algebraic lower and upper bounds for the bifurcation set Φ(n,b)=0.{\Phi(n,b)=0}. The method is applied to two quadratic families, one of them is the well-known Bogdanov-Takens system. One of the results that we obtain for this system is the bifurcation curve for small values of nn, given by b=57n1/2+72/2401n30024/45294865n3/22352961656/11108339166925n2+O(n5/2)b=\frac5 7 n^{1/2}+{72/2401}n- {30024/45294865}n^{3/2}- {2352961656/11108339166925} n^2+O(n^{5/2}). We obtain the new three terms from purely algebraic calculations, without evaluating Melnikov functions

    Nonsupersymmetric Flux Vacua and Perturbed N=2 Systems

    Get PDF
    We geometrically engineer N=2 theories perturbed by a superpotential by adding 3-form flux with support at infinity to local Calabi-Yau geometries in type IIB. This allows us to apply the formalism of Ooguri, Ookouchi, and Park [arXiv:0704.3613] to demonstrate that, by tuning the flux at infinity, we can stabilize the dynamical complex structure moduli in a metastable, supersymmetry-breaking configuration. Moreover, we argue that this setup can arise naturally as a limit of a larger Calabi-Yau which separates into two weakly interacting regions; the flux in one region leaks into the other, where it appears to be supported at infinity and induces the desired superpotential. In our endeavor to confirm this picture in cases with many 3-cycles, we also compute the CIV-DV prepotential for arbitrary number of cuts up to fifth order in the glueball fields.Comment: 70 pages (47 pages + 4 appendices), 10 figure

    Exceptional SW Geometry from ALE Fibrations

    Get PDF
    We show that the genus 34 Seiberg-Witten curve underlying N=2N=2 Yang-Mills theory with gauge group E6E_6 yields physically equivalent results to the manifold obtained by fibration of the E6E_6 ALE singularity. This reconciles a puzzle raised by N=2N=2 string duality
    corecore