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1. Introduction

Over the last years much progress has been made in studying flux compactifications in string

theory; see [1, 2] for recent reviews. By now there is strong evidence that there is a huge

number of supersymmetric vacua with negative cosmological constant in which all scalar

moduli are stabilized, the so called landscape of string theory. Typical constructions start

with a warped Calabi-Yau compactification of type IIB string theory to four dimensions.

Some of the scalar moduli are stabilized by the addition of fluxes through the compact cycles

of the internal manifold and others by various quantum effects. Since supersymmetry is

broken in the real world, to make contact with phenomenology it is necessary to extend

the previous constructions to non-supersymmetric (meta)stable vacua with small positive

cosmological constant. For this we need to understand the mechanism of supersymmetry

breaking in string theory. By now several methods of supersymmetry breaking for string

vacua have been proposed, such as the introduction of anti-branes [3, 4], or simply the

existence of metastable points of the flux-induced potential [5, 6]. The main drawback of

these constructions is that, in most cases, they are not under complete quantitative control.

While the question of supersymmetry breaking should be ultimately understood in

an honest compactification, that is in a theory including gravity in four dimensions, it

is technically easier to study simpler systems where the gravitational dynamics has been

decoupled from the gauge theory degrees of freedom. This typically happens in the limit

where a local singularity develops in the Calabi-Yau manifold. In such a situation all the

interesting dynamics related to the degrees of freedom of the singularity takes place at

energy scales much lower than the four dimensional Planck scale. Assuming that super-

symmetry breaking is related to these light degrees of freedom, it is then possible to zoom

in towards the singularity and forget about the rest of the Calabi-Yau. This leads us to

the study of supersymmetry breaking and string phenomenology in the context of local

Calabi-Yau geometries possibly with the addition of probe D3-branes [7 – 11].

Meanwhile a new important aspect of supersymmetry breaking in gauge theories was

developed after the discovery of Intriligator, Seiberg and Shih [12] that even simple super-

symmetric gauge theories can exhibit dynamical supersymmetry breaking in metastable
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vacua. From a phenomenological point of view this possibility is quite attractive, and a

lot of activity has been concentrated around extensions of the ISS model and various re-

lated string theory constructions [13 – 22] (see also [23]). A certain class of gauge theories

where supersymmetry breaking in metastable vacua can be studied with good control is

that of N = 2 gauge theories perturbed by a small superpotential, initiated by [24]. In

such theories the exact Kähler metric on the moduli space is known, which allows one to

compute the scalar potential produced by the perturbation of the theory by a small super-

potential exactly to first order in the perturbation. It was shown that generically there are

metastable supersymmetry breaking vacua generated by appropriate superpotentials. We

will refer to this as the OOP mechanism for supersymmetry breaking in N = 2 theories.

String theory in a local Calabi-Yau singularity realizes geometric aspects of supersym-

metric gauge theories. In particular the question of supersymmetry breaking in these two

systems should be related. The first goal of our paper is to make this connection more

precise by giving a geometric realization of the OOP supersymmetry breaking mechanism

in IIB on a local Calabi-Yau singularity. To realize OOP one first has to engineer the

(IR of the) N = 2 gauge theory and then to find a way of introducing the appropriate

superpotential. The first step is achieved by the standard geometric engineering of N = 2

gauge theories by IIB on noncompact Calabi-Yau manifolds [25, 26]. It is well known that

the moduli space of the Calabi-Yau compactification encodes the geometry of the Coulomb

branch of the gauge theory and that the Seiberg-Witten solution can be rederived by the

complex geometry of the Calabi-Yau.

The introduction of superpotential to this system is less straightforward and, to our

knowledge, has not been studied in the literature before, in this context. Our main proposal

is that the superpotential can be introduced by turning on 3-form flux in the local Calabi-

Yau, which is not piercing its compact 3-cycles, but which is growing in the noncompact

direction of the Calabi-Yau. In other words, it is flux which has support at infinity. While

this flux is not directly piercing the compact cycles we show that, once appropriately

regularized, it does introduce an effective superpotential for the complex structure moduli,

which is generalization of the usual Gukov-Vafa-Witten superpotential [27 – 29] to 3-form

flux with noncompact support. This is a way to introduce a general superpotential in a

geometrically engineered N = 2 gauge theory. In particular, we explain that in certain

cases it is possible to engineer the OOP-type superpotential, which guarantees the existence

of metastable, supersymmetry breaking vacua for the complex structure moduli.

The second goal of our paper is to find a “natural” way to generate the supersymmetry

breaking flux configurations described above, starting from a more standard setup. In this

process, we also clarify the meaning of flux which has noncompact support and the various

subtleties related to it.1 The natural interpretation of the flux described in the previous

paragraph emerges once we embed the previous supersymmetry-breaking local singularity

into a bigger IIB compactification with standard flux of compact support. As shown in

figure 1, the physical idea is to start with a Calabi-Yau manifold with a set of three-cycles

which are isolated from the other three-cycles by a large distance. We turn on 3-form flux

1For example the fact that naively the total energy density in four dimensions diverges.
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Figure 1: Idea of the paper: In I we start with a generic Calabi-Yau with flux piercing through

some of its 3-cycles, while making the distance between the cycles with and without flux very large

in II. This is seen as flux from infinity in the left sector without compact flux in III, and generates

an OOP-like potential in that sector.

on all cycles except for the isolated set. While the flux that we have turned on is not

piercing the isolated cycles, it does leak into their region2 and it produces a potential for

their complex structure moduli. In the limit where the distance between the two sets of

cycles of the Calabi-Yau becomes very large, which we will refer to as the factorization

limit, the flux leaking towards the isolated set will start to look like the flux coming from

infinity, mentioned in the previous paragraph. In this way we manage to embed the scenario

of the previous paragraph into a well defined system. While this factorization idea should

work even in the case where the total Calabi-Yau is a compact manifold divided into two

parts,3 in this paper we will only analyze it in the local case, as it is technically easier.

As a check of this, we consider the example of a local Calabi-Yau based on a hyperellip-

tic Riemann surface. In this case the factorization can be studied more explicitly. Matrix

model techniques can be used to compute the prepotential in the factorization limit. Our

2This means that the 3-form field strength is nonzero in the region around the isolated set of 3-cycles,

but once integrated over one of these 3-cycles the integral is zero.
3Because of no-go theorems [30 – 32], in such compact setups one will need extra ingredients such as

O-planes, which we do not consider in the present paper.
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results verify the general intuition of the last paragraph.

The plan of this paper is as follows. In section 2, we review some general aspects of IIB

flux compactifications and the potentials that can be generated by noncompact fluxes in

the local limit. We also discuss the general mechanism by which such fluxes may be used to

stabilize complex structure moduli in metastable supersymmetry-breaking configurations.

After this, we turn in section 3 to the study of local Calabi-Yau geometries based on Rie-

mann surfaces, providing a more detailed description of the generation of metastable vacua

in this context and providing an explicit example. Section 4 then addresses the second point

of this paper, namely the ability to obtain our local geometries with noncompact fluxes

from larger Calabi-Yau with compact ones by taking a factorization limit. Section 5 supple-

ments this general discussion by providing an explicit demonstration, using matrix model

techniques, of the factorization limit in the class of local geometries studied in section 3. Fi-

nally, we finish in section 6 with some concluding remarks concerning the generalization of

our story to other N = 2 contexts, such as M and F -theory compactifications. Some sup-

plementary material and technical details are contained in four appendices. In appendix D,

in particular, we study prepotential for the Cachazo-Intriligator-Vafa/Dijkgraaf-Vafa ge-

ometry using matrix model as a step towards confirming the above scenario of realizing

metastable vacua by factorization. We compute the prepotential for an arbitrary number

of cuts up to fifth order in glueball field.

As this paper was being prepared for publication, a paper appeared [33] where a similar

system was studied as an example from a different perspective.

2. IIB compactifications with flux at infinity

2.1 Compact Calabi-Yau

Compactification of IIB on a Calabi-Yau threefold M leads to an N = 2 supergravity

theory in 4d. The number of vector multiplets is h2,1, their scalar components correspond

to the complex structure moduli of M. We also have h1,1+1 hypermultiplets, whose scalars

correspond to the Kähler moduli of M and the axion-dilaton. The two sets of multiplets

are decoupled, and in the rest of the paper we will concentrate on the dynamics of the

vector multiplets.

A Calabi-Yau threefold has a nowhere vanishing holomorphic (3, 0) form Ω which

is unique up to scale. Consider a symplectic basis of 3-cycles {AI ,BJ} with I, J =

0, 1, . . . , h2,1. We define the periods of Ω as

XI =

∫

AI

Ω, FI =

∫

BI

Ω. (2.1)

The A-periods XI are projective coordinates on the complex structure moduli space of

M, and the FI are functions of XI . The metric on the complex structure moduli space is

special Kähler and the Kähler potential is given by

K = − log

(
i

∫
Ω ∧ Ω

)
. (2.2)
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This is an exact result which does not receive any α′ or gs corrections.

The easiest way to lift the phenomenologically unrealistic moduli space of such com-

pactifications is to turn on fluxes through the compact cycles of the Calabi-Yau. In the

case of IIB we can turn on RR and NS-NS 3-form flux F3 and H3 through the 3-cycles of

the threefold. This generates a superpotential for the complex structure moduli [27 – 29]

given by

W =

∫
G3 ∧ Ω, (2.3)

where G3 = F3−τH3 and τ = C0 + i/gs. The scalar potential is computed by the standard

N = 1 supergravity expression4

V = e
eK
(
GabDaWDbW − 3|W |2

)
, (2.4)

where Gab is the metric on the moduli space derived from the Kähler potential K̃, and

where we have introduced the Kähler covariant derivative DaW = ∂aW + (∂aK̃)W .

The F3 and H3 fluxes generate charge for the F5 form via a Chern-Simons coupling in

the 10d IIB supergravity action. The F5 flux has nowhere to end, so we are lead to the

tadpole cancellation condition for IIB compactifications

1

l4s

∫
F3 ∧ H3 + QD3 = 0, (2.5)

where QD3 receives positive contribution from probe D3 branes and negative contribution

from induced charge on D7 and orientifold planes.

2.2 Local limit

It is well known that there are points on the complex structure moduli space of Calabi-

Yau manifolds where the manifold develops a singularity [34]. The simplest example is the

conifold singularity, where we have a 3-cycle whose size goes to zero. More generally, a more

complicated set of cycles may become very small in some region of the moduli space. As we

approach this region, the local dynamics of the singularity decouples from the rest of the

fields. What this means is that in 4d the typical energy scale for the dynamics of the fields

corresponding to the singularity becomes much smaller than any other scale, in particular

much smaller than the Planck mass Mp in 4 dimensions. In this sense, the dynamics of

the singularity is decoupled from gravity. Moreover to study the relevant dynamics, we

can zoom in close to the singularity and forget about the rest of the Calabi-Yau. In this

limit the Calabi-Yau looks noncompact, and it becomes technically easier to study the low

energy dynamics.

A typical example of such a local Calabi-Yau is a complex manifold of the form of a

hypersurface in C
4

M : uv − F (x, y) = 0, (2.6)

4In this expression the indices a, b run over complex structure moduli, Kähler moduli and the axion-

dilaton. We denote by eK the total Kähler potential for all moduli and by K, as in (2.2), the one for the

complex structure moduli alone.
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where F (x, y) is a polynomial. In this case the holomorphic 3-form is

Ω =
du

u
∧ dx ∧ dy. (2.7)

By taking the local limit to go from a compact Calabi-Yau to a noncompact one, the

structure of special geometry described above reduces to what is called rigid special geom-

etry [35, 36], which is relevant for the low energy dynamics of N = 2 gauge theories. In

this case the Kähler potential reduces to

K = i

∫
Ω ∧ Ω, (2.8)

and the Kähler covariant derivative Di reduces to the ordinary derivative ∂i.

An important point is the distinction between normalizable and non-normalizable com-

plex structure moduli in the case of noncompact Calabi-Yau manifolds. To be more precise

let us consider the example (2.6). The coefficients {ti} of the polynomial F (x, y) character-

ize the complex structure of M, so {ti} are the complex structure moduli of M. However

not all of them are dynamical. Some of them control the complex structure of 3-cycles

which are localized in the “interior” of the singularity and are dynamical, while others de-

scribe how the singularity is embedded in the bigger Calabi-Yau and become frozen when

we take the decoupling limit.

To determine if a specific complex structure modulus t is dynamical or not, one has to

compute the corresponding Kähler metric

gtt = ∂t∂tK = i∂t∂t

∫
Ω ∧ Ω. (2.9)

If this expression is finite, then the modulus t is dynamical, otherwise it is decoupled and

should be treated as a parameter of the theory. We will refer to the first set of moduli as

normalizable and to the second as non-normalizable.

2.3 Adding flux

As in the compact case, the addition of fluxes to the local Calabi-Yau introduces a superpo-

tential for the moduli. The dynamics of the Kähler moduli and the dilaton decouple, and

we can concentrate on the normalizable complex structure moduli. The superpotential is

still given by (2.3), but now the scalar potential is computed by the rigid N = 2 expression

V = Gi∂iW∂jW =

∫
G3 ∧ ∗G3. (2.10)

Since we are in a noncompact Calabi-Yau it is not necessary to impose the tadpole cancel-

lation condition. Instead, the quantity
∫

F3 ∧ H3 (2.11)

represents the F5 flux going off to infinity and remains constant as we vary the moduli.

We will use this to simplify the potential in the next section.
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In most treatments of fluxes in noncompact Calabi-Yau manifolds the assumption is

made that the flux is threading the compact cycles of the singularity and is going to zero at

infinity. As we explained in the introduction the goal of our paper is to study the dynamics

in the case where the flux is actually coming in from infinity and is not supported on the

compact three-cycles. Of course, in a local singularity inside a bigger compact Calabi-Yau,

what is meant by infinity is the rest of the Calabi-Yau and we should think of flux coming

from infinity as flux leaking towards the singularity from the other compact cycles.

More precisely, in a noncompact Calabi-Yau we consider the vector space H3(M) of

harmonic 3-forms which do not necessarily have compact support, so they can grow at infin-

ity. The harmonic 3-forms of compact support form a linear subspace H3
cpct(M) ⊂ H3(M).

There is a natural way to define the complement subspace H3
∞(M) ⊂ H3(M) as the har-

monic forms with vanishing integrals on the compact 3-cycles.5 Then we have the decom-

position

H3(M) = H3
∞(M) ⊕ H3

cpct(M). (2.12)

We will also refer to the forms in H3
cpct(M) as harmonic 3-forms with compact support

and to those in H3
∞(M) as 3-forms with support at infinity.

Now we want to consider the case where the 3-form field strength that we have turned

on has support at infinity

G3 ∈ H3
∞(M), (2.13)

which means that G3 has zero flux through the compact cycles
∫

Ai

G3 =

∫

Bi

G3 = 0. (2.14)

The intuitive picture that one should keep in mind, is that this flux at infinity represents

usual flux piercing other 3-cycles which are very far away from the singularity in the big

Calabi-Yau. As we will see in more detail in the next section, in this case and if one zooms

into the local singularity it is a good approximation to treat the flux from the distant

3-cycles as flux which “diverges” at infinity. In other words both H3
∞(M) and H3

cpct(M)

correspond to the usual H3
cpct(M̃) of the bigger Calabi-Yau M̃ in which the singularity M

develops.

What is maybe more surprising is that the 3-form flux G3 with support at infinity

generates a potential for the complex structure moduli of the singularity M, even though

it is not directly piercing the compact cycles of M, as can be seen from (2.14). Our starting

point for the computation of this potential is the energy stored in the 3-form field

Ṽ =

∫
G3 ∧ ∗G3. (2.15)

5We should clarify that we are not interested in the most general harmonic 3-form with noncompact

support, but only in a restricted subset characterized by 3-forms which grow in a “controlled” way at infinity.

This means that we want to consider forms which have at most a “pole” of finite order at infinity, and

not essential singularities. This statement has a nice interpretation in the example where we have a local

Calabi-Yau based on a Riemann surface that we will study later. Another way to state this restriction is

that we will consider harmonic 3-forms on a local Calabi-Yau which do have a lift to the original Calabi-Yau

that we started with before we took the local limit near its singularity.
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Since G3 has noncompact support, this is a divergent integral meaning that the energy of

the flux is infinite. This was to be expected and is not really a problem, since we are inter-

ested in the changes of this energy as we vary the sizes of the 3-cycles in the neighborhood

of the singularity. We would like to throw away the divergent, moduli independent piece of

this quantity and keep the finite, moduli dependent one. A nice way to achieve this is to

use the fact that the net F5 form flux leaking off at infinity, being a topological quantity,

has to be kept constant as we vary the moduli. It is easy to show that we can write
∫

G3 ∧ G3 = (τ − τ)

∫
F3 ∧ H3, (2.16)

and the left hand side must be constant for the reason we explained. Since it is a constant

we can subtract it from the potential and define

V ≡
∫

G3 ∧ ∗G3 −
∫

G3 ∧ G3. (2.17)

It is easy to show that this is equal to

V =

∫
G−

3 ∧ ∗G−
3 , (2.18)

where G−
3 is the imaginary anti-self dual part of the G3 flux

∗G−
3 = −iG−

3 . (2.19)

The expression (2.18) is the finite and moduli dependent piece of the potential (2.15).

2.4 Simplifying the potential

In this section we simplify the expression (2.18) for the potential. In general we have the

following relation between the Hodge decomposition and the ∗ operator on a threefold

∗ H3,0 = −iH3,0, ∗H1,2 = −iH1,2,

∗ H2,1 = iH2,1, ∗H0,3 = iH0,3.
(2.20)

Before we proceed we would like to analyze the relation between the decomposition (2.12)

and the Hodge decomposition. In general we have the following decomposition6

H3(M) = H3,0
∞ ⊕ H3,0

cpct ⊕ H2,1
∞ ⊕ H2,1

cpct ⊕ {c.c.}. (2.21)

Harmonic forms in Hp,q
cpct have compact support, while those in Hp,q

∞ do not, and are chosen

to have vanishing A-periods on the compact cycles.7 Since we do not want to break super-

symmetry explicitly by the boundary conditions of the system, we want our configuration

to be supersymmetric at infinity, which means that the flux at infinity has to be imaginary

self dual so

G3 ∈ H2,1
∞ ⊕ H2,1

cpct ⊕ H1,2
cpct. (2.22)

6Again, we are only considering a certain subset of all harmonic 3-forms with noncompact support, as

explained in footnote 5.
7A harmonic (p, q)-form cannot have vanishing periods on all compact cycles unless it is identically zero.
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where the subscript ∞ means that we have to consider the elements of the cohomology

with noncompact support. We pick a basis

Ξm ∈ H2,1
∞ , Ωi ∈ H2,1

cpct (2.23)

with the following periods
∫

Ai

Ξm = 0,

∫

Ai

Ωj = δi
j ,

∫

Bi

Ξm = Kim,

∫

Bi

Ωj = τij,
(2.24)

where τij is the period matrix of the Calabi-Yau, and Kim are holomorphic functions of

the normalizable-complex structure moduli.

The flux has an expansion of the form

G3 = TmΞm + hiΩi + li Ωi. (2.25)

The parameters Tm are fixed by the boundary conditions and have to be kept constant as

we vary the normalizable moduli. We have also assumed that
∫

Ai

G3 =

∫

Bi

G3 = 0. (2.26)

which means

Tm

∫

Ai

Ξm + hj

∫

Ai

Ωj + lj
∫

Ai

Ωj = 0

Tm

∫

Bi

Ξm + hj

∫

Bi

Ωj + lj
∫

Bi

Ωj = 0.
(2.27)

The first equation of (2.27) implies that

lj = −hj . (2.28)

and the second

hi = − 1

2i

(
1

Im τ

)ij

(KjmTm) . (2.29)

As we explained before, only the imaginary anti-self dual part of the flux G−
3 = li Ωi

contributes to the regularized potential and we have

V =

∫
G−

3 ∧ G−
3

=
1

4
(KimTm)

(
1

Im τ

)ij

(KjnT n) . (2.30)

In this final expression the period matrix τ ij and Kim are functions of the normalizable

complex structure moduli, while Tm’s have to be considered as constants which play the

role of external parameters. This potential is in general very complicated and can have

– 10 –
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local nonsupersymmetric minima for appropriate choices of the parameters Tm as we will

explain later.8

2.5 Properties of the potential

The potential (2.30) should look somewhat familiar as it shares the same basic structure

as the scalar potential that arises when one adds a small superpotential to Seiberg-Witten

theory. This connection can be made even more transparent by noting that Kim can in

general be written as a total derivative with respect to the special coordinates Xi9

Kim =
∂

∂Xi
κm(Xj), Xi =

∮

Ai

Ω. (2.31)

With this notation, (2.30) takes the standard form

V =
1

4

(
∂Weff(Xk)

∂Xi

)(
1

Im τ

)ij (∂Weff(Xk)

∂Xj

)
, (2.32)

where

Weff(Xk) = Tmκm(Xk) (2.33)

is in fact proportional to the Gukov-Vafa-Witten superpotential induced by the flux G3.

2.5.1 OOP mechanism

Equation (2.32) makes manifest the relation between our flux-induced potential (2.30)

and that which arises in deformed Seiberg-Witten theory and allows us to utilize the

technology developed by Ooguri, Ookouchi, and Park [24] in that context10 for engineering

supersymmetry-breaking vacua. In particular, if we want to realize a nonsupersymmetric

minimum at some point Xi (0) in the moduli space, the OOP procedure tells us to first

construct Kähler normal coordinates [38 – 40], around Xi (0)

zi = ∆Xi + g̃ī
∞∑

n=2

1

n!
∂i3 . . . ∂in Γ̃ji1i2∆Xi1∆Xi2 . . . ∆Xin , (2.34)

where ∆Xi = Xi−Xi (0) and ˜ means evaluation at X = X(0). We then build the potential

V in (2.32) from a superpotential Weff consisting of a linear combination of the zi

Weff = kiz
i, ki: constant. (2.35)

8Although we do not discuss this in the present paper, from the viewpoint of flux compactification it is a

natural generalization to consider fluxes through the compact 3-cycles, relaxing the condition (2.26). Such

flux will make additional contribution to the superpotential of the form N iFi − αiX
i, αi =

R
Bi

Ω, which

cannot be controlled by external parameters and makes realization of OOP-like vacua more difficult.
9One quick way to see this is to use the identity

R
M

Ξm ∧ ∂iΩ = 0 to derive Kim ∼
R

∂M
Λm ∧ ∂iΩ for a

2-form Λm satisfying dΛm = Ξm on the boundary (at infinity) of M. Because the divergent contributions

to Λm at infinity can be chosen independent of the dynamical moduli, we can pull the derivative outside of

everything.
10See also related work by Pastras [37].
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Stability can then be demonstrated by expanding V near p

V = kik̄̄g̃
ī + kik̄̄R̃

ī
kl̄

zkz̄ l̄ + O(z3). (2.36)

The curvature of special Kähler manifolds, of which the complex structure moduli space

is an example, is positive definite at generic points. As a result, any potential of the

form (2.32) that agrees with (2.35) near Xi (0) to cubic order will engineer a nontrivial

vacuum at Xi (0).11

One can obtain a nice physical picture for this mechanism by noting, as in [41], that

the series (2.34) can be summed exactly and inserted into (2.35) to yield

Weff ∼ eiX
i + miFi, (2.37)

where ei and mj satisfy

ei + mj τ̃ ji = 0. (2.38)

From this, we see that the superpotential (2.37) built from Kähler normal coordinates

is of precisely the form that we would have obtained had we instead simply turned on

compactly-supported fluxes mi and ei threading the cycles Ai and Bi, respectively. The

condition (2.38), however, combined with the requirement that Im τ be positive definite,

implies that ei and mi can never satisfy the condition ei + mj τ̃ji = 0 that is required for

preservation of the manifest N = 1 supersymmetry.

It is well-known that the flux-induced superpotential (2.37) only breaks the full N = 2

supersymmetry spontaneously, though, so there is a second N = 1 in the game that is not

manifest in this formalism. The relation (2.38) is, in fact, nothing other than the condition

that the vacuum at Xi (0) preserves precisely these non-manifest supersymmetries [42, 41].

As such, the vacuum at Xi (0) in the presence of the superpotential (2.35) is stable for a

good reason — it is secretly supersymmetric!

In general, our noncompactly supported fluxes will not generate potentials with Weff

exactly equivalent to (2.35). Rather, the Weff’s that arise are globally well-defined functions

on the moduli space12 which we can then tune to agree with (2.35) to cubic order within a

neighborhood of the point Xi (0). The delicate manner by which the superpotential (2.35)

managed to realize a non-manifest N = 2 supersymmetry is crucially dependent on the full

infinite series expansion about Xi (0) so, by failing to exactly reproduce (2.35), we are able

to explicitly break, at the level of the Lagrangian, the half of supersymmetry which would

otherwise have been preserved by the vacuum at Xi (0). Stability of the Xi (0) vacuum, on

the other hand, depends only on the local behavior of Weff so our procedure will retain this

property, leaving us with a locally stable supersymmetry-breaking vacuum.

In the end, what we are doing to engineer a supersymmetry-breaking vacuum at Xi (0)

is actually a quite intuitive procedure. We first turn on a collection of noncompactly

supported fluxes which explicitly break half of the N = 2 supersymmetry. We then tune

11For non-generic X(0), the curvature may have a zero eigenvalue in which case higher order agreement

with (2.35) is required (that Xi (0) is a stable for superpotential exactly equivalent to (2.35) will follow from

the discussion below).
12Contrast this with (2.37), which manifestly suffer from monodromies for constant (non-transforming) ki.
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these fluxes so that, near Xi (0), their interactions with the dynamical complex structure

moduli mimic those of the compactly supported fluxes that would generate a vacuum at

Xi (0) which preserves the opposite half of supersymmetries.

2.5.2 Supersymmetric vacua

In addition to possessing supersymmetry-breaking vacua when the Tm are suitably tuned,

the potential (2.32) also typically contains a wide variety of supersymmetric vacua. As

discussed in [24], these vacua fall into two different classes. First, because there is no flux

directly threading the compact cycles, the energy cost associated with shrinking them is

necessarily finite. Because the period matrix τij diverges, the potential vanishes at these

singular points and we obtain stable vacua which are in fact supersymmetric.

This argument is of course rather crude because we are neglecting the new light de-

grees of freedom that enter as 3-cycles degenerate but, as is well-known, this is easily fixed.

In particular, the light D3 branes which wrap the degenerating cycles give rise to hyper-

multiplets [43, 44] comprised of pairs of N = 1 chiral superfields Qi and Q̃i with bilinear

superpotential couplings to special coordinates. For the simple case of degenerating Ai

cycles, the superpotential takes the schematic form

W = Weff(Xi) + (QQ̃)iX
i, (2.39)

and allows a supersymmetric vacuum at Xi = 0 through condensation of QQ̃

(QQ̃)i = −∂Weff

∂Xi

(
Xj = 0

)
. (2.40)

The second class of supersymmetric vacua correspond to solutions of the F -term equa-

tions

∂iWeff(Xj) = 0. (2.41)

In general, there may be many solutions to these equations, as we will explore later in the

example of section 3.2.

2.5.3 Lifetime of supersymmetry-breaking vacua

Because we have managed to achieve supersymmetry-breaking vacua while freezing all non-

normalizable moduli, the energies V0 will in general be finite and independent of the cutoff

scale Λ0 that we use to regulate the local geometry. This means that our vacua are truly

metastable, even within this local model, and can decay to any of the supersymmetric vacua

that exist in these models. Because the number the supersymmetric vacua is potentially

large and their properties quite model-dependent, it is difficult to make general statements

about the lifetime of our OOP vacua. Nevertheless, we recall here one observation from [24],

namely that the decay rates will in general scale like

e−S , S ∼ (∆z)4

V+
, (2.42)

where ∆z is the distance in field space between the initial and final vacuum state and V+

is the difference in their energies. By simultaneously scaling all Tm by a common factor,
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Tm → ǫ Tm, we can retain our supersymmetry-breaking vacua while decreasing V+ by the

same factor, V+ → ǫV+. In this manner, we see that, just as with OOP vacua in deformed

Seiberg-Witten theory, these OOP flux vacua can be made arbitrarily long-lived.13

3. Metastable flux vacua in local Calabi-Yau

In the previous section, we saw that, starting from a compact Calabi-Yau and taking a

decoupling limit, one ends up with a local Calabi-Yau with noncompact flux with support

at infinity, which is nothing but the flux leaking from the rest of the full Calabi-Yau

that have been decoupled, towards “our” local Calabi-Yau. Furthermore, this noncompact

flux induces potential (2.30) for the complex structure moduli in the local Calabi-Yau.

Depending on the noncompact flux, this potential can be very complicated and create

nonsupersymmetric metastable vacua in the local Calabi-Yau; the OOP mechanism [24]

reviewed in 2.5.1 tells us exactly how this can be done. In this section, we will take specific

examples of local Calabi-Yau and demonstrate that one can generate such OOP vacua as

IIB flux geometries.

In subsection 3.1, we review constructions of typical local Calabi-Yau geometries, tak-

ing Seiberg-Witten and Dijkgraaf-Vafa geometries as examples. The focus will be on the

form of the potential for the moduli which is induced by flux at infinity. We also make

remarks on the gauge theory interpretation of the physics of these geometries. In subsec-

tion 3.2, we proceed to an explicit construction of metastable flux vacua in a Dijkgraaf-Vafa

geometry, by tuning superpotential appropriately. In subsection 3.3, we estimate how much

control of flux at infinity is required to create OOP vacua.

3.1 Local Calabi-Yau based on Riemann surface

A large group of examples of noncompact Calabi-Yau manifold in IIB is defined by an

equation of the form

uv − F (x, y) = 0, (3.1)

where x, y can both be variables in C or C
∗. Compactifying on such a Calabi-Yau leaves

N = 2 supersymmetry unbroken in four dimensions. An important role in these Calabi-

Yau’s is played by the underlying one-dimensional complex curve in the x, y-plane defined

by F (x, y) = 0 [25, 45]. In most of our examples this curve is smooth, and we will refer

to it as the Riemann surface Σ. The total Calabi-Yau space will be named MΣ. The

holomorphic 3-form of MΣ is given, e.g. for x, y ∈ C, by

Ω =
du ∧ dx ∧ dy

∂F/∂v
=

du

u
∧ dx ∧ dy. (3.2)

13Because we should really think of the local Calabi-Yau as sitting inside some larger compact geometry,

one important caveat to this statement of longevity is that the noncompact fluxes T m in reality derive from

a suitable set of compact fluxes in the full Calabi-Yau. This means that there will be a series of quantization

conditions that must be imposed that may affect the degree to which they may be tuned.
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Notice that the total threefold can be described as a local (or decompactified) elliptic

fibration over the x, y-plane. Over generic points in the base x, y-space, its fiber is described

by a hyperboloid satisfying the equation uv = µ where µ is nonzero, which may be viewed

as a decompactified compact torus, making its B-cycle very large. On the other hand,

when (x, y) ∈ Σ, the noncompact fiber degenerates into a cone uv = 0, which one obtains

by decompactifying a pinched torus, corresponding to an A0 geometry.

Many important properties of the noncompact Calabi-Yau threefold MΣ have an in-

terpretation in terms of the underlying Riemann surface Σ. For example, the compact

3-cycles {Ai,Bj} in MΣ are lifts of compact 1-cycles on Σ, which we denote by {Ai, Bj}.
If (x, y) ∈ C

2, these 3-cycles may be constructed by filling in a disk D in C
2 whose bound-

ary ∂D is the 1-cycle on Σ. Now consider an S1-fibration over D where S1 is the compact

circle in the uv-fiber. Since this circle shrinks over Σ, the total 3-cycle has the topology

of an S3. If one of the variables x or y is C
∗-valued, the disk D will be punctured. In

such a situation differences of 1-cycles have to be considered. We will see an example of

this shortly. Notice that the one-to-one correspondence between 3- and 1-cycles shows an

equivalence between the complex structure moduli on MΣ and Σ.

A basis of (2,1)-forms with compact support on MΣ is given by derivatives of Ω with

respect to the normalizable complex structure moduli: {Ωi = ∂iΩ}. If MΣ were compact,

these derivatives ∂i would be Kähler covariant derivatives Di on the moduli space. Being

noncompact instead, the moduli space is described by rigid special geometry and, as we

saw before, the covariant derivatives simplify into partial derivatives. Another reduction

over the compact 3-cycles in the Calabi-Yau shows that all these compactly supported

(2, 1)-forms Ωi reduce to a basis of holomorphic 1-forms ωi on Σ. Similarly, (1, 2)-forms

∂iΩ in MΣ reduce to antiholomorphic forms ωi on Σ. ωi satisfy the following relations,

which are reductions of (2.24):

1

2πi

∫

Ai

ωj = δi
j ,

1

2πi

∫

Bi

ωj = τij. (3.3)

The relation between the 3-cycles/3-forms on MΣ and the 1-cycles/1-forms on Σ

through the trivial uv-fibration being understood, we can rewrite the various relations

in section 2 in terms of the Riemann surface Σ. First of all, the holomorphic 3-form Ω of

MΣ, which is given e.g. for x, y ∈ C by (3.2), is easily seen to reduce to a meromorphic

1-form λ = y dx on the Riemann surface in this case [25, 45]. The special coordinates (2.1)

parametrizing complex structure moduli are

Xi =
1

2πi

∫

Ai

λ, Fi =
1

2πi

∫

Bi

λ, (3.4)

and the Kähler potential (2.8) is given by

K = i

∫

Σ
λ ∧ λ. (3.5)

Recall that, in the special coordinates {Xi}, the moduli space metric takes a particularly

simple form:

ds2 =

(
∂2K

∂Xi∂Xj

)
dXidXj = (Im τ)ij dXidXj , (3.6)
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as can be shown using ∂iλ = ωi and the Riemann bilinear relation.

Now we want to consider a very small deformation of the system breaking supersym-

metry to N = 1, thus generating a potential V for the moduli. As we saw before, this

can be accomplished by turning on 3-form flux G3 with support at infinity in the local

Calabi-Yau. This flux can be thought of as leaking from the other part of the full compact

Calabi-Yau, which has been frozen in the decoupling limit. We assume that the decoupling

limit was taken consistently with the elliptic fibration structure; namely, we assume that

the noncompact flux is supported at the asymptotic infinities of Σ, while being compact in

the direction of the uv-fibers.

The basis of (2,1)-forms with noncompact support, {Ξm}, in the Calabi-Yau MΣ

descend to meromorphic 1-forms {ξm} on the Riemann surface Σ, satisfying the relations
∫

Ai

ξm = 0,

∫

Bi

ξm = Kim, (3.7)

which are reductions of (2.24). Therefore, the 3-form flux with noncompact support, G3,

on MΣ as given in (2.25) descends to a harmonic 1-form flux

g = gH + gA,

gH = Tmξm + hiωi, gA = liωi,
(3.8)

which will have poles at the punctures (or asymptotic legs) of Σ. A 3-form flux G3 in MΣ

induces superpotential (2.3), which reduces to an integral on Σ:

W =

∫

Σ
g ∧ λ, (3.9)

while the associated scalar potential (2.18) reduces to an integral on Σ:

V =

∫

Σ
gA ∧ gA. (3.10)

If we require the condition (2.26) that the flux (3.8) is zero through compact 3-cycles

of MSW, which translates into
∫

Ai

g =

∫

Bi

g = 0, (3.11)

then by the exactly same argument we did for general Calabi-Yau’s in the previous section

now reduced to the Riemann surface Σ (or simply by borrowing the result (2.30)), we can

rewrite (3.10) in terms of periods on Σ:

V =
1

4
(KimTm)

(
1

Im τ

)ij

KjnT n. (3.12)

For convenience, the relation between 3- and 1-forms in MΣ and Σ is summarized in table 1.

Now we will turn to more specific examples of local Calabi-Yau geometries based on

Riemann surfaces which have been studied in the context of string theory.

15As explained in footnote 5, we do not mean here that Ξm’s span a complete basis of 3-forms in MΣ

with support at infinity; we are only considering a certain subset of all 3-forms diverging at infinity, which

are the lifts of meromorphic 1-forms ξm on M.
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special forms
noncompact flux

inducing superpotential W

compact flux

entering potential V

MΣ Ω ∈ H3,0(MΣ) TmΞm ∈ H2,1
∞ (MΣ) G−

3 = liΩi ∈ H1,2
cpct(MΣ)

Σ λ ∈ H1,0(Σ) Tmξm ∈ H1,0
∞ (Σ) gA = liωi ∈ H0,1

cpct(Σ)

Table 1: The summary of the relation between 3-forms15 in Calabi-Yau MΣ and 1-forms on

Riemann surface Σ

3.1.1 Seiberg-Witten geometries

An illustrative example of the general Calabi-Yau’s (3.1) is given by SU(N) Seiberg-Witten

(SW) geometries. In type IIB, these correspond to compactifications on noncompact

Calabi-Yau threefold MSW defined by

MSW : uv − FSW(x, y) = 0, x ∈ C, y ∈ C
∗, (3.13)

where the underlying Riemann surface ΣSW is a hyperelliptic curve

ΣSW : FSW(x, y) ≡ ΛN

(
y +

1

y

)
− PN (x) = 0 (3.14)

and PN (x) is a polynomial of degree N with the coefficient of xN−1 being zero:

PN (x) =
N∏

i=1

(x − αi),
N∑

i=1

αi = 0. (3.15)

The coefficients of PN (x), or equivalently αi, are normalizable moduli, while Λ is a fixed

parameter. The holomorphic 3-form on MSW is ΩSW = du
u ∧ dx ∧ dy

y and reduces to [25]

λSW = x
dy

y
(3.16)

on the Riemann surface ΣSW.

Type IIB string theory compactified on the Calabi-Yau (3.13) without flux geomet-

rically engineers [46, 25] an N = 2 Seiberg-Witten theory [35, 47]. In particular, the

SU(N) Seiberg-Witten curve of gauge theory [48, 49] is geometrically identified with the

curve (3.14) underlying the Calabi-Yau. A T -duality along the compact circle in the uv-

fiber, followed by a lift to M-theory, translates [50] this geometry into a system of an

M5-brane which wraps the Riemann surface ΣSW and fills R
3,1. In the IIA limit, this sys-

tem is related to a Hanany-Witten type brane configuration in type IIA, where one has two

NS5-branes with N D4-branes stretching between them [51, 52]. From this last IIA/M-

theory point of view, it is easy to see the relation of the system to N = 2 SU(N) super

Yang-Mills as the worldvolume theory on the D4-branes. In particular, αi’s correspond to

the eigenvalues of the adjoint scalar Φ on the Coulomb branch. In passing we also note that

the geometries (3.13) are related to toric geometries in IIA by mirror symmetry [26, 53].
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Figure 2: The relation between 3-cycles in the Calabi-Yau MSW and 1-cycles on the Riemann

surface ΣSW for the Seiberg-Witten geometry. For the A-cycle, by fibering S1 over the line segment

whose endpoints are at a point on Ai and a point on −Aj , one obtains S2. By moving the endpoints

over Ai and −Aj , one obtains S2 × S1. For the B-cycle, similarly moving the S2 ending on Bi, one

obtains S3.

Now let us look at the homological structure of the Seiberg-Witten geometry (3.13),

focusing on the relation between 1-cycles on the hyperelliptic curve ΣSW (3.14) and 3-

cycles in the Calabi-Yau MSW (3.13). The Riemann surface ΣSW may be compactified by

adding two points at infinity. If we represent the curve (3.14) as a two-sheeted x-plane

branched over 2N points, those infinities correspond to x = ∞ on the two sheets. It is

thus a hyperelliptic curve of genus N −1 with two punctures. Therefore, its first homology

H1(ΣSW) is formed by N −1 pairs of compact A and B-cycles, (Ai, Bj), i, j = 1, . . . , N −1,

with in addition a closed 1-cycle A∞ around one of the punctures which is dual to an

open 1-cycle B∞ connecting the two points. How can these 1-cycles be lifted to 3-cycles

in MSW? The fact that y ∈ C
∗ means that A-cycles on ΣSW are not contractible on

the x, y-plane (recall that we are regarding ΣSW as embedded in the x, y-plane). Instead,

compact A-cycles in the noncompact Calabi-Yau threefold will reduce to differences of A-

cycles on ΣSW. Indeed, notice that a point on the 1-cycle Ai and one on another 1-cycle

−Aj , with opposite orientation, are connected by a P
1 in the Calabi-Yau. The resulting

3-cycle therefore has the topology of S2 ×S1. For the B-cycles this subtlety does not arise,

and compact B-cycles in the Calabi-Yau have S3 topology and reduce to compact 1-cycles

connecting the two hyperelliptic planes. See figure 2. This discussion is equivalent to page

10 of [25], and in particular shows the equivalence between 3-cycles on the Calabi-Yau’s

and 1-cycles on the Seiberg-Witten curve.

As seen in section 3.1, the complex structure moduli space is conveniently parametrized

by the special coordinates (3.4), which in the Seiberg-Witten case is conventionally denoted

by ai, i = 1, . . . , N − 1:16

ai =
1

2πi

∫

Ai

λSW =
1

2πi

∫

Ai

x
dy

y
. (3.17)

16Because of the subtlety mentioned above about how to take 1-cycles that lifts to compact 3-cycles in

the Calabi-Yau, we should think of the Ai appearing in (3.17) e.g. as eAi
≡ Ai

−AN , where i = 1, . . . , N −1.

For simplicity of presentation, we write eAi as Ai.
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As in (3.6), the moduli space metric takes the special form for these:

ds2 = (Im τij) daidaj . (3.18)

Using ai, the normalized basis of holomorphic 1-forms ωi can be obtained as follows. Dif-

ferentiating (3.17) with respect to aj ,

δi
j =

1

2πi

∂

∂aj

∫

Ai

x
dy

y
. (3.19)

Comparing with the first equation in (3.3), this means that

ωi =
∂

∂ai

(
x

dy

y
+ dη

)
, (3.20)

where the total derivative term dη is fixed by requiring that ωi = O(x−2)dx as x → ∞.

Specifically, this leads to dη = d(−x log y) and ωi is given by

ωi =
∂

∂ai
(− log y dx) = − ∂PN (x)/∂ai

√
PN (x)2 − 4Λ2N

dx. (3.21)

Although log y may appear problematic because it is not single-valued on the Riemann

surface, its ai derivative is single-valued and does not cause any problem.

As we discussed in general in section 3.1, turning on noncompact flux breaks N = 2

supersymmetry to N = 1 by inducing a superpotential. In the present case where the

Riemann surface is hyperelliptic, we can take {ξm} and {ωi} to be the specific ones given

in appendix A.1. As in (3.8), the 3-form flux in MSW reduces to a harmonic 1-form on ΣSW:

g =
∑

m≥1

Tmξm +

N−1∑

i=1

hiωi +

N−1∑

i=1

liωi. (3.22)

Under the condition that the compact flux vanishes, (3.11), this leads to the scalar poten-

tial (3.12).

We can write the superpotential we are adding to the system in a form that will be

useful later. By manipulating the quantity KjnT n appearing in (3.12),

KjnT n = T n

∮

Bj

ξn = −2T n

∮

∞

xnωj = 2T n ∂

∂aj

(∮

∞

xn log y dx

)

= − 2T n

N + 1

∂

∂aj

(∮

∞

xn+1 dy

y

)
. (3.23)

Here we used (3.7), (A.14), and (3.21). By examining (3.12) and (3.18), one sees that the

superpotential is given by:

WSW =
∑

m

Tmum+1, (3.24)

where we defined

um ≡ 1

2πim

∮

∞

xm−1λSW =
1

2πim

∮

∞

xm dy

y
. (3.25)
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So far everything was about geometry. Now let us turn to the gauge theory interpreta-

tion of these. As we mentioned above, the local Calabi-Yau geometry (3.13) without flux

realizes N = 2 Seiberg-Witten theory, with the hyperelliptic curve (3.14) identified with

the N = 2 curve of gauge theory. The special coordinates ai defined in (3.17) correspond

to the U(1) adjoint scalars in the IR and parametrize the Coulomb moduli space. The

superpotential (3.24) also has a simple gauge theory interpretation. To see it, we need the

relation between the vev of the adjoint scalar Φ and the curve ΣSW, given by [54, 55]:

〈
tr

dx

x − Φ

〉
=

dy

y
=

P ′
N (x)√

PN (x)2 − 4Λ2N
dv. (3.26)

In other words, um defined geometrically in (3.25) has an interpretation in gauge theory

as follows:

um =
1

m
〈tr Φm〉. (3.27)

From this, one immediately sees that the superpotential (3.24) can be written as

WSW =
∑

m

Tm

m + 1
tr Φm+1 = tr[W (Φ)], (3.28)

where we defined

W (x) =
∑

m

Tm

m + 1
xm+1. (3.29)

In (3.28), Φ is understood as the chiral superfield whose lowest component is the adjoint

scalar.

Therefore, the N = 2 gauge theory perturbed by the single-trace superpotential (3.28)

corresponds to the geometry (3.13) with the flux g obeying the following asymptotic bound-

ary condition:

g ∼
∑

m

mTmxm−1 dx = W ′′(x)dx, (3.30)

where we used (A.11). Note that this equivalence holds for any configurations, super-

symmetric or nonsupersymmetric, because we have shown the equality of the full off-shell

scalar potential. The perturbed N = 2 theory is precisely the system which was shown

in [24, 37] to have nonsupersymmetric metastable vacua if the superpotential is chosen

appropriately.17 Therefore, it tautologically follows that the IIB Seiberg-Witten geometry

with flux at infinity also has metastable vacua, if we tune the parameters Tm appropriately.

As we mentioned above, this IIB Seiberg-Witten geometry is dual to a IIA brane con-

figuration of NS5-branes and D4-branes which can be lifted to an M5-brane configuration.

In [56], it was shown that superpotential perturbation corresponds in the M-theory setup

17It was shown in [24] to be possible to create metastable vacua by a single-trace superpotential of the

form (3.28) at any point in the Coulomb moduli space for SU(2) and at least at the origin of the moduli

space for SU(N).
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to “curving” the N = 2 configuration of the M5-brane at infinity in a way specified by

the superpotential. The metastable gauge theory configuration of [24, 37] was realized as

a metastable M5-brane configuration and its local stability was given a geometrical inter-

pretation. The above proof of (3.28) is exactly in parallel to the one given in [56] for the

M-theory system. In passing, it is also worth mentioning that the M-theory analysis of [56]

revealed that at strong coupling the nonsupersymmetric configuration “backreacts” on the

boundary condition and it is no longer consistent to impose a holomorphic boundary con-

dition specified by a holomorphic superpotential, which is in accord with [17]. Therefore,

also in the IIB flux setting, it is expected that if we go beyond the approximation that the

flux does not backreact on the background metric, nonsupersymmetric flux configurations

will backreact and it will be impossible to impose a holomorphic boundary condition of

the type (3.22).

Although we do not do it in the present paper, from the viewpoint of flux compact-

ification, it is a natural generalization to consider fluxes through the compact 3-cycles.

Such flux will make additional contribution to the superpotential of the form eia
i + miFi

(see 2.5.1). On the gauge theory side, in the Seiberg-Witten theory, this can be interpreted

as perturbation one adds at the far IR, but its UV interpretation is not clear [41].

3.1.2 Dijkgraaf-Vafa (CIV-DV) geometries

Another example of geometries of the type (3.1) is type IIB on

MDV : uv − FDV(x, y) = 0, x, y ∈ C, (3.31)

where the underlying Riemann surface ΣDV is a hyperelliptic curve

ΣDV : FDV(x, y) ≡ y2 −
[
Pn(x)2 − fn−1(x)

]
= 0 (3.32)

and Pn(x) and fn−1(x) are polynomials of degree n and n − 1, respectively. If we write

fn−1(x) =

n−1∑

i=1

bix
i, (3.33)

then the coefficients of Pn(x) as well as bn−1 are nonnormalizable and fixed,18 while bi,

i = 0, . . . , n − 2 are normalizable complex structure moduli. The holomorphic 3-form is

ΩDV = du
u ∧ dx ∧ dy which reduces to

λDV = x dy (3.34)

on the Riemann surface ΣDV. The geometry (3.31) was studied by Cachazo, Intriligator

and Vafa (CIV) [57] (see also [58]) in the context of large N transition [59, 60] and further

generalized in [61, 62]. The Dijkgraaf-Vafa (DV) conjecture [63 – 65] was also based on the

same geometry. We will refer to this geometry as the CIV-DV geometry (3.31) or as the

Dijkgraaf-Vafa geometry henceforth.

18More precisely, bn−1 is log-normalizable and can be treated as a variable modulus if one wishes, but in

the present paper we treat it as a non-dynamical parameter.
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The structure of the underlying hyperelliptic Riemann surface ΣDV (3.32) is similar

to the Seiberg-Witten case (3.14); ΣDV is a genus n − 1 surface with two punctures at

infinity. If we represent ΣDV as a two-sheeted x-plane branched over 2n points, those

infinities correspond to x = ∞ on the two sheets. The coefficients of Pn(x), which are

nonnormalizable, determine the position of the n cuts on the x-plane, while the coefficients

of fn−1(x), which are normalizable, are related to the sizes of the cuts. The first homology

H1(ΣDV) is spanned by n − 1 pairs of compact A- and B-cycles (Ai, Bj), i, j = 1, . . . , n −
1 with in addition a closed cycle A∞ around one of the infinities which is dual to the

noncompact B-cycle B∞ connecting two infinities. Because x, y ∈ C, compact A- and

B-cycles on ΣDV are all contractible in the x, y-plane and hence all compact 1-cycles on

ΣDV lifts to 3-cycles in MDV with S3 topology.

The special coordinates (3.4) in this case is conventionally denoted by Si, Πi:

Si =
1

2πi

∫

Ai

λDV, Πi =
1

2πi

∫

Bi

λDV, (3.35)

for which, as in (3.6), the moduli space metric takes the special form:

ds2 = (Im τij) dSidSj . (3.36)

Just as in (3.21), we can write the basis of holomorphic 1-forms ωi using Si as:

ωi =
∂

∂Si
(−y dx) =

∂fn−1(x)/∂Si

2
√

Pn(x)2 − fn−1(x)
dx. (3.37)

Adding flux at infinity and breaking N = 2 supersymmetry to N = 1 go just as in

the Seiberg-Witten case. The Riemann surface ΣDV is hyperelliptic and we take {ξm} and

{ωi} to be the ones given in appendix A.1. Just like (3.8) and (3.22), the 3-form flux in

MDV reduces to a harmonic 1-form on ΣDV:

g =
∑

m≥1

Tmξm +

N−1∑

i=1

hiωi +

N−1∑

i=1

liωi. (3.38)

Under the condition that the compact flux vanishes (eq. (3.11)), the 1-form (3.38) leads to

the scalar potential (3.12) which, just as we derived (3.24), can be shown to correspond to

the following superpotential:

WDV =
∑

m

TmΣm+1, (3.39)

where we defined

Σm ≡ 1

2πim

∮

∞

xm−1λDV =
1

2πim

∮

∞

xm dy. (3.40)

The 1-form λDV depends on the complex structure moduli Si of the Riemann surface (3.32).

Therefore, by changing the parameters Tm, we can generate a superpotential which is a

quite general function of Si’s. The OOP mechanism [24] states that, if one tunes super-

potential appropriately, one can create a metastable vacuum at any point of the N = 2
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moduli space. Therefore, also for this Dijkgraaf-Vafa geometry, we expect to be able to

create metastable vacua by appropriately tuning Tm, i.e., flux at infinity. Indeed, in the

next subsection we will demonstrate the existence of metastable vacua in a simple example.

We have been focusing on the case where there is flux at infinity but there is no

flux through compact cycles. However, let us digress a little while and think about the

case where there is flux through compact cycles but there is no flux at infinity. In this

case, the IIB system has a standard interpretation [57, 58, 63 – 65] as describing the IR

dynamics of N = 2 SU(N) theory19 broken to N = 1 by a superpotential W = tr[Wn(Φ)],

W ′
n(x) = Pn(x), with the moduli Si identified with glueball fields. More precisely, if there

are N i units of flux through the cycle Ai, where N =
∑

i N
i, then the system corresponds to

the supersymmetric ground state of SU(N) gauge theory broken to
[∏

i SU(N i)
]
×U(1)n−1.

It is important to note that this equivalence between the Dijkgraaf-Vafa flux geometry and

gauge theory is guaranteed to work only for holomorphic dynamics, or for the F -term. On

the geometry side, one is considering the underlying geometry (3.31) determined by Pn(x)

and small flux perturbation on it. On the gauge theory side, this corresponds to the limit

of large superpotential, where one has no control of the D-term. Therefore, there is no

a priori reason to expect that the D-term of the Dijkgraaf-Vafa geometry, which governs

e.g. existence of nonsupersymmetric vacua, and that of gauge theory are the same, even

qualitatively. After all, two systems are different theories and it is only the holomorphic

dynamics that is shared by the two.20

Despite such subtlety, it is interesting to ask what is the gauge theory interpretation

of adding flux at infinity, in addition to flux through compact cycles. It is known that the

curve (3.32) is related to the vev in gauge theory as [54, 63 – 66]:

− 1

32π2

〈
tr

W2

x − Φ

〉
dx = y dx =

√
Pn(x)2 − fn−1(x) dx. (3.41)

where W2 = WαWα and Wα is the gaugino field. Comparing this with (3.40), one finds

that the quantity Σm defined geometrically in (3.40) has the following interpretation:

Σm =
1

32π2
〈tr(W2Φm−1)〉. (3.42)

Therefore the superpotential (3.39) can be written as

WDV =
1

32π2

∑

m

Tm tr[W2Φm] =
1

32π2
tr[W2M(Φ)], (3.43)

where we defined

M(x) =
∑

m

Tmxm. (3.44)

19This is the case when we treat bn−1 as non-dynamical. If we regard this as dynamical, this system

realizes U(N) theory.
20Of course, it is a logical possibility that even the D-terms of the two systems are identical, or closely

related to each other.
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Therefore, flux at infinity of the following asymptotic form:

g ∼
∑

m

mTmxm−1 dx = M ′(x)dx, (3.45)

corresponds in gauge theory to adding a novel superpotential of the form (3.43). This type

of superpotential was recently studied in the gauge theory context in [67, 68]. Again, this

correspondence must be taken with a grain of salt, since it holds only for holomorphic

physics.

Note also that flux through compact cycles will induce glueball superpotential [57] of

the form αiS
i + N iΠi(S) added to (3.39). Because this part does not contain tunable

parameters such as Tm that can be made very small, it is difficult, if not possible, to use

the OOP mechanism to produce metastable vacua in that case.

Now let us come back to the main focus of the present paper, the case where there is no

flux through compact cycles. In this case, we do not have an interpretation of the system

as such an SU(N) theory described above, simply because N =
∑

i N
i = 0. Below, we take

the Dijkgraaf-Vafa geometry with flux at infinity and no flux through compact cycles as

an example, and see that we can generate metastable vacua by adjusting the parameters

Tm using the OOP mechanism outlined in the previous section.

3.2 Metastable flux vacua in CIV-DV geometries — an example

To demonstrate that one can truly realize supersymmetry-breaking via the OOP mechanism

in type IIB Dijkgraaf-Vafa flux geometries, we turn our attention now to a simple example,

namely the geometry relevant for SU(2)

uv − FDV(x, y) = 0, with FDV(x, y) = y2 −
[
P2(x)2 − b1x − b0

]
, (3.46)

where we choose

P2(x) = x2 − ∆2

4
. (3.47)

For simplicity, we will impose a Z2 symmetry on the Calabi-Yau under which x ↔ −x, the

effect of which is to set the log-normalizable modulus b1 to zero

b1 = 0. (3.48)

As usual, we can focus our attention on the associated Riemann surface, ΣDV, which

in this example has genus 1 and is determined by the equation

FDV(x, y) = y2 −
[
P2(x)2 − b0

]
= 0. (3.49)

This geometry admits a single dynamical modulus, b0. This, in turn, can locally be traded

for the special coordinate S1 which, for notational simplicity, we refer to as S in the

remainder of this section

S ≡ S1 =
1

2πi

∮

A1

x dy. (3.50)
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Alternatively, we can parametrize the moduli space by the globally well-defined coordinate

Σ2 (3.40), which we choose to denote simply by Σ

Σ ≡ Σ2 =
1

4πi

∮

x=∞

x2 dy. (3.51)

To this geometry, we now consider turning on flux given by

g =
∑

m≥1

Tmξm + hω + lω, (3.52)

where ω is the unique holomorphic 1-form on ΣDV. As we have seen, this induces a

nontrivial potential for Σ of the form

V ∼
(

∂WDV(Σ)

∂Σ

)(
∂Σ

∂S

)(
1

Im τ

)(
∂Σ

∂S

)(
∂WDV(Σ)

∂Σ

)
, (3.53)

where

WDV(Σ2) =
∑

m

TmΣm+1(Σ2). (3.54)

To engineer a metastable vacuum at a fixed point, Σ(0), we need only choose the Tm so

that WDV(Σ) is a cubic polynomial in Σ obtained by truncating the expansion of a Kähler

normal coordinate associated to Σ(0) at cubic order. To determine the requisite Tm, we

proceed in two steps. First, we must determine the relation between Σ and the higher

Σm (3.40). This is rather trivial. Second, however, we must obtain an expression for the

Kähler normal coordinate associated to a generic point Σ(0). This will be slightly messier.

3.2.1 Relating Σm and Σ2

Evaluating generic Σm for ΣDV is relatively easy to do given the defining equation (3.49)

and leads to the result

Σ2q−1 = 0,

Σ4q =

q∑

n=0

Γ
(
2q − n + 1

2

)

2
√

π (2q − 2n + 1)!n!

(
∆2

2

)2(q−n)+1(
b0 −

∆4

16

)n

,

Σ4q−2 =
1

2q − 1

(
b0 −

∆2

16

)q
[

Γ
(
q + 1

2

)

q!
√

π

]

+

q−1∑

n=0

Γ
(
2q − n − 1

2

)

2
√

π (2q − 2n)!n!

(
∆2

2

)2(q−n)(
b0 −

∆4

16

)n

.

(3.55)

From this, we first see that Σ is proportional to b0

Σ =
b0

2
. (3.56)

More importantly, however, we are also able to immediately read off the degree of each

nonzero Σm when viewed as a polynomial in Σ

Σ4q ∼ Σq + O(Σq−1), Σ4q−2 ∼ Σq + O(Σq−1). (3.57)
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Consequently, the lowest m for which Σm contains a term proportional to Σq is m = 4q−2.

This means that to introduce terms of order Σ3 into WDV(Σ), it will be necessary to include

Σm up to m = 10, leading to much more singular flux than one might have otherwise

thought. This is the first example of a general lesson we will have more to say about

later, namely that when engineering OOP vacua, the requisite noncompactly supported

flux can have a large degree of divergence which, to the best of our knowledge, is not easy

to determine by any simple arguments.

Because one can introduce quadratic (cubic) terms using any Σm with 6 ≤ m ≤ 9

(10 ≤ m ≤ 13) there is some choice as to which Tm we can turn on to achieve a particular

desired WDV(Σ). For the purposes of our example, we will only turn on T 1, T 5, and T 9,

thereby adding terms proportional to

Σ2 ≡ Σ,

Σ6 =
1

16

(
Σ∆4 + 8Σ2

)
,

Σ10 =
1

256

(
∆8Σ + 48∆4Σ2 + 128Σ3

)
.

(3.58)

3.2.2 Kähler normal coordinate for Σ0

We now proceed to the second step, namely computing the first few terms of the Kähler

normal coordinate expansion about a generic point Σ(0)

z =
(
Σ − Σ(0)

)
+ a2

(
Σ − Σ(0)

)2
+ a3

(
Σ − Σ(0)

)3
+ · · · , (3.59)

where we have implicitly defined the coefficients

a2 =
1

2
ΓΣ

ΣΣ,

a3 =
1

6
gΣΣ∂Σ

(
gΣΣΓΣ

ΣΣ

)
,

(3.60)

with gΣΣ the metric associated to the Σ coordinate

gΣΣ =

∣∣∣∣
∂S

∂Σ

∣∣∣∣
2

Im τ, (3.61)

and ΓΣ
ΣΣ the associated nonvanishing Christoffel symbol. Computations of quantities such

as ∂S/∂Σ in Dijkgraaf-Vafa geometries are often performed using a perturbative expan-

sion about the singular point S = 0. For engineering OOP type vacua, though, we need to

consider instead the neighborhood of a generic, nonsingular point Σ0 away from S = 0. For-

tunately, in the simple case of a genus 1 curve, we can actually obtain exact results without

too much work by taking advantage of the parametric description reviewed in appendix B.

As described there, one finds that both S and Σ can be expressed directly as functions of τ

S =
∆3

2πi [12℘(τ/2)]3/2

(
2g2

3
− 4℘(τ/2) [℘(τ/2) − 2η1]

)
, (3.62)

Σ =
∆4
(
12℘(τ/2)2 − g2

)

288℘(τ/2)2
, (3.63)
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where ℘(z) is the Weierstrass ℘-function, g2 is the Weierstrass elliptic invariant appearing

in the relation (
∂℘(z)

∂z

)2

= 4℘(z)3 − g2℘(z) − g3, (3.64)

and η1 is one of the half-periods of the Weierstrass ζ-function

η1 = ζ

(
1

2

)
. (3.65)

From (3.62) and (3.63), we can apply the differentiation formulae of appendix B to write

both ∂Σ/∂S and gΣΣ as functions of τ

∂Σ

∂S
= − iπ∆√

3℘(τ/2)
=⇒ gΣΣ =

3

π2

∣∣∆2℘(τ/2)
∣∣ Im τ. (3.66)

It is now straightforward to determine the coefficients of the Kähler normal coordinate

expansion (3.59) in terms of the value of τ at Σ(0)

a2 =
36℘(τ/2)2

(
g2 + 12η1℘(τ/2) − 6℘(τ/2)2

)
− 216π℘(τ/2)3

Im τ

∆4 (g2 − 3℘(τ/2)2) (g2 − 12℘(τ/2)2)
,

a3 =
864℘(τ/2)4

∆8 (g2 − 3℘(τ/2)2)2 (g2 − 15℘(τ/2)2)2

×
[
360π℘(τ/2)3 − 48πg2℘(τ/2)

Im τ

+ 5g2
2 + 96η1g2℘(τ/2) − 63g2℘(τ/2)2 − 720η1℘(τ/2)3 + 252℘(τ/2)4

]
.

(3.67)

3.2.3 Noncompact flux for engineering OOP vacuum

We are finally ready to explicitly write the noncompact flux needed to engineer an OOP

vacuum at a generic point Σ(0). In particular, we seek to specify values for the coefficients

Tm which render

WDV(Σ) =
∑

m

TmΣm(Σ) (3.68)

equivalent, up to a constant shift, to a truncation of the Kähler normal coordinate expan-

sion (3.59) about Σ(0) at order Σ3. Using (3.58), it is easy to see that the following choice

of nonzero Tm does the job

T 1 = 2 − a2

4

(
∆4 + 16Σ0

)
+ 2a3

(
5∆8

128
+

3∆4Σ0

8
+ 3Σ2

0

)
,

T 5 =
12a2

5
− 9a3

10

(
∆4 + 8Σ0

)
,

T 9 =
20a3

9
,

(3.69)

where a2 and a3 given by the expressions in (3.67) evaluated at the value of τ corresponding

to Σ(0).
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These expressions, while nice and exact, are a little cumbersome so let us also consider

a special case where things simplify. To that end, we try to engineer an OOP vacuum

at the special point τ = i corresponding to a square torus. In this case, several elliptic

quantities simplify

η1|τ=i =
π

2
g3|τ=i = 0 =⇒ g2|τ=i = 4℘(τ/2)2

∣∣
τ=i

. (3.70)

The value of Σ at τ = i can be obtained by applying (3.70) to (3.63)

Σ0 =
∆4

36
. (3.71)

This means that the curve (3.49) is given at this point by

y2 = x4 − ∆2

2
x2 +

∆4

144
=

[
x2 −

(
1

4
+

1

3
√

2

)
∆2

] [
x2 −

(
1

4
− 1

3
√

2

)
∆2

]
. (3.72)

The coefficients a2 and a3 (3.67) appearing in the Kähler Normal Coordinate expan-

sion (3.59) simplify to

a2|τ=i =
9

∆4
and a3|τ=i =

1080

∆8
(3.73)

Inserting these into (3.59), we find that our desired effective superpotential WDV(Σ) is

given by

WDV(Σ) = constant + 3Σ − 81Σ2

∆4
+

1080Σ3

∆8
, (3.74)

while plugging into (3.69) yields the Tm that do the job

T 2 =
885

8
, T 6 = −5832

5∆4
, T 10 =

2400

∆8
. (3.75)

While metastability of the vacuum at τ = i is guaranteed by the OOP procedure, it is also

gratifying to see it graphically by explicitly plotting the potential near τ = i as in figure 3.

3.3 Degree of superpotential required for metastable vacua

As we have seen in the above example, there is an issue about the degree of superpotential

we have to consider in order to create OOP metastable vacua. In this subsection, we

analyze this issue.

As one can see from (2.34), (2.35), in order to create an OOP vacuum at a specific point

X(0) in the moduli space, one must be able to adjust the coefficients in the superpotential

up to cubic terms in ∆X = X−X(0). If the dimension of the moduli space is d, this means

that we generically need to tune

d +
d(d + 1)

2
+

d(d + 1)(d + 2)

6
− d =

d(d + 1)(d + 5)

6
≡ Cd (3.76)

parameters in the superpotential.21 The last term is subtracting the degrees of freedom to

choose the vector ki.

21For having a metastable vacuum, the superpotential does not have to be exactly the same as the ones

given in (2.35); if the coefficients are very close to the ones given in (2.34), (2.35), one still expect to have

metastable vacua. However, this does not generically affect the number of parameters we need to tune.
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Figure 3: Plot of V (τ) in the neighborhood of our engineered OOP minimum at τ = i

In the local Calabi-Yau geometries we have been considering, the superpotential is

parametrized by the coefficients Tm. For example, in the Dijkgraaf-Vafa geometry, the

superpotential was given by (3.39):

WDV(S) =
∑

m≥1

TmΣm+1(S), Σm(S) =
1

2πim

∮

∞

xmdy(S), (3.77)

where we wrote the dependence of Σm’s on the moduli S = {Si} explicitly. Therefore, if

Σm(S)’s are generic functions of S then, by tuning Cn−1 parameters22 T 2, T 3, . . . TCn−1+1,

one can create a metastable vacuum at a generic point S = S(0). More precisely, the OOP

mechanism requires that, when we expand Σm(S)’s around S(0) in ∆S = S − S(0), the co-

efficients of ∆S, (∆S)2, (∆S)3 terms are all independent and by taking linear combinations

of Σm(S)’s we can obtain the superpotential (2.35).

However, as we saw in the example above, the situation is not generic for small n and

we need a more detailed analysis about how high degrees one should go, which is done in

appendix C. The result (eq. (C.4)) is that, if we would like to make a critical point at a

generic point in the moduli space, we have to tune on Tm at least up to m = mmin, where23

n = 2 : mmin = 10,

n = 3 : mmin = 15,

n ≥ 4 : mmin =
n3

6
+

n2

2
+

n

3
+ 3.

(3.78)

22Note that the number of moduli is n − 1 because we are treating bn−1 dynamical.
23This result is for the case where bn−1 is treated nondynamical. For the result in the case where bn−1 is

regarded as a modulus, see appendix C.
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There is certain genericily assumption on the dependence of Σm on the moduli (see ap-

pendix C), and hence the actual degree m one must consider can be larger than the one

given above.

Therefore, in order to stabilize metastable vacua made of n cuts by the OOP superpo-

tential, we have to consider Σm’s up to rather high degree mmin given by (3.78) at least.

Because the degree m corresponds to the order of divergence of the flux at infinity (ξm),

the noncompactly supported flux must diverge at infinity at the corresponding speed.

4. Factorization

4.1 The basic idea

In the previous sections we described how we can generate a supersymmetry breaking

potential for the complex structure moduli of a local Calabi-Yau singularity by the in-

troduction of 3-form flux which has support at infinity. Allowing flux with noncompact

support may lead to various conceptual difficulties, such as the divergence of the total

energy density. To clarify these difficulties we would like to sketch how such a system can

be interpreted as an approximation of a larger Calabi-Yau threefold with flux of compact

support in a certain factorization limit.

More precisely, we start with a Calabi-Yau with a subset of cycles pierced by usual

3-form flux of compact support. In another region of the manifold we have a second subset

of cycles. The flux from the first cycles will generate a potential for the complex structure

moduli of the second set. In the limit where the cycles are separated by a large distance,

and where we zoom in towards the second set, the flux from the first subset will look as

if it is coming from “infinity”.24 In this sense, the noncompact setup considered in the

previous section can be considered as a small part of a larger Calabi-Yau with compactly

supported flux.

In this section we would like to understand this embedding into a bigger Calabi-Yau in

more detail. Our goal is to see how the potential (2.30) arises starting from the standard

Gukov-Vafa-Witten superpotential for 3-form flux in the larger Calabi-Yau.

For simplicity we will work with a noncompact Calabi-Yau M,

M : uv − F (x, y) = 0, (4.1)

which is based on a Riemann surface Σ given by F (x, y) = 0. As we explained before the

complex parameters entering the defining equation of the Riemann surface correspond to

complex structure moduli of the Calabi-Yau. Some of them are non-normalizable and can

be considered as external parameters. We want to tune these parameters to approach the

limit where the surface Σ factorizes into two surfaces ΣL and ΣR connected by long tubes.

This factorization lifts to the entire Calabi-Yau M and divides it into two regions ML and

MR that are widely separated. We introduce 3-form flux G3 of compact support on the

3-cycles of MR. The superpotential and scalar potential are given by

W =

∫
G3 ∧ Ω and V = GIJ∂IW∂JW, (4.2)

24As we will see in more detail later, we also have to scale the flux in an appropriate way.
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Figure 4: Two conformally equivalent ways of viewing the factorization of a Riemann surface into

two parts. Physically though, we should distinguish both points of view, since particle masses de-

pend on the size of the cycles. Because in our situation no new massless appears in the factorization

limit, the left diagram represents our point of view best.

where the indices I, J run over all complex structure moduli of the total threefold M.

Using the properties of the Kähler metric GIJ in the factorization limit we show that the

part of the potential (4.2) which depends on the complex structure moduli of ML is of the

form (2.30). Furthermore, we find an understanding of the effective value of the parameters

Tm.

4.2 Geometry of factorization

In this subsection we study the degeneration of a Riemann surface Σ into two components

ΣL and ΣR, depicted in figure 4.25 In this factorization data of the full Riemann surface

is expressed in terms of the complex structure of the individual surfaces. It is well known

that in the limit where the length of the tubes L = 1/ǫ goes to infinity the period matrix

of the full surface becomes block diagonal

τ =

(
τLL 0

0 τRR

)
+ O (ǫ) . (4.3)

While the off-diagonal components τLR go to zero in the factorization limit, their subleading

behavior is quite important in our analysis since it expresses the weak interaction between

the two sectors. The period matrix τLR can be computed systematically in an expansion

in ǫ from data on each of the two surfaces as we explain below.

Technically, we describe the factorization of the Riemann surface with the plumbing

fixture method [69]. So consider two Riemann surfaces ΣL and ΣR of genus gL and gR

respectively. On the left surface ΣL we have gL holomorphic differentials ωi, while on the

right surface ΣR similarly gR holomorphic differentials ωi′ . The complex structure of the

left surface is determined by the periods of the holomorphic differentials

1

2πi

∫

Ai

ωj = δi
j ,

1

2πi

∫

Bi

ωj = τLL
ij , (4.4)

where τLL
ij is the period matrix of ΣL, and we choose our definitions similarly for the right

surface.

The plumbing fixture method works after choosing a puncture P on ΣL and P ′ on ΣR.

It connects the two surfaces by a long tube of length L which is glued onto neighborhoods

25In general these components could be connected in a non-trivial way. We restrict our computations in

this section to the case in which they are linked by just one long tube. These should be easily extendible

to more general cases.
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of the punctures P and P ′. More precisely, we pick a local holomorphic coordinate z

around the puncture P such that z(P ) = 0 and a holomorphic coordinate z′ near P ′ with

z′(P ′) = 0. Then we identify points in these neighborhoods as

zz′ = ǫ. (4.5)

Now we want to compute the period matrix of the full Riemann surface in terms

of complex structure data of the two surfaces. For this we need to understand how the

differentials ωi and ωi′ extend to well-defined holomorphic differentials on the full surface

Σ = ΣL ∪ ΣR/ ∼, where ∼ is the above identification. Let us first consider how to lift the

differential ωi. Around the puncture P it may be expanded as

ωi =

∞∑

m=1

KP
imzm−1dz, (4.6)

where the functions KP
im are given by (A.7). Once we write this in terms of z′ we observe

that, as seen from the right surface, the differential has a Laurent expansion. So ωi will be

written as a linear combination of the meromorphic differentials ξP ′

m of the right surface.

A meromorphic differential has the following expansion around the puncture

ξP
m =

(
m

zm+1
+

∞∑

n=1

hP
mnzn−1

)
dz. (4.7)

Here we have introduced the functions hP
mn, which depend on the complex structure moduli

of the surface and the position of P . So in general the differential ωi will lift to a differential

ω̃i on the full surface which can be written as

ω̃i =





ωi +

∞∑

m=1

ximξP
m on ΣL,

∞∑

m=1

yimξP ′

m on ΣR.

(4.8)

for some coefficients xim and yim. Matching the differential on the two sides we find the

following conditions

xim = −ǫm

m

∞∑

n=1

yinhP ′

nm, yim = −ǫm

m

(
KP

im +
∞∑

n=1

xinhP
nm

)
. (4.9)

This allows us to compute the cross-period matrix as

τLR
ij′ =

∫

bj′

ωi =

∞∑

m=1

KP ′

j′myim = −
∞∑

m,n=1

ǫn

n
KP

imG−1
mnKP ′

j′n,

Gmn ≡ δmn −
∞∑

l=1

ǫn+l

nl
h′

mlhln.

(4.10)

From this equation we can read off all order ǫ-corrections to the off-diagonal piece of the

period matrix when a surface Σ degenerates.
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Figure 5: Turning on flux on the right part of the factorized Calabi-Yau.

Also, this procedure gives a clear understanding of the term “flux at infinity”. We

see that the flux at infinity is generated by regular forms on the degenerated surface, and

therefore will at most have finite order poles at the punctures.

Notice that for a Calabi-Yau threefold that is based on a Riemann surface, the factor-

ization region is described by the deformed conifold geometry

uv + x2 + y2 = ǫ, or equivalently uv + zz′ = ǫ. (4.11)

Usually, this is described as a 3-sphere shrinking to zero-size when ǫ → 0. However, as

for the complex 1-dimensional plumbing fixture case we want the two sectors to be far

apart from each other. Therefore we consider the conformally equivalent setup where the

3-sphere is scaled to be of finite size, while the transverse directions are made very large.

The finite size three-sphere reduces to the cross-section of the tube on the left in figure 4,

whereas the transverse directions reduce to the tube-length.

To describe the left and right neighborhoods of the degeneration, we can fix x =√
ǫ − y2 − uv on the left and x = −

√
ǫ − y2 − uv on the right. In the limit that ǫ → 0

these neighborhoods will not just intersect in a point, but in the divisor uv + y2 = 0.

This is the region where regular forms on the total threefold will develop poles when the

degeneration starts.

4.3 Dynamics

Now we consider turning on flux on the threefold. For simplicity we again take a Calabi-

Yau (4.1) that is based on a factorized Riemann surface. We turn on 3-form flux G3 =

F3 − τH3 which is only piercing the set of A-cycles corresponding to ΣR, as can be seen

in figure 5, and write down the corresponding (super) potential. For regularization issues

later, we take two more punctures on the right surface labeled by ±∞ and turn on some

flux α through the noncompact B∞ cycle running from +∞ to −∞.

A basis of A and B cycles is given by the compact 3-cycles on the left and the right,

together with the lift A∞ of the A-cycle enclosing +∞ and B∞. So the flux is determined by
∫

Ai

G3 = 0,

∫

Ai′
G3 = N i′ ,

∫

A∞

G3 = 0,

∫

Bi

G3 = 0,

∫

B′
i

G3 = 0,

∫

B∞

G3 = α.
(4.12)

Let us denote the complex structure moduli and their duals by XI and FI , which are

the AI resp. BI periods of the holomorphic 3-form Ω. Here we use the capital indices
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I = {i, i′,∞} to run over both the left and the right sides. Then the GVW superpotential

for the complex structure moduli is given by

W =

∫
G3 ∧ Ω = αX∞ +

∑

i′

N i′FR
i′ , (4.13)

and the corresponding scalar potential by

V =
∑

I,J

GIJ∂IW∂JW. (4.14)

Since X∞ corresponds to a log-normalizable period and the derivatives in the above po-

tential just correspond to normalizable modes, the α-factor decouples. This shows that

V =
∑

i,j,k′,l′

(
Nk′

τLR
k′i

)( 1

Im τ

)ij

LL

(
N l′τLR

l′j

)
+

∑

i,j′,k′,l′

Re

[(
Nk′

τLR
k′i

)( 1

Im τ

)ij′

LR

(
N l′τRR

l′j′

)]

+
∑

i′,j′,k′,l′

(
Nk′

τRR
k′i′

)( 1

Im τ

)i′j′

RR

(
N l′τRR

l′j′

)
. (4.15)

Thus the total potential is the sum of three terms, which we denote in the obvious way by

V = V1 + V2 + V3.

Next we consider what happens in the limit where the distance L between the two

sets of 3-cycles gets very large. As explained before the period matrices τLL and τRR

remain of order one in this limit and become almost independent of the moduli XR and

XL, respectively.

On the other hand, τLR goes to zero which would make the first term V1 in the potential

vanish in the limit that ǫ → 0, at least if we don’t scale the fluxes N i′ appropriately. Since

V1 describes the interaction between the two sides of the Calabi-Yau, we really want to

scale the fluxes N i′ to go to infinity in such a way that the term V1 remains finite.

Then it becomes clear that the term V3 of the potential dominates over the other two

contribution to V . This implies that in the limit ǫ → 0 the term V3 should be minimized

first, i.e., ∑

k′

Nk′

τRR
k′i′ = 0, ∀i′, (4.16)

which is a set of nR equations for the nR moduli xj′ . The solutions of this system corre-

spond to supersymmetric vacua for the 3-cycles on the right side. Once we have fixed all

Xj′ to their supersymmetric values X̂j′ , we can consider the effect of the backreaction of

the right side to the left. This is purely expressed through the potential V1, since the term

V2 vanishes as well at the supersymmetric point.

So effectively the potential for the complex structure moduli Xi
L of the left surface is

V1 =
∑

i,j,k′,l′

(
Nk′

τLR
k′i

)( 1

Im τ

)ij

LL

(
N l′τLR

l′j

)
. (4.17)
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This may be written as V1 =
∑

i,j ∂iWeff(1/ Im τ)ijLL∂jWeff, where we define the effective

“superpotential” for the left complex structure moduli as

∂iWeff ≡
∑

k′

Nk′

τLR
k′i . (4.18)

Comparing with expression (4.10) it is clear that the fluxes on the right should be

scaled in such a way that the coefficients

Tm = ǫm
∑

k′

Nk′

K ′
k′m (4.19)

remain constant. In that situation the effective superpotential is

∂iWeff =
∑

m

TmKim (4.20)

to leading order in ǫ, which is precisely of the form (2.30).

4.4 Genericity of potential and metastable vacua

Let us summarize what we have demonstrated so far. We started with a large Calabi-Yau

that consists of two parts ML and MR separated by a large distance, and turned on a

large 3-form flux on one of the sides, say MR. This flux generates a large potential for the

complex structure moduli of MR, which are therefore set to their supersymmetric minima.

The flux on MR is also weakly backreacting to the other side ML, inducing a small

superpotential for the complex structure moduli of ML. We computed this superpotential

in equations (4.18) and (4.20) and found that it is of the form (2.30). The main point is

that the side ML only knows about MR via the parameters Tm given by (4.19).

In this section we discuss two questions. The first to which degree we can tune the

parameters Tm independently. And the second is whether these Tm’s can be chosen to

realize an OOP supersymmetry breaking superpotential.

As we can see from (4.19), the values of the parameters Tm depend on the fluxes N l′

on the cycles of MR and also on the value of the (generalized) period matrix K ′
l′m. The last

one depends on the choice of the supersymmetric vacuum X̂j′ on the right side. For given

large fluxes N l′ there is a huge number of supersymmetric vacua, or solutions of (4.16),

with different values of X̂j′ and consequently of K ′
l′m. The density of such supersymmetric

vacua over the complex structure moduli space of MR has been studied before [6, 70 – 73],

and it is believed that the vacua become dense in the moduli space in the limit where the

fluxes are very large.

The coefficients K ′
l′m are holomorphic functions over the complex structure moduli

space of MR. So naively one would conclude that when the dimension of this moduli space

is large enough, meaning that the number of 3-cycles in MR is large, we can always find

supersymmetric points where the K ′
l′m’s have the desired values. However the functions

K ′
l′m are not “generic” and there may be relations between them which affect the naive

counting. We have not analyzed this problem in detail but we think the following statement

is true. Any number of the Tm’s in the superpotential (4.20) can be tuned by considering a
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Calabi-Yau whose right side MR has a sufficiently large number of 3-cycles, and there will

be some supersymmetric vacua with right values of K ′
l′m to reproduce the desired Tm’s to

good accuracy.

This claim is made more intuitive by the following physical interpretation of equa-

tion (4.19). Start by turning on fluxes N l′ on the cycles of MR, which is based on the

Riemann surface ΣR. When reduced on the Riemann surface the flux looks like the electric

field produced by a charge in two dimensions. The set of fluxes N l′ resembles a charge

distribution on the cycles of the Riemann surface. To compute the field produced by these

charges in the distant region of the other set of cycles ΣL, one has to consider a multipole

expansion. Since the matrix K ′
l′m computes the mth multipole expansion of a charge dis-

tributed along the l′th cycle, the coefficients Tm are exactly the multipole moments of the

charge distribution. In this formulation our first question reads whether we can arrange a

charged distribution to have the desired multipole moments given by the coefficients Tm.

We expect that the answer is positive.

The second question is more subtle. To realize a metastable nonsupersymmetric vac-

uum via the OOP mechanism, one has to tune the superpotential in a way which is deter-

mined by properties of the Kähler metric at that point. As we saw in section 3.2 one has to

tune the coefficients of the effective superpotential only up to cubic order in an expansion

around the candidate metastable point. Since we have a very large number of parameters

Tm at our disposal it seems that generically we should be able to tune them to generate

metastable vacua at most points on the moduli space. However we do not have a proof

of this statement and it is possible that various relations between the period matrices and

the Kähler metric invalidate the naive counting.26

5. Factorization II: an example

In the previous section, we argued, based on the factorization of the Riemann surface and

Calabi-Yau, that it is possible to embed the nonsupersymmetric metastable vacua we found

in 3 in a “larger” Calabi-Yau, the idea being that the flux threading compact cycles on

one side of the Calabi-Yau looks like flux coming from infinity from the viewpoint of the

other side of the Calabi-Yau. In this section, we will discuss the Dijkgraaf-Vafa geometries

of subsection 3.1.2:

ΣDV : y2 = Pn(x)2 − fn−1(x), Pn(x) =

n∏

I=1

(x − αI), (5.1)

as an example where our proposal can in principle be implemented, and make some steps

towards actually confirming our proposal.

26This question is similar to whether one can realize the OOP mechanism with a single trace superpotential

for the adjoint scalar in an SU(N) gauge theory. In [24] it was demonstrated that for SU(2) a metastable

vacuum can be generated anywhere on the moduli space by a single trace superpotential, and for SU(N)

at the center of the moduli space. It was not fully analyzed whether this is possible in generality.
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5.1 Factorization limit in practice

As explained in 3.1.2, αI are non-normalizable parameters which represent the positions

of the cuts on the x-plane, while the coefficients in fn−1(x), or equivalently variables SI

defined in (3.35), are normalizable (or at least log-normalizable) and hence are dynamical

variables describing the size of those cuts. Therefore, in this Dijkgraaf-Vafa case (5.1), αI

are the parameters we want to adjust in order to approach the factorization limit where

ΣDV degenerates into two subsectors.

So, what we should do is clear: we divide the n cuts into two parts as n = nL + nR,

the ones on the left indexed by i and on the right by i′, and send these two groups apart

from each other by a large factor L = 1/ǫ so that

αi − αi′ = O(L) (when L → ∞). (5.2)

In the L → ∞ limit, the left and right sides will be very far apart and the factorization we

discussed in the previous section must be achieved. For example, the period matrix of the

total Riemann surface must diagonalize as in (4.3) up to 1/L correction.

There is one thing we should be careful about when taking the L → ∞ limit. If we

try to separate the two sets of cuts by naively taking the typical difference between αi

and αi′ to be of order L while keeping the size of the cuts fixed, then a simple estimate

of the scaling of SL
i , SR

i′ using (3.35) shows that the physical size of the 3-cycles in the

Calabi-Yau blows up. What we want instead is to end up with two sets of 3-cycles of finite

size, separated by a large distance, so that we are left with nontrivial dynamics of SL
i , SR

i′ .

To achieve this we must also scale the size of the cuts, as we send L → ∞. Let xL and xR

be local coordinates in the left and right sectors, respectively, and set

x̃L = LrxL, x̃R = Lr′xR, (5.3)

where

r =
nR

nL + 1
, r′ =

nL

nR + 1
. (5.4)

Then, from (3.35), it is not difficult to see that we can keep SL
i , SR

i′ finite if we keep x̃L,

x̃R finite while taking the L → ∞ limit. A similar rescaling of local coordinates must be

also necessary when taking a factorization limit in any other examples than (5.1).

5.2 Computation of period matrix

In the Dijkgraaf-Vafa geometry (5.1), the period matrix is given by

τIJ =
∂2F0

∂SI∂SJ
, (5.5)

Here, F0 is the B-model prepotential, which by the Dijkgraaf-Vafa relation [63, 74] is related

to matrix models. The precise way to scale various quantities to take the factorization limit

being understood from subsection 5.1, it is in principle possible to confirm our proposal

for the Dijkgraaf-Vafa geometry using (5.5). For doing that, it is important to be able

to compute the prepotential F0 for a large number of cuts n. The results from section 3
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show that generating a metastable vacuum requires quite a lot of coefficients Tm. Since

we roughly need the same number of cuts on the right as the number of tuned Σm’s on

the left, the total Riemann surface must have quite a large number of cuts. So, in this

subsection we will explain the way to compute F0 and thus τIJ for an arbitrary n.

For Dijkgraaf-Vafa geometries (5.1) the prepotential F0 may in fact be computed for

any number of cuts n in a number of ways. The most direct way is evaluating the period

integrals on the hyperelliptic curve. This has been done up to cubic order in SI in [75].

Duality with a U(N) matrix model [63, 74]

Z = exp




∞∑

g=0

g2g−2
s Fg(S)


 =

∫
dN2

Φ exp

[
1

gs
tr W (Φ)

]
, (5.6)

where the matrix model action is given by

W ′(x) = Pn(x) =

n∏

I=1

(x − αI) (5.7)

makes this computation quite a bit simpler. Let us quickly show this argument [74].

The field Φ is an N × N matrix. Say N I eigenvalues of Φ are placed at the critical

point x = αI and divide the matrix Φ into N I × NJ blocks ΦIJ , where
∑n

I=1 N I = N .

One can go to the gauge ΦIJ = 0 for I 6= J by introducing fermionic ghosts in the matrix

model action. This produces the following extra term in the action, where ΦI ≡ ΦII :

Wghost =
∑

I 6=J

tr(BJIΦICIJ + CJIΦIBIJ). (5.8)

To write down Feynman diagrams, we expand ΦI around x = αI as ΦI = αI + φI . A

Taylor series of W (ΦI) = W (αI + φI) around αI yields the propagator and p-vertices for

φI . In particular, this shows that the propagator for φI is given by

〈φIφI〉 =
1

W ′′(αI)
=

1

∆I
, (5.9)

where ∆I = W ′′(αI) =
∏n

J 6=I αIJ . Moreover, expanding the ghost action determines the

ghost propagator to be

〈BJICIJ〉 =
1

αIJ
, (5.10)

and gives the Yukawa interactions between φI , BJI and CIJ .

The contribution to the prepotential F0 of order three in the SI ’s is given by planar

diagrams with three holes. Writing down the expressions gI,3 and gI,4 in terms of α’s and

∆’s shows that

F0,3 =
n∑

I=1

uIS
3
I +

n∑

I 6=J

uI;JS2
I SJ +

n∑

I<J<K

uIJKSISJSK , (5.11)
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Figure 6: The contribution to F0,3 given in terms of matrix diagrams. Gray double lines represent

φI fields, while black-and-gray double lines represent BC ghosts.

where

uI =
2

3

(
−
∑

J 6=I

1

α2
IJ∆J

+
1

4∆I

∑

J<K
J,K 6=i

1

αIJαIK

)
,

uI;J = − 3

α2
IJ∆I

+
2

α2
IJ∆J

− 2

αIJ∆I

∑

K 6=I,J

1

αIK
and

uIJK = 4

(
1

αIJαIK∆I
+

1

αJIαJK∆J
+

1

αKIαKJ∆K

)
.

In appendix D, we discuss the generalization of this result to higher order in SI . In

particular, we compute F0 up to S5 terms.

5.3 Scaling of period matrix

The method explained in subsection 5.2 allows one in principle to compute the period

matrix to any order in SI for general Dijkgraaf-Vafa curves (5.1). Then the factorization

limit can be achieved simply by taking the L → ∞ limit of the result and one can start

looking for metastable vacua. In this subsection, as a step towards it, let us pursue a more

modest goal of seeing the factorized behavior of the period matrix, (4.3).

The form of the scaling can be elegantly derived for any possible contributing matrix

model diagram to F0. First note that ∆i scales as L2r as L → ∞, and ∆i′ as L2r′ . All

propagators with indices from either side of the surface have an expansion in terms of

αIJ ’s and ∆I ’s, and thus a scaling in L which is easy to determine. The total scaling of

a planar diagram with an arbitrary number of these elements turns out to depend just on

the number of ghost vertices that connect the left side to the right side. It is given by

1

L(1+r)Nii′+(1+r′)Ni′i

, (5.12)
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where Nii′ is the number of ghost vertices with external ghost lines indexed by (i, i′) and

the external φ-line by (i, i). Note that in deriving this we assumed the scaling (5.3) and

thus Si
L, Si′

R are of order one.

This shows that a diagram with only indices on the left (or on the right) will be of

order 1 in L. Since such diagrams contribute to the period matrix τij (or τi′j′), so this

shows that the period matrix is of order 1 in L, with corrections in 1/L from diagrams that

contain at least two loops indexed by i and j. On the other hand, the off-diagonal pieces

of the period matrix τii′ and τi′i contain at least one ghost cross-vertex with indices i and

i′. These parts will therefore scale at least as 1/L. In particular, for large L the properties

of the full Riemann surface Σ are determined by those of the two factors ΣL,ΣR, and the

period matrix τIJ indeed diagonalizes as in (4.3).

Having checked the diagonalization (4.3), the problem of actually finding an example

of a metastable vacuum then just amounts to solving equation (4.19) together with (4.16)

using the data from matrix model, for Tm giving a metastable vacuum. Solving these

equations is nontrivial, since the relation between the flux parameters N i′ on the right and

the coefficients in the superpotential Tm we want on the left are non-linear, although we

expect that the solutions do exist by the multipole argument we gave in section 4. We leave

matrix model computations up to requisite orders as well as finding the actual metastable

vacua by solving those equations for the future work.

6. Conclusion and generalizations

Summarizing, we found that turning on flux with support at infinity in local Calabi-Yau

in type IIB induces superpotential for the moduli in the local Calabi-Yau, thus breaking

N = 2 of the Calabi-Yau compactification down to N = 2. Then we demonstrated that

one can create metastable vacua by tuning the flux at infinity using the OOP mechanism,

using a Dijkgraaf-Vafa (CIV-DV) geometry as a primary example. The metastable vacua

known to exist [24, 37] in perturbed Seiberg-Witten theory can also be understood in terms

of metastable flux configuration.

Flux diverging at infinity may appear problematic, but in reality a local Calabi-Yau

must be regarded as a local approximation of a larger compact Calabi-Yau and the flux

at infinity has a natural interpretation there; there is flux floating around in the rest of

the Calabi-Yau, which “leaks” into our local Calabi-Yau and just appear to be coming in

from infinity. This, furthermore, motivates a more natural setting to realize metastable

flux vacua: in a part, say on the right side, of the full Calabi-Yau M, there are some

3-cycles threaded by flux (and possibly O-planes to cancel net charge if M is compact)

and on the left side there are some 3-cycles without flux through them. If the distance

between the left and right sectors is large, the full Calabi-Yau M factorizes into an almost

decoupled system of ML and MR, and the flux in MR appears to be flux at infinity

from the viewpoint of ML and induces superpotential in ML. By adjusting the number

of fluxes in MR, we can tune the superpotential and generate metastable vacua in ML.

This is a very well controlled setting to analyze flux vacua, which may shed light on the

structure of the nonsupersymmetric landscape of string vacua. We also made some steps
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toward actually embedding metastable vacua in a larger Calabi-Yau as sketched above

in the case of Dijkgraaf-Vafa geometry by computing certain matrix model amplitudes.

Actually finding explicit vacua along that line is an interesting open problem.

Note that we needed just two main ingredients to achieve this result. The OOP

mechanism requires that the complex structure moduli space is special Kähler, and it is

important that a superpotential for flux is very much controllable by tuning the flux, such

as the Gukov-Vafa-Witten superpotential. This means that we can generalize the above

story to any setting which fulfills these two requirements. Other possibilities therefore

include M-theory and F-theory on Calabi-Yau fourfolds [76, 28]. Let us finish by saying a

few words on these two setups.

Compactifying M-theory on a Calabi-Yau fourfold M4 with fluxes yields a three-

dimensional low energy theory with 4 supercharges. The complex structure moduli of

the Calabi-Yau are part of the chiral supermultiplets and are described by variations of the

holomorphic (4, 0)-form Ω. In the local limit where the fourfold becomes noncompact, the

Kähler potential on the moduli space is given by

K =

∫

M4

Ω ∧ Ω, (6.1)

so that the metric on the moduli space is indeed special Kähler. Moreover, it is well-known

that the complex moduli may be stabilized by turning on 4-form flux F4, which introduces

the superpotential

W =

∫

M4

F4 ∧ Ω. (6.2)

The condition for unbroken supersymmetry is W = dW = 0, so that F4 has to be a (2, 2)-

form. Stabilizing the Kähler moduli as well requires that the flux is primitive under the

Lefschetz decomposition (and in particular self-dual). Turning on primitive (2, 2) flux on

some compact 4-cycles, we can now follow an equivalent procedure as in IIB.

M-theory compactified on M4 is equivalent to compactifying F-theory on M4 ×S1, at

least if M4 is an elliptically fibered Calabi-Yau. This leads to a four-dimensional space-time

with 4 supercharges. So again, the Kähler potential is given by (6.1), and the flux F4 is a

primitive (2, 2)-form. The relation with IIB consistently reduces F4 to a harmonic (2, 1)-

flux G3. The extra seven-branes that must be inserted in IIB when reducing over a singular

T 2 do not contribute to the superpotential and thus don’t play an important role here.

In particular, consider as an example the local Calabi-Yau fourfold

u2 + v2 + w2 + F (x, y) = 0, (6.3)

where all variables are C (or C
∗) valued, and F (x, y) defines a smooth curve in the x, y-

plane. Its holomorphic four-form is given by

Ω =
du ∧ dv

w
∧ dx ∧ dy. (6.4)
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The u, v,w-fiber defines a two-sphere over each point in the x, y-plane, which shrinks to

zero-size over the curve F (x, y) = 0.27 Four-cycles can be constructed as an S2 fibration

over some disk D ending on the curve and have the topology of a four-sphere (when x and

y ∈ C). Notice that the intersection lattice is symmetric now and not simply symplectic

anymore, so that the bilinear identity takes a more complicated form. However, like in the

threefold case all relevant quantities reduce to the Riemann surface, and the analysis is

similar as before.
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A. Some basic results on Riemann surfaces

In this appendix we summarize some basic properties of Riemann surfaces [77].

A compact Riemann surface Σg is a one-dimensional compact complex manifold and

its topology is completely characterized by its genus g. The middle cohomology group has

dim H1(Σg) = 2g. The intersection form on H1(Σg, Z) is antisymmetric and by Poincaré

duality unimodular, meaning that we can pick a basis of 1-cycles Ai, Bj with intersection:

Ai ∩ Aj = 0, Bi ∩ Bj = 0, Ai ∩ Bj = δi
j , i, j = 1, . . . , g. (A.1)

Such a basis is unique up to a symplectic transformation in Sp(2g, Z).

Σg has a complex structure moduli space Mg with dimMg = 3g − 3, g ≥ 2.

A 1-form ω on a Riemann surface is called a holomorphic differential if in a local

coordinate patch it has the form:

ω = f(z)dz, f(z) : holomorphic. (A.2)

We will also consider meromorphic differentials, for which we allow the function f(z) to have

poles at certain points on the surface. Now we present a standard basis for holomorphic

and meromorphic differentials on a general Riemann surface:

Holomorphic differentials28 ωi: Once we pick a symplectic basis of one-cycles, there

is a canonical basis of holomorphic differentials ωi, i = 1, . . . , g, with the following periods:

1

2πi

∮

Ai

ωj = δi
j ,

1

2πi

∮

Bi

ωj = τij. (A.3)

27Like in the Calabi-Yau threefold case, the real part of F (x, y) changes sign when crossing the Riemann

surface. This flop changes the parametrization of the compact S2 in the T ∗S2-fiber from a “real” S2 into

an “imaginary” S2.
28These are also called meromorphic differentials of the first kind.
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The (symmetric) matrix τij is the period matrix of the surface, which depends on the

complex structure of Σg.

Meromorphic differentials of the second kind,29 ξP
m≥1

: These are characterized by

a point P on the surface where the differential has a pole of order m + 1 with m ≥ 1.

They are normalized so that in local complex coordinates z where z(P ) = 0 they have the

Laurent expansion:

ξP
m ∼ m

dz

zm+1
+ regular. (A.4)

Meromorphic differentials of the third kind, ξ
P,P ′

0
: characterized by two points

P,P ′, where the differential has first order poles with opposite residues. Around P we have:

ξP,P ′

0 ∼ dz

z
+ regular (A.5)

and similarly around P ′ with the opposite sign.

Notice that we can always shift a meromorphic differential by a holomorphic differen-

tial without changing the singular part of the Laurent expansions (A.4), (A.5). We can

eliminate this ambiguity by demanding that the A periods of the meromorphic differentials

vanish: ∮

Ai

ξP
m = 0. (A.6)

In general, it is not possible to simultaneously set the B periods to zero. Instead we have:

∮

Bi

ξP
m = KP

im, (A.7)

where the matrix KP
im depends on the complex structure moduli of the Riemann surface

and the position of the puncture P .

A.1 Hyperelliptic case

Let us consider the case where Σg is hyperelliptic. For example, the curve appearing in

the Dijkgraaf-Vafa case, (3.32), can be written as:

y2 = Pn(x)2 − fn−1(x), Pn(x) =
n∏

i=1

(x − αi). (A.8)

This curve can be regarded as a two-sheeted x-plane with n cuts and two punctures, the lat-

ter corresponding to infinities on the two x-planes. Let us denote these points by ∞ and ∞̃.

A basis of holomorphic differentials ωi, i = 1, . . . , n − 1 can be constructed by

ωi =
Qi(x)

y
dx =

Qi(x)√
Pn(x)2 − fn−1(x)

dx, (A.9)

29A more common notation in the literature for meromorphic differentials of the second and third kinds

is dΩ
P
m and dΩ

P,P ′

0
.
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where Qi(x) is a polynomial of degree up to n − 2 chosen so that (A.3) holds. Note that

this ωi goes as ∼ O(x−2)dx as x → ∞, ∞̃, which means that this is regular at x = ∞, ∞̃.

In the hyperelliptic case, it is convenient to take the meromorphic differentials of the

second kind, ξm, as

ξm =
Rm(x)

y
dx =

Rm(x)√
Pn(x)2 − fn−1(x)

dx, m ≥ 1. (A.10)

Here, Rm(x) = mxm+n−1 + . . . is a polynomial and the coefficients of xm+n−2, . . . , xn−1

are chosen so that

ξm = ±
[
mxm−1 + O(x−2)

]
dx, x ∼ ∞, ∞̃ (A.11)

is satisfied. This condition is similar to (A.4), but this ξm has poles at two points, x =

∞, ∞̃, instead of one. The coefficients of xn−2, . . . , x0 are chosen so that (A.6) is satisfied.

The meromorphic differentials of the third kind, ξ0, can be defined likewise using a

polynomial R0(x) = xn−1 + . . . , where the coefficients are chosen so that

ξ0 =
R0(x)

y
dx = ±

[
1

x
+ O(x−2)

]
dx, x ∼ ∞, ∞̃ (A.12)

holds and (A.6) is satisfied.

Let us derive a formula that will be useful in the main text. By expanding the right

hand side of the trivial identity 0 =
∫
Σg

ωi ∧ ξm by the Riemann bilinear identity, one finds

0 =
∑

j

(∫

Aj

ωi

∫

Bj

ξm −
∫

Aj

ξm

∫

Bj

ωi

)
+

∑

p=∞,f∞

∮

p
ωi d

−1ξm

= Kim +
∑

p=∞,f∞

∮

p
ωi d

−1ξm. (A.13)

Because the behaviors of ωi, ξm at x = ∞ is the same as those at x = ∞̃ up to a sign,

Kim = −
∑

p=∞,f∞

∮

p
ωi d

−1ξm = −2

∮

∞

ωi d
−1ξm = −2

∮

∞

xmωi. (A.14)

B. Parametric representation of genus 1 curves and sample computations

In this appendix, we review the parametric representation of the genus 1 Riemann surface

ΣDV of section 3.2 defined by

0 = FDV(x, y) = y2 −
[(

x2 − ∆2

4

)2

− b0

]
(B.1)

and its application to obtaining some of the results used therein. In particular, we think

of ΣDV as a copy of the standard fundamental domain with two marked points, a1 and

a2, corresponding to the points at infinity on the two sheets. In figures 7(a) and 7(b), we

depict both the standard visualization of ΣDV as a double-sheeted cover of the x-plane as

well as the parametric one, identifying the standard A and B cycles in the former and their

realization in the latter.
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(a) (b)

Figure 7: (a) Depiction of ΣDV as double cover of the x-plane with compact A and B cycles

indicated. (b) Depiction of ΣDV as fundamental domain in z-plane with the corresponding A and

B cycles indicated.

B.1 Building blocks

The embedding of ΣDV into xy space is obtained by specifying functions x(z) and y(z)

which satisfy (B.1). The basic building blocks that we use to construct x(z) and y(z) are

Janik’s functions Fi(z) [78]

Fi(z) ≡ ln θ(z − ai − τ̃) τ̃ =
τ + 1

2
(B.2)

and their derivatives

F
(n)
i (z) ≡

(
∂

∂z

)n

Fi(z) (B.3)

A detailed description of these functions, their properties, and several sample computations

can be found in appendix C of [79]. For now, we simply note a few elementary facts. First,

we point out that Fi(z) introduces a branch point at ai while F
(n)
i introduces a pole of

order n. For n ≥ 2 these functions are elliptic while for n = 0, 1 they have the following

monodromies

Fi(z + 1) = Fi(z)

Fi(z + τ) = Fi(z) + iπ − 2πi(z − ai)

F
(1)
i (z + 1) = F

(1)
i (z)

F
(1)
i (z + τ) = F

(1)
i (z) − 2πi

(B.4)

It is also useful to record the relation between these functions and the Weierstrass σ, ζ,

and ℘ functions

F (z) = ln σ(z) − η1z
2 + iπz + ln θ′(τ̃)

F (1)(z) = ζ(z) + iπ − 2η1z

F (2)(z) = −℘(z) − 2η1

F (n)(z) = −
(

∂

∂z

)n−2

℘(z) n¿2

(B.5)
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where

η1 = ζ

(
1

2

)
(B.6)

Finally, we also recall the differential equation satisfied by ℘(z)

(
∂℘(z)

∂z

)2

= 4℘(z)3 − g2℘(z) − g3 (B.7)

which can also be taken as an implicit definition of the Weierstrass elliptic invariants g2

and g3.

B.2 The embedding functions x(z) and y(z)

Using the building block functions F
(n)
i (z), it is fairly easy to write down embedding

functions x(z) and y(z) satisfying (B.1). Because x(z) should be locally one-to-one near

the marked points, we must construct it from functions with single poles, namely F
(1)
1 and

F
(1)
2 . On the other hand, y(z) ∼ x(z)2 near the marked points so it must contain functions

with double poles, F
(2)
1 and F

(2)
2 . This leads us to write30

x(z) = X
(
F

(1)
1 − F

(1)
2 −

[
F (1)(a) − iπ

])

y(z) = X2
(
F

(2)
1 − F

(2)
2

) (B.8)

where

a ≡ a2 − a2 (B.9)

Because elliptic functions such as x(z) and y(z) are completely determined by their pole

structure, it is in fact quite easy to verify that

y(z)2 =

[(
x(z)2 − ∆2

4

)2

− b1x(z) − b0

]
(B.10)

where

∆2 = 12X2℘(a)

b1 = −4X3℘′(a)

b0 = X4
[
12℘(a)2 − g2

]
(B.11)

In order to obtain b1 = 0 we set

a =
τ

2
(B.12)

We can solve for X in (B.11)

X2 =
12℘(τ/2)b0

∆3 [12℘(τ/2)2 − g2]
(B.13)

and use this to eliminate X, thereby obtaining a direct relationship between ∆, b0, and

the complex modulus τ

b0 =
∆4
[
12℘(τ/2)2 − g2

]

144℘(τ/2)2
(B.14)

30The constant term that we add to x(z) is added for later convenience.
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B.3 Two sample computations

We now describe two sample computations which illustrate the power of this approach.

First, we will reproduce a result that is more easily obtained using the explicit represen-

tation (B.1). Next, we will consider a computation for which the parametric approach is

simpler.

As our first example, let us consider the quantity

Σ =
1

4πi

∮

x=∞

x2 dy (B.15)

As we saw in section 3.2, this can be done quite easily using the explicit representation (B.1)

with the result

Σ =
b0

2
(B.16)

We can also write this directly in terms of τ using (B.14)

Σ =
∆4 [12℘(τ/2)−g2]

288℘(τ/2)2
(B.17)

Let us now see how the result (B.16) can be obtained using the parametric representation.

For this, we write

Σ=
1

4πi

∮

a1

x(z)2
∂y(z)

∂z
dz=

1

4πi

∮

a2

X4
(
F

(1)
1 −F

(1)
2 −

[
F (1)(a)−iπ

])2(
F

(3)
1 −F

(3)
2

)
dz (B.18)

and expand the integrand near a1. This is straightforward and leads to

x(z)2
∂y(z)

∂z
∼ b0

12℘(τ/2)2−g2

(
2

(z−a1)5
+

4℘(τ/2)

(z−a1)3
+

12℘(τ/2)2−g2

z − a1
+O([z−a1]

0)

)
(B.19)

where we have used (B.11). The residue appearing in Σ is now easily read off with the

desired result

Σ =
b0

2
(B.20)

Next, let us turn our attention to the computation of

S ≡ 1

2πi

∮

A1

y dx (B.21)

In the parametric formalism, we write this as

S ≡ 1

2πi

∫

A1

y(z)
∂x(z)

∂z
dz =

1

2πi

∫

A1

X3
(
F

(2)
1 − F

(2)
2

)2
(B.22)

To evaluate this, we will write the integrand as a sum of quasi-elliptic functions and use

their known monodromies (B.4). Given that the integrand has poles of degree at most 4

with even (odd) poles at a1 and a2 entering with identical (opposite) signs, the general

form of this expansion is relatively simple

(
F

(2)
1 −F

(2)
2

)2
=a
(
F

(4)
1 +F

(4)
2

)
+b
(
F

(3)
1 −F

(3)
2

)
+c
(
F

(2)
1 +F

(2)
2

)
+d
(
F

(1)
1 −F

(1)
2 +iπ

)
+e (B.23)
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In terms of these expansion coefficients, the monodromies (B.4) lead to the simple result

S =
X3

2πi
(iπd + e) (B.24)

In practice, the coefficients a, . . . , e can be by comparing pole structures on the two sides

of (B.23) with the following result when a = τ/2

a = −1

6
, b = 0, c = 2℘(τ/2), d = 0, e =

2g2

3
+ 8η1℘(τ/2) − 4℘(τ/2)2 (B.25)

This means that S is actually given by the relatively simple expression

S =
∆3

2πi [12℘(τ/2)]3/2

(
2g2

3
+ 8η1℘(τ/2) − 4℘(τ/2)2

)
(B.26)

B.4 Some useful identities

Finally, we close this appendix by listing a few derivative identities that were useful in

section 3.2. First, some derivative identities

∂ζ(z)

∂τ
= − 1

2πi

[
1

2
℘′(z) + ζ(z)℘(z) − g2z

12
+ 2η1 (ζ(z) − z℘(z))

]

∂℘(z)

∂τ
=

1

2πi

[
2℘(z)2 + ζ(z)℘′(z) − g2

3
− 2η1

(
z℘′(z) + 2℘(z)

)]

∂η1

∂τ
= − 1

2πi

(
2η2

1 − g2

24

)

∂g2

∂τ
=

1

2πi
(6g3 − 8g2η1)

(B.27)

Several of these can be combined in order to derive the additional useful result

∂

∂τ
[℘(τ/2)] =

1

2πi

[
2℘(τ/2)2 − g2

3
− 4η1℘(τ/2)

]
(B.28)

We also remind the reader that the partial differential equation

(
∂℘(z)

∂z

)2

= 4℘(z)3 − g2℘(z) − g3 (B.29)

combined with the fact that

℘′(τ/2) = 0 (B.30)

implies that the elliptic invariant g3 can be written in terms of g2 and ℘(τ/2) as

g3 = 4℘(τ/2)3 − g2℘(τ/2) (B.31)

C. Independence of Σm’s

In this appendix, we consider the Dijkgraaf-Vafa geometry and examine the dependence of

Σm’s on the moduli S = {Si}, or equivalently, on the coefficients b = {bi} of the polynomial

fn−1(x) as defined in (3.33). To apply the OOP mechanism and generate a metastable
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vacuum at a point bi = b
(0)
i , it is needed that, when we expand Σm(b)’s around a point in

∆bi ≡ bi − b
(0)
i , the coefficients of ∆bi, ∆bi ∆bj, ∆bi ∆bj∆bk terms are all independent and

by taking linear combinations of Σm(b)’s we can obtain the OOP superpotential (2.35).

For simplicity, let us first discuss the case where we treat bn−1, which is log-

normalizable, as a dynamical modulus. In this case the number of moduli is n and the

number of coefficients we would like to tune is, from (3.76),

Cn =
n(n + 1)(n + 5)

6
. (C.1)

Explicitly, Σm(b) is given by

Σm(b) =
1

2πim

∮

∞

xmdy =
1

m
Res
x=∞

[
xm 2Pn(x)P ′

n(x) − f ′
n−1(x)

2
√

Pn(x)2 − fn−1(x)

]

=
1

M
Res
x=∞

[
xm

(
P ′

n(x) − f ′
n−1(x)

2Pn(x)

)

×
(

1 +
1

2

fn−1(x)

Pn(x)2
+

3

8

(
fn−1(x)

Pn(x)2

)2

+
5

16

(
fn−1(x)

Pn(x)2

)3

+ · · ·
)]

. (C.2)

So, Σm(b) are polynomials in bi’s. If they are generic polynomials in b with high enough

degree, then the expansion of Σm(b) around a generic point b(0) in ∆b will have different

coefficients of ∆b, (∆b)2, (∆b)3 terms, for different values of m. If this were the case, then

the minimum number of Σm’s we need to consider would be Cn in (C.1).

However, for small m, Σm(p) is not a generic polynomial in bi and we need to be

careful. From (C.2), one can read off the following pattern of dependence of Σm’s on bi’s:

• Σ−n, . . . ,Σ0 do not depend on bk’s, because the only contributions come from P ′
n.

• A term with just one bi (i = 0, . . . n− 1) appears in P ′
n(f ′

n−1/P
2
n) and f ′

n−1/Pn. Such

a term has degree i − n − 1 in both cases and hence bi first shows up in Σn−i. bn−1

appears in Σ1 and b0 appears in Σn.

• The combination bibj (i, j = 0, . . . n − 1) appears in P ′
n(f ′

n−1/P
2
n)2 and

(f ′
n−1/Pn)(f ′

n−1/P
2
n). These terms have degree i + j − 3n − 1 and hence bibj first

shows up in Σ3n−i−j. b2
n−1 appears in Σn+2 and b2

0 appears in Σ3n.

• The combination bibjbk (i, j, k = 0, . . . n − 1) appears in P ′
n(f ′

n−1/P
2
n)3 and

(f ′
n−1/Pn)(f ′

n−1/P
2
n)2. These terms have degree i + j + k − 5n − 1 and hence bibjbk

first shows up in Σ5n−i−j−k. b3
0 appears in Σ2n+3 and b3

0 appears in Σ5n.

From these, we can see that we have to satisfy some requirements. Let us call m of Σm

“order.”

• We need all combinations of ∆bi ∆bj ∆bk, but b3
0, which contains (∆b0)

3, does not

appear until order An = 5n.
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• The number of possible cubic terms, ∆bi ∆bj ∆bk, is n(n + 1)(n + 2)/6. Cubic terms

start to appear at order 2n + 3 and therefore, for all possible cubic terms to have

chance of all showing up in a linear independent way, we need to wait until order

(2n + 3) + n(n + 1)(n + 2)/6 − 1 ≡ Bn.

• The number of possible quadratic terms and cubic terms is n(n+1)/2+n(n+1)(n+

2)/6. Quadratic terms start to appear at order n + 2 and cubic terms appear at

higher order. Therefore, for all possible quadratic and cubic terms to have chance

of all showing up in a linear independent way, we need to wait until order (n + 2) +

n(n + 1)/2 + n(n + 1)(n + 2)/6 − 1 ≡ B̃n.

• From (C.1), we need Cn independent coefficients. So, we need to wait until at least

order Cn.

By looking at which of An, Bn, B̃n, Cn is largest for given n, we find that we need Σm’s at

least up to mmin, where

n = 1 → mmin = 5,

n ≥ 2 → mmin = Bn =
(n + 1)(n + 2)(n + 3)

6
.

(C.3)

By a similar analysis, if bn−1 is regarded as a nondynamical parameter, we find the

following:
n = 2 → mmin = 10,

n = 3 → mmin = 15,

n ≥ 4 → mmin =
n3

6
+

n2

2
+

n

3
+ 3.

(C.4)

D. Prepotential for Dijkgraaf-Vafa (CIV-DV) geometries

In this appendix, we first review different approaches to computing the prepotential F0 for

the Dijkgraaf-Vafa (CIV-DV) geometries [57, 58, 63 – 65] given in eqs. (3.31), (3.32):

uv − FDV(x, y) = 0, (D.1)

FDV(x, y) ≡ w2 −
[
Pn(x)2 − fn−1(x)

]
, (D.2)

Pn(x) = W ′(x) = gn+1

n∏

i=1

(x − αi), (D.3)

for arbitrary number of cuts n. Moreover, we will present F0 for general n up to S5 terms.

In the present paper, the prepotential is used in section 5 to evaluate the period matrix

of the underlying hyperelliptic Riemann surface. However, the content of this appendix is

almost independent of the main text and can be read separately.

The prepotential is physically important, because by putting fluxes in the Dijkgraaf-

Vafa geometry one can realize supersymmetric N = 1 U(N) gauge theory, and its glueball

superpotential which governs low energy dynamics can be computed from the prepoten-

tial [57, 58]. Furthermore, by the Dijkgraaf-Vafa relation [63 – 65], the prepotential is
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related to unitary matrix models. The relation to matrix models was studied also using su-

pergraphs [80] and Konishi anomaly [54]. The same prepotential also underlies the physics

of metastable brane-antibrane systems studied recently [9, 81, 79].

The first computation of the prepotential was performed in [57] for n = 2 (two cuts) up

to S5 terms by directly evaluating period integrals, where S is the glueball. For small values

of n, the computation of F0 up to several orders in S is relatively easy, but computations

for general number of cuts n require more systematic approaches. One such approach is

to evaluate period integrals systematically; ref. [75] established a methodology, computing

F0 for general n up to S3 terms. Another approach is to use the relation to matrix

models. One can evaluate the matrix integrals directly [82] or by a more sophisticated

diagrammatic technique [74]. This matrix model approach turns out to be rather efficient

in actual computations and indeed, in section D.1, we will compute F0 up to S5 terms.

Yet another approach is to use the relation to the Whitham hierarchy [83]. For other work

on computations of F0 for general n, see [84 – 86].

We believe that the result of this appendix has various practical applications, including

search for nonsupersymmetric vacua in N = 1 gauge theories.

D.1 Matrix model

By the Dijkgraaf-Vafa relation [63 – 65], the prepotential F0(S), S = (S1, . . . , Sn), of the

geometry (D.1) is related to the free energy of the associated U(N) matrix model,

Z = e−Fmm(gs,N) =

∫
dN2

Φ exp

[
− 1

gs
tr W (Φ)

]
, (D.4)

where Φ is an N × N matrix.31 This matrix integral is performed around the vacuum

where N i eigenvalues of Φ sit at αi. If we replace N i in Fmm(gs, N) by Si by the relation

gsN
i = Si, (D.5)

then the free energy organize itself into a genus (’t Hooft) expansion. Namely,

Fmm

(
gs,

S

gs

)
=

∞∑

g=0

g2g−2
s Fg(S). (D.6)

As reviewed in section 5, one can evaluate the matrix integral (D.4) by perturbation

theory using diagrams [74], as far as the perturbative part of Fmm is concerned. However,

this quickly gets out of hand, particularly because for general n one can have p-point interac-

tion vertices with arbitrarily large p, which makes the number of diagrams explode. Namely,

if we expand Φ around the critical point x = αi, each coefficient gi,p in the expansion

W (αi + x) = W (αi) +
m2

i

2
x2 +

n+1∑

p=3

gi,p

p
xp (D.7)

31Here, the argument “N” in Fmm(gs, N) denotes (N1, . . . , Nn) collectively, not to be confused with the

rank N =
P

i
N i of the matrix Φ.
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gives a p-vertex interaction, and p can be arbitrarily large for general n. Here,

m2
i = W ′′(αi), gi,p =

1

(p − 1)!
W (p)(αi) (D.8)

and W (p) is the pth derivative.

A more efficient method amenable to computer was proposed in [87 – 89], and here we

generalize it to the case with an arbitrary number of cuts n. First note that the perturbative

part of the matrix model free energy Fmm can be written as an expansion in the coupling

constant gs as:

Fmm,pert(gs, N) =

∞∑

k=1

gk
s fk(N). (D.9)

Here, the order k amplitude fk(N) is a polynomial of degree k + 2 in N i’s, which in turn

has a genus expansion as follows:

fk(N) =

[ k+1
2 ]∑

g=0

A
(k,g)
i1...ik−2g+2

N i1 · · ·N ik−2g+2 , (D.10)

where the coefficients A
(k,g)
i1i2... are totally symmetric in i1, i2, . . . , and [x] is the integer

part of x. For a given finite k, the number of coefficients A
(k,g)
i1i2... in fk(N) is of course

finite. Therefore, if we compute fk(N) for some small values of {N i} by computer, we

can determine the coefficients A
(k,g)
i1i2.... Furthermore, there is symmetry under exchange of

eigenvalues; for example, if we know A
(k,g)
1123 , we can obtain A

(k,g)
2214 by the manipulation:

(α1,m1, g1,p) ↔ (α2,m2, g2,p), (α3,m3, g3,p) → (α4,m4, g4,p).

This symmetry significantly reduces the number of “data points” {N i}, for which we should

evaluate the matrix integral in order to determine fk(N). In particular, this means that,

if one knows fk(N) for n = k +2 cuts, then one can determine fk(N) for arbitrary number

of cuts n by symmetry.

For actually evaluating matrix integrals, it is convenient to go to the eigenvalue

basis [90]:

e−Fmm(g,N) =

∫
dNλ

[
N∏

a<b

(λa − λb)
2

]
exp

[
− 1

gs

N∑

a=1

W (λa)

]
, (D.11)

where the Van der Monde determinant is from the change of variables [90]. We would like to

compute this perturbatively around the vacuum where N i of the eigenvalues λa’s are equal

to αi, where i = 1, . . . , n. So, let us divide λa’s into n groups and expand around αi as:

λia = αi + µia. i = 1, . . . , n, a = 1, . . . , N i. (D.12)
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Then the matrix integral (D.11) is, up to a multiplicative constant,

∫
dNµ




n∏

i=1

N i∏

a<b

(µia − µib)
2






n∏

i<j

N i∏

a=1

Nj∏

b=1

(µia − µjb + αij)
2




× exp


− 1

gs

n∑

i=1

N i∑

a=1


m2

i

2
µ2

ia +

n∑

p=3

gi,p

p
µp

ia




 ,

(D.13)

where we used the expansion (D.7) and αij ≡ αi − αj . Given {N i}, we can evaluate this

using computer by power expansion in gs which, following the procedure sketched above,

allows us to determine fk(N) order by order.

D.2 Result

By setting ∆i ≡ m2
i , the first order result (O(N3)) is

f1(N) =
∑

i

(
gi,4

2∆2
i

−
2g2

i,3

3∆3
i

)
(N i)3 +

∑

i6=j

(
2gi,3

∆2
i αij

+
1

∆iα2
ij

− 2

∆jα2
ij

)
(N i)2N j

+ 4
∑

i<j<k

(
1

∆iαijαki

+
1

∆jαjkαij

+
1

∆kαkiαjk

)
N iN jNk

+
∑

i

(
gi,4

4∆2
i

−
g2
i,3

6∆3
i

)
N i, (D.14)

The coupling constants gi,p can be expressed in terms of αi using (D.8). The terms cubic

in N i are planar amplitude, while the ones linear in N i are genus 1 (torus) amplitude. This

agrees with the known result [75], if we use identities

gi,4

∆2
i

= gn+1
1

∆i

∑

j<k
j,k 6=i

1

αijαik
,

gi,3

αij∆2
i

= gn+1

(
1

α2
ij∆i

+
1

αij∆i

∑

k 6=i,j

1

αik

)
,

g2
i,3

∆3
i

= g2
n+1

(
−
∑

j 6=i

1

α2
ij∆j

+
1

∆i

∑

j<k
j,k 6=i

1

αijαik

)
,

(D.15)

upon using which (D.14) becomes, after setting gn+1 = 1,

f1(N) =
2

3

∑

i

(∑

j 6=i

1

α2
ij∆j

− 1

4∆i

∑

j<k
j,k 6=i

1

αijαik

)
(N i)3

+
∑

i6=j

(
3

∆iα2
ij

− 2

∆jα2
ij

+
2

αij∆i

∑

k 6=i,j

1

αik

)
(N i)2N j

+ 4
∑

i<j<k

(
1

∆iαijαki
+

1

∆jαjkαij
+

1

∆kαkiαjk

)
N iN jNk

+
∑

i

(
1

6

∑

j 6=i

1

αij∆
2
j

+
1

12∆i

∑

j<k
j,k 6=i

1

αijαik

)
N i. (D.16)

– 53 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
2

The second order result (O(N4)) is much more lengthy. Let us write it as:

f2(N) =
∑

i

aiiiiN
4
i +

∑

i6=j

aiiijN
3
i Nj +

∑

i<j

aiijjN
2
i N2

j

+
∑

i,j,k
j<k

aiijkN
2
i NiNj +

∑

i<j<k<l

aijklNiNjNkNl

+
∑

i

biiN
2
i +

∑

i<j

bijNiNj.

(D.17)

Then the coefficients aiiii, etc. are:

aiiii = +
5gi,6

6∆3
i

− 3gi,5gi,3

∆4
i

−
9g2

i,4

8∆4
i

+
6gi,4g

2
i,3

∆5
i

−
8g4

i,3

3∆6
i

,

aiiij = +
4gi,5

αij∆3
i

− 12gi,4gi,3

αij∆4
i

− 2gi,4

α2
ij∆

3
i

+
8g3

i,3

αij∆5
i

+
4g2

i,3

α2
ij∆

4
i

+
8gi,3

3α3
ij∆

3
i

− 8gj,3

3α3
ij∆

3
j

− 4gi,3

α3
ij∆

2
i ∆j

+
1

α4
ij∆

2
i

+
4

α4
ij∆

2
j

− 4

α4
ij∆i∆j

,

aiijj = +
6gi,4

α2
ij∆

3
i

+
6gj,4

α2
ij∆

3
j

−
8g2

i,3

α2
ij∆

4
i

−
8g2

j,3

α2
ij∆

4
j

− 2gi,3gj,3

α2
ij∆

2
i ∆

2
j

− 8gi,3

α3
ij∆

3
i

+
8gj,3

α3
ij∆

3
j

+
2gi,3

α3
ij∆

2
i ∆j

− 2gj,3

α3
ij∆i∆2

j

− 5

α4
ij∆

2
i

− 5

α4
ij∆

2
j

+
11

α4
ij∆i∆j

,

aiijk = +
12gi,4

αijαik∆
3
i

−
16g2

i,3

αijαik∆
4
i

− 8gi,3

α2
ijαik∆

3
i

− 8gi,3

α2
ikαij∆

3
i

+
8gj,3

α2
ijαjk∆

3
j

− 8gk,3

α2
ikαjk∆

3
k

+
4gi,3

α2
ijαjk∆

2
i ∆j

− 4gi,3

α2
ikαjk∆

2
i ∆k

− 8

αijαikα
2
jk∆j∆k

− 8

α3
ijαjk∆

2
j

+
8

α3
ijαik∆i∆j

+
8

α3
ikαjk∆

2
k

+
8

α3
ikαij∆i∆k

− 4

α3
ijαik∆

2
i

+
4

α3
ijαjk∆i∆j

− 4

α3
ikαij∆

2
i

− 4

α3
ikαjk∆i∆k

+
4

α2
ijα

2
jk∆

2
j

− 2

α2
ijα

2
ik∆

2
i

+
4

α2
ikα

2
jk∆

2
k

,

aijkl = +
16gi,3

αijαikαil∆
3
i

− 16gj,3

αijαjkαjl∆
3
j

+
16gk,3

αikαjkαkl∆
3
k

− 16gl,3

αilαjlαkl∆
3
l

− 8

α2
ijαilαjk∆i∆j

− 8

α2
ijαikαjl∆i∆j

+
8

α2
ikαilαjk∆i∆k

− 8

α2
ikαijαkl∆i∆k

+
8

α2
ilαikαjl∆i∆l

+
8

α2
ilαijαkl∆i∆l

+
8

α2
jkαikαjl∆j∆k

+
8

α2
jkαijαkl∆j∆k

− 8

α2
jlαijαkl∆j∆l

+
8

α2
jlαilαjk∆j∆l

− 8

α2
klαilαjk∆k∆l

− 8

α2
klαikαjl∆k∆l

+
8

α2
ijαikαil∆

2
i

+
8

α2
ijαjkαjl∆

2
j

+
8

α2
ikαijαil∆

2
i

− 8

α2
ikαjkαkl∆

2
k

+
8

α2
ilαijαik∆

2
i

+
8

α2
ilαjlαkl∆

2
l

− 8

α2
jkαijαjl∆

2
j

− 8

α2
jkαikαkl∆

2
k
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− 8

α2
jlαijαjk∆

2
j

+
8

α2
jlαilαkl∆

2
l

+
8

α2
klαikαjk∆

2
k

+
8

α2
klαilαjl∆

2
l

bii = +
5gi,6

3∆3
i

− 4gi,5gi,3

∆4
i

+
13gi,4g

2
i,3

2∆5
i

−
15g2

i,4

8∆4
i

−
7g4

i,3

3∆6
i

bij = +
2gi,5

αij∆3
i

− 2gj,5

αij∆3
j

− 4gi,4gi,3

αij∆4
i

+
4gj,3gj,4

αij∆4
j

− gi,4

α2
ij∆

3
i

− gj,4

α2
ij∆

3
j

+
2g3

i,3

αij∆5
i

−
2g3

j,3

αij∆5
j

+
g2
i,3

α2
ij∆

4
i

+
g2
j,3

α2
ij∆

4
j

+
2gi,3

3α3
ij∆

3
i

− 2gj,3

3α3
ij∆

3
j

− 2

α4
ij∆i∆j

+
1

2α4
ij∆

2
i

+
1

2α4
ij∆

2
j

(D.18)

The third order result (O(N5)) is too lengthy to be included here. The interested

reader can find the result in the Mathematica file included in the source file for the current

paper at arXiv.org.

It is easy to identify the matrix model diagrams corresponding to each term in the

above result. For example, the first term in aiiii in the second order result (D.18),
5gi,6

6∆3
i

comes from the following two planar diagrams:

I

I I

I

I

I

I

I

−2 · (− gi,6

6 ) · 1
∆3

i

−3 · (− gi,6

6 ) · 1
∆3

i

Note that the definitions (D.4) means that the coupling constants gi,p enter the free energy

Fmm with a sign as follows:

−
∏

i,p

(−gi,p). (D.19)

This is in addition to the signs coming from the fermionic ghosts.
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