1,866 research outputs found

    Integrated Circuits Parasitic Capacitance Extraction Using Machine Learning and its Application to Layout Optimization

    Get PDF
    The impact of parasitic elements on the overall circuit performance keeps increasing from one technology generation to the next. In advanced process nodes, the parasitic effects dominate the overall circuit performance. As a result, the accuracy requirements of parasitic extraction processes significantly increased, especially for parasitic capacitance extraction. Existing parasitic capacitance extraction tools face many challenges to cope with such new accuracy requirements that are set by semiconductor foundries (\u3c 5% error). Although field-solver methods can meet such requirements, they are very slow and have a limited capacity. The other alternative is the rule-based parasitic capacitance extraction methods, which are faster and have a high capacity; however, they cannot consistently provide good accuracy as they use a pre-characterized library of capacitance formulas that cover a limited number of layout patterns. On the other hand, the new parasitic extraction accuracy requirements also added more challenges on existing parasitic-aware routing optimization methods, where simplified parasitic models are used to optimize layouts. This dissertation provides new solutions for interconnect parasitic capacitance extraction and parasitic-aware routing optimization methodologies in order to cope with the new accuracy requirements of advanced process nodes as follows. First, machine learning compact models are developed in rule-based extractors to predict parasitic capacitances of cross-section layout patterns efficiently. The developed models mitigate the problems of the pre-characterized library approach, where each compact model is designed to extract parasitic capacitances of cross-sections of arbitrary distributed metal polygons that belong to a specific set of metal layers (i.e., layer combination) efficiently. Therefore, the number of covered layout patterns significantly increased. Second, machine learning compact models are developed to predict parasitic capacitances of middle-end-of-line (MEOL) layers around FINFETs and MOSFETs. Each compact model extracts parasitic capacitances of 3D MEOL patterns of a specific device type regardless of its metal polygons distribution. Therefore, the developed MEOL models can replace field-solvers in extracting MEOL patterns. Third, a novel accuracy-based hybrid parasitic capacitance extraction method is developed. The proposed hybrid flow divides a layout into windows and extracts the parasitic capacitances of each window using one of three parasitic capacitance extraction methods that include: 1) rule-based; 2) novel deep-neural-networks-based; and 3) field-solver methods. This hybrid methodology uses neural-networks classifiers to determine an appropriate extraction method for each window. Moreover, as an intermediate parasitic capacitance extraction method between rule-based and field-solver methods, a novel deep-neural-networks-based extraction method is developed. This intermediate level of accuracy and speed is needed since using only rule-based and field-solver methods (for hybrid extraction) results in using field-solver most of the time for any required high accuracy extraction. Eventually, a parasitic-aware layout routing optimization and analysis methodology is implemented based on an incremental parasitic extraction and a fast optimization methodology. Unlike existing flows that do not provide a mechanism to analyze the impact of modifying layout geometries on a circuit performance, the proposed methodology provides novel sensitivity circuit models to analyze the integrity of signals in layout routes. Such circuit models are based on an accurate matrix circuit representation, a cost function, and an accurate parasitic sensitivity extraction. The circuit models identify critical parasitic elements along with the corresponding layout geometries in a certain route, where they measure the sensitivity of a route’s performance to corresponding layout geometries very fast. Moreover, the proposed methodology uses a nonlinear programming technique to optimize problematic routes with pre-determined degrees of freedom using the proposed circuit models. Furthermore, it uses a novel incremental parasitic extraction method to extract parasitic elements of modified geometries efficiently, where the incremental extraction is used as a part of the routing optimization process to improve the optimization runtime and increase the optimization accuracy

    Analysis and design of power delivery networks exploiting simulation tools and numerical optimization techniques

    Get PDF
    A higher performance of computing systems is being demanded year after year, driving the digital industry to fiercely compete for offering the fastest computer system at the lowest cost. In addition, as computing system performance is growing, power delivery networks (PDN) and power integrity (PI) designs are getting increasingly more relevance due to the faster speeds and more parallelism required to obtain the required performance growth. The largest data throughput at the lowest power consumption is a common goal for most of the commercial computing systems. As a consequence of this performance growth and power delivery tradeoffs, the complexity involved in analyzing and designing PDN in digital systems is being increased. This complexity drives longer design cycle times when using traditional design tools. For this reason, the need of using more efficient design methods is getting more relevance in order to keep designing and launching products in a faster manner to the market. This trend pushes PDN designers to look for methodologies to simplify analysis and reduce design cycle times. The main objective for this Master’s thesis is to propose alternative methods by exploiting reliable simulation approaches and efficient numerical optimization techniques to analyze and design PDN to ensure power integrity. This thesis explores the use of circuital models and electromagnetic (EM) field solvers in combination with numerical optimization methods, including parameter extraction (PE) formulations. It also establishes a sound basis for using space mapping (SM) methodologies in future developments, in a way that we exploit the advantages of the most accurate and powerful models, such as 3D full-wave EM simulators, but conserving the simplicity and low computational resourcing of the analytical, circuital, and empirical models

    Cross-layer design of thermally-aware 2.5D systems

    Full text link
    Over the past decade, CMOS technology scaling has slowed down. To sustain the historic performance improvement predicted by Moore's Law, in the mid-2000s the computing industry moved to using manycore systems and exploiting parallelism. The on-chip power densities of manycore systems, however, continued to increase after the breakdown of Dennard's Scaling. This leads to the `dark silicon' problem, whereby not all cores can operate at the highest frequency or can be turned on simultaneously due to thermal constraints. As a result, we have not been able to take full advantage of the parallelism in manycore systems. One of the 'More than Moore' approaches that is being explored to address this problem is integration of diverse functional components onto a substrate using 2.5D integration technology. 2.5D integration provides opportunities to exploit chiplet placement flexibility to address the dark silicon problem and mitigate the thermal stress of today's high-performance systems. These opportunities can be leveraged to improve the overall performance of the manycore heterogeneous computing systems. Broadly, this thesis aims at designing thermally-aware 2.5D systems. More specifically, to address the dark silicon problem of manycore systems, we first propose a single-layer thermally-aware chiplet organization methodology for homogeneous 2.5D systems. The key idea is to strategically insert spacing between the chiplets of a 2.5D manycore system to lower the operating temperature, and thus reclaim dark silicon by allowing more active cores and/or higher operating frequency under a temperature threshold. We investigate manufacturing cost and thermal behavior of 2.5D systems, then formulate and solve an optimization problem that jointly maximizes performance and minimizes manufacturing cost. We then enhance our methodology by incorporating a cross-layer co-optimization approach. We jointly maximize performance and minimize manufacturing cost and operating temperature across logical, physical, and circuit layers. We propose a novel gas-station link design that enables pipelining in passive interposers. We then extend our thermally-aware optimization methodology for network routing and chiplet placement of heterogeneous 2.5D systems, which consist of central processing unit (CPU) chiplets, graphics processing unit (GPU) chiplets, accelerator chiplets, and/or memory stacks. We jointly minimize the total wirelength and the system temperature. Our enhanced methodology increases the thermal design power budget and thereby improves thermal-constraint performance of the system

    Application of dynamic vibration absorbers on double-deck circular railway tunnels to mitigate railway-induced ground-borne vibration

    Get PDF
    This dissertation is concerned with investigating the efficiency of dynamic vibration absorbers (DVAs) as measures to mitigate ground-borne vibrations induced by railway traffic in double-deck tunnels. The main topics of the dissertation are the coupling of a set of longitudinal distributions of DVAs to the interior floor of a double-deck tunnel dynamic model, the computation of the response of this coupled system due to train traffic and obtaining the optimum design parameters of the DVAs to minimize this response. To address the first concern, a methodology for coupling a set of longitudinal distributions of DVAs to any railway subsystem in the context of a theoretical dynamic model of railway infrastructure is developed. The optimum design parameters of the DVAs are obtained using an optimization process based on a genetic algorithm. The effectiveness of the DVAs is assessed by two response parameters, which are used as objective functions to be minimized in the optimization process: the energy flow radiated upwards by the tunnel and the maximum transient vibration value (MTVV) in the building near the tunnel. The model used to compute the former is a two-and-a-half dimensional (2.5D) semi-analytical model of a train-track-tunnel-soil system that considers a full-space soil model, and the one used to compute the latter is a hybrid experimental-numerical model of a train-track-tunnel-soil-building system. In the hybrid model, a numerical model of the track-tunnel system based on 2.5D coupled finite element-boundary element formulation along with a dynamic rigid multi-body model of the vehicle is used to compute the response in the tunnel wall, and then, the response in the building is computed using experimentally obtained transfer functions between the tunnel wall and the building. The triaxial response in the building is used to compute the MTVV. An alternative option to evaluate the MTVV in a building is to use a fully theoretical model of the train-track-tunnel-soil-building system. In the context of this modeling strategy, a computationally efficient method to calculate the 2.5D Green's functions of a layered soil is also presented. The results show that the DVAs would be an effective mitigation measure for railway-induced vibrations in double-deck tunnels as reductions up to 6.6 dB in total radiated energy flow and up to 3.3 dB in the vibration inside a nearby building are achieved in the simulations presented in this work.En esta tesis se estudia la eficiencia de los absorbedores de vibraciones dinámicos (DVAs) como medidas de mitigación de las vibraciones inducidas por infraestructuras ferroviarias aplicados a túneles ferroviarios de dos niveles. Los principales desarrollos de la tesis son el acoplamiento de un conjunto de distribuciones longitudinales de DVAs a la losa intermedia de un modelo dinámico de túnel de dos niveles, el cálculo de la respuesta de este sistema acoplado debido al paso del tren y la obtención de los parámetros óptimos de los DVAs para minimizar esta respuesta. Para abordar la primer punto, se ha desarrollado una metodología con el fin de acoplar un conjunto de distribuciones longitudinales de DVAs a cualquier subsistema ferroviario en el contexto de modelos teóricos de la dinámica de infraestructura ferroviarias. Los parámetros óptimos de los DVAs han sido obtenidos mediante un proceso de optimización basado en un algoritmo genético. La eficiencia de los DVAs se evalúa mediante dos quantificadores de la respuesta dinámica del sistema, los cuales se utilizan como funciones objetivo a minimizar en el proceso de optimización: el flujo de energía total radiado hacia arriba desde el túnel y el valor máximo de vibración transitoria (MTVV) en el forjada de un edificio cercano al túnel. El modelo utilizado para calcular el primero es un modelo semi-analítico del sistema vehículo-vía-túnel-terreno que considera un modelo de terreno de espacio completo, y el que se utiliza para calcular el segundo es un modelo híbrido experimental-numérico del sistema vehículo-vía-túnel-terreno-edificio. En el modelo híbrido, se utiliza un modelo numérico del sistema vía-túnel basado en la formulación acoplada de elementos finitos-elementos de contorno acoplados, formulada en el dominio del número de onda y la frecuencia, junto con un modelo dinámico multicuerpo del vehículo con el objetivo de calcular la respuesta en la pared del túnel. Luego, la respuesta en el edificio se calcula utilizando funciones de transferencia obtenidas experimentalmente entre la pared del túnel y el edificio. Para calcular el MTVV, se utiliza la respuesta triaxial en el edificio. Una opción alternativa para evaluar el MTVV en un edificio es utilizar un modelo totalmente teórico del sistema vehículo-vía-túnel-terreno-edificio. En el contexto de esta estrategia de modelado, también se presenta un método computacionalmente eficiente para calcular las funciones de Green de un terreno en capas en el dominio 2.5D. Los resultados muestran que los DVAs pueden ser una medida de mitigación efectiva para las vibraciones inducidas por infraestructuras ferroviarias en el marco de un túnel ferroviario de dos niveles, ya que en las simulaciones presentadas en esta tesis se alcanzan reducciones de hasta 6.6 dB en el flujo de energía total radiado y hasta 3.3 dB en la vibración dentro de un edificio cercano.Postprint (published version

    Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects

    Get PDF
    New broadband applications are causing the datacenters to proliferate, raising the bar for higher interconnection speeds. So far, optical board-to-board and rack-to-rack interconnects relied primarily on low-cost commodity optical components assembled in a single package. Although this concept proved successful in the first generations of optical-interconnect modules, scalability is a daunting issue as signaling rates extend beyond 25 Gb/s. In this paper we present our work towards the development of two technology platforms for migration beyond Infiniband enhanced data rate (EDR), introducing new concepts in board-to-board and rack-to-rack interconnects. The first platform is developed in the framework of MIRAGE European project and relies on proven VCSEL technology, exploiting the inherent cost, yield, reliability and power consumption advantages of VCSELs. Wavelength multiplexing, PAM-4 modulation and multi-core fiber (MCF) multiplexing are introduced by combining VCSELs with integrated Si and glass photonics as well as BiCMOS electronics. An in-plane MCF-to-SOI interface is demonstrated, allowing coupling from the MCF cores to 340x400 nm Si waveguides. Development of a low-power VCSEL driver with integrated feed-forward equalizer is reported, allowing PAM-4 modulation of a bandwidth-limited VCSEL beyond 25 Gbaud. The second platform, developed within the frames of the European project PHOXTROT, considers the use of modulation formats of increased complexity in the context of optical interconnects. Powered by the evolution of DSP technology and towards an integration path between inter and intra datacenter traffic, this platform investigates optical interconnection system concepts capable to support 16QAM 40GBd data traffic, exploiting the advancements of silicon and polymer technologies

    DeepNav: Joint View Learning for Direct Optimal Path Perception in Cochlear Surgical Platform Navigation

    Get PDF
    Although much research has been conducted in the field of automated cochlear implant navigation, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as identifying the optimal navigation zone (OPZ) in the cochlear. In this paper, a 2.5D joint-view convolutional neural network (2.5D CNN) is proposed and evaluated for the identification of the OPZ in the cochlear segments. The proposed network consists of 2 complementary sagittal and bird-view (or top view) networks for the 3D OPZ recognition, each utilizing a ResNet-8 architecture consisting of 5 convolutional layers with rectified nonlinearity unit (ReLU) activations, followed by average pooling with size equal to the size of the final feature maps. The last fully connected layer of each network has 4 indicators, equivalent to the classes considered: the distance to the adjacent left and right walls, collision probability and heading angle. To demonstrate this, the 2.5D CNN was trained using a parametric data generation model, and then evaluated using anatomically constructed cochlea models from the micro-CT images of different cases. Prediction of the indicators demonstrates the effectiveness of the 2.5D CNN, for example the heading angle has less than 1° error with computation delays of less that <1 milliseconds

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems
    • …
    corecore