122 research outputs found

    Power Optimisation and Relay Selection in Cooperative Wireless Communication Networks

    Get PDF
    Cooperative communications have emerged as a significant concept to improve reliability and throughput in wireless systems. In cooperative networks, the idea is to implement a scheme in wireless systems where the nodes can harmonize their resources thereby enhancing the network performance in different aspects such as latency, BER and throughput. As cooperation spans from the basic idea of transmit diversity achieved via MIMO techniques and the relay channel, it aims to reap somewhat multiple benefits of combating fading/burst errors, increasing throughput and reducing energy use. Another major benefit of cooperation in wireless networks is that since the concept only requires neighbouring nodes to act as virtual relay antennas, the concept evades the negative impacts of deployment costs of multiple physical antennas for network operators especially in areas where they are difficult to deploy. In cooperative communications energy efficiency and long network lifetimes are very important design issues, the focus in this work is on ad hoc and sensor network varieties where the nodes integrate sensing, processing and communication such that their cooperation capabilities are subject to power optimisation. As cooperation communications leads to trade-offs in Quality of Services and transmit power, the key design issue is power optimisation to dynamically combat channel fluctuations and achieve a net reduction of transmit power with the goal of saving battery life. Recent researches in cooperative communications focus on power optimisation achieved via power control at the PHY layer, and/or scheduling mechanism at the MAC layer. The approach for this work will be to review the power control strategy at the PHY layer, identify their associated trade-offs, and use this as a basis to propose a power control strategy that offers adaptability to channel conditions, the road to novelty in this work is a channel adaptable power control algorithm that jointly optimise power allocation, modulation strategy and relay selection. Thus, a novel relay selection method is developed and implemented to improve the performance of cooperative wireless networks in terms of energy consumption. The relay selection method revolves on selection the node with minimum distance to the source and destination. The design is valid to any wireless network setting especially Ad-hoc and sensor networks where space limitations preclude the implementation of bigger capacity battery. The thesis first investigates the design of relay selection schemes in cooperative networks and the associated protocols. Besides, modulation strategy and error correction code impact on energy consumption are investigated and the optimal solution is proposed and jointly implemented with the relay selection method. The proposed algorithm is extended to cooperative networks in which multiple nodes participate in cooperation in fixed and variable rate system. Thus, multi relay selection algorithm is proposed to improve virtual MIMO performance in terms of energy consumption. Furthermore, motivated by the trend of cell size optimisation in wireless networks, the proposed relay selection method is extended to clustered wireless networks, and jointly implemented with virtual clustering technique. The work will encompass three main stages: First, the cooperative system is designed and two major protocols Decode and Forward (DF) and amplify and forward (AF) are investigated. Second, the proposed algorithm is modelled and tested under different channel conditions with emphasis on its performance using different modulation strategies for different cooperative wireless networks. Finally, the performance of the proposed algorithm is illustrated and verified via computer simulations. Simulation results show that the distance based relay selection algorithm exhibits an improved performance in terms of energy consumption compared to the conventional cooperative schemes under different cooperative communication scenarios

    Optimal cross layer design for CDMA-SFBC wireless systems

    Get PDF
    The demand for high speed reliable wireless services has been rapidly growing. Wireless networks have limited resources while wireless channels suffer from fading, interference and time variations. Furthermore, wireless applications have diverse end to end quality of service (QoS) requirements. The aforementioned challenges require the design of spectrally efficient transmission systems coupled with the collaboration of the different OSI layers i.e. cross layer design. To this end, we propose a code division multiple access (CDMA)-space frequency block coded (SFBC) systems for both uplink and downlink transmissions. The proposed systems exploit code, frequency and spatial diversities to improve reception. Furthermore, we derive closed form expressions for the average bit error rate of the proposed systems. In this thesis, we also propose a cross layer resource allocation algorithm for star CDMA-SFBC wireless networks. The proposed resource allocation algorithm assigns base transceiver stations (BTS), antenna arrays and frequency bands to users based on their locations such that their pair wise channel cross correlation is minimized while each user is assigned channels with maximum coherence time. The cooperation between the medium access control (MAC) and physical layers as applied by the optimized resource allocation algorithm improves the bit error rate of the users and the spectral efficiency of the network. A joint cross layer routing and resource allocation algorithm for multi radio CDMA-SFBC wireless mesh networks is also proposed in this thesis. The proposed cross layer algorithm assigns frequency bands to links to minimize the interference and channel estimation errors experienced by those links. Channel estimation errors are minimized by selecting channels with maximum coherence time. On top, the optimization algorithm routes network traffic such that the average end to end packet delay is minimized while avoiding links with high interference and short coherence time. The cooperation between physical, MAC and network layers as applied by the optimization algorithm provides noticeable improvements in average end to end packet delay and success rat

    Efficient Multicast in Next Generation Mobile Networks

    Get PDF

    Communications for smart grid substation monitoring using WIMAX protocol

    Get PDF
    The SMARTGRID is a general term for a series of infrastructural changes applied to the electric transmission and distribution systems. By using the latest communication and computing technology, additional options such as Condition Monitoring can now be implemented to further improve and optimise complex electricity supply grid operation. Lifecycle optimisation of high voltage assets and other system components in the utility provide a case in point. Today Utility experts agree that application of scheduled maintenance is not the effective use of resources. To reduce maintenance expenses and unnecessary outages and repairs of equipment due to scheduled maintenance, utilities are adopting condition based approaches. Real time online monitoring of substation parameters can be achieved by retrofitting the existing substation with SMARTGRID technology. The IEC 61850 is a common protocol meant for Substation Automation Systems, designed for the purpose of establishing interoperability, one that all manufacturers of all different assets must comply with. This thesis advocates the estimation of bandwidth required for monitoring a substation after retrofitting the existing substation with smart communication technologies. This includes establishing a latest wireless communication infrastructure from the substation to the control centre and evaluating the performance modelling and simulating the physical layer of communication technologies such as WIMAX (IEEE802.16) and MICROWAVE point to point using MATLAB SIMULINK and RADIO mobile online simulation software. Also, link budget of the satellite communication for the same application is calculated. Satellite communication in this case is considered as a redundant or back up technology to ensure that the communication between entities is continuous. On performing the simulation on different environments the results prove that the selected protocols are best suited for condition monitoring. The measured Latency could be the best approximated value which complies with the current objective. However the white noise that exists in the substation has significant hazard with respect to the security of the wireless network. To compensate this constraint whole substation is hard wired by means of plastic fibre optics and the data sent to the base station located near the substation

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Application of cognitive radio based sensor network in smart grids for efficient, holistic monitoring and control.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.This thesis is directed towards the application of cognitive radio based sensor network (CRSN) in smart grid (SG) for efficient, holistic monitoring and control. The work involves enabling of sensor network and wireless communication devices for spectra utilization via the capability of Dynamic Spectrum Access (DSA) of a cognitive radio (CR) as well as end to end communication access technology for unified monitoring and control in smart grids. Smart Grid (SG) is a new power grid paradigm that can provide predictive information and recommendations to utilities, including their suppliers, and their customers on how best to manage power delivery and consumption. SG can greatly reduce air pollution from our surrounding by renewable power sources such as wind energy, solar plants and huge hydro stations. SG also reduces electricity blackouts and surges. Communication network is the foundation for modern SG. Implementing an improved communication solution will help in addressing the problems of the existing SG. Hence, this study proposed and implemented improved CRSN model which will help to ultimately evade the inherent problems of communication network in the SG such as: energy inefficiency, interference, spectrum inefficiencies, poor quality of service (QoS), latency and throughput. To overcome these problems, the existing approach which is more predominant is the use of wireless sensor network (WSNs) for communication needs in SG. However, WSNs have low battery power, low computational complexity, low bandwidth support, and high latency or delay due to multihop transmission in existing WSN topology. Consequently, solving these problems by addressing energy efficiency, bandwidth or throughput, and latency have not been fully realized due to the limitations in the WSN and the existing network topology. Therefore, existing approach has not fully addressed the communication needs in SG. SG can be fully realized by integrating communication network technologies infrastructures into the power grid. Cognitive Radio-based Sensor Network (CRSN) is considered a feasible solution to enhance various aspects of the electric power grid such as communication with end and remote devices in real-time manner for efficient monitoring and to realize maximum benefits of a smart grid system. CRSN in SG is aimed at addressing the problem of spectrum inefficiency and interference which wireless sensor network (WSN) could not. However, numerous challenges for CRSNs are due to the harsh environmental wireless condition in a smart grid system. As a result, latency, throughput and reliability become critical issues. To overcome these challenges, lots of approaches can be adopted ranging from integration of CRSNs into SGs; proper implementation design model for SG; reliable communication access devices for SG; key immunity requirements for communication infrastructure in SG; up to communication network protocol optimization and so on. To this end, this study utilized the National Institute of Standard (NIST) framework for SG interoperability in the design of unified communication network architecture including implementation model for guaranteed quality of service (QoS) of smart grid applications. This involves virtualized network in form of multi-homing comprising low power wide area network (LPWAN) devices such as LTE CAT1/LTE-M, and TV white space band device (TVBD). Simulation and analysis show that the performance of the developed modules architecture outperforms the legacy wireless systems in terms of latency, blocking probability, and throughput in SG harsh environmental condition. In addition, the problem of multi correlation fading channels due to multi antenna channels of the sensor nodes in CRSN based SG has been addressed by the performance analysis of a moment generating function (MGF) based M-QAM error probability over Nakagami-q dual correlated fading channels with maximum ratio combiner (MRC) receiver technique which includes derivation and novel algorithmic approach. The results of the MATLAB simulation are provided as a guide for sensor node deployment in order to avoid the problem of multi correlation in CRSN based SGs. SGs application requires reliable and efficient communication with low latency in timely manner as well as adequate topology of sensor nodes deployment for guaranteed QoS. Another important requirement is the need for an optimized protocol/algorithms for energy efficiency and cross layer spectrum aware made possible for opportunistic spectrum access in the CRSN nodes. Consequently, an optimized cross layer interaction of the physical and MAC layer protocols using various novel algorithms and techniques was developed. This includes a novel energy efficient distributed heterogeneous clustered spectrum aware (EDHC- SA) multichannel sensing signal model with novel algorithm called Equilateral triangulation algorithm for guaranteed network connectivity in CRSN based SG. The simulation results further obtained confirm that EDHC-SA CRSN model outperforms conventional ZigBee WSN in terms of bit error rate (BER), end-to-end delay (latency) and energy consumption. This no doubt validates the suitability of the developed model in SG

    On the capacity of rate adaptive modulation systems over fading channel

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Impacts of Soil Type and Moisture on the Capacity of Multi-Carrier Modulation in Internet of Underground Things

    Get PDF
    Unique interactions between soil and communication components in wireless underground communications necessitate revisiting fundamental communication concepts from a different perspective. In this paper, capacity profile of wireless underground (UG) channel for multi-carrier transmission techniques is analyzed based on empirical antenna return loss and channel frequency response models in different soil types and moisture values. It is shown that data rates in excess of 124 Mbps are possible for distances up to 12 m. For shorter distances and lower soil moisture conditions, data rates of 362 Mbps can be achieved. It is also shown that due to soil moisture variations, UG channel experiences significant variations in antenna bandwidth and coherence bandwidth, which demands dynamic subcarrier operation. Theoretical analysis based on this empirical data show that by adaption to soil moisture variations, 180% improvement in channel capacity is possible when soil moisture decreases. It is shown that compared to a fixed bandwidth system; soilbased, system and sub-carrier bandwidth adaptation leads to capacity gains of 56%-136%. The analysis is based on indoor and outdoor experiments with more than 1; 500 measurements taken over a period of 10 months. These semi-empirical capacity results provide further evidence on the potential of underground channel as a viable media for high data rate communication and highlight potential improvements in this area
    corecore