2,086 research outputs found

    Models of Cognition: Neurological possibility does not indicate neurological plausibility

    Get PDF
    Many activities in Cognitive Science involve complex computer models and simulations of both theoretical and real entities. Artificial Intelligence and the study of artificial neural nets in particular, are seen as major contributors in the quest for understanding the human mind. Computational models serve as objects of experimentation, and results from these virtual experiments are tacitly included in the framework of empirical science. Cognitive functions, like learning to speak, or discovering syntactical structures in language, have been modeled and these models are the basis for many claims about human cognitive capacities. Artificial neural nets (ANNs) have had some successes in the field of Artificial Intelligence, but the results from experiments with simple ANNs may have little value in explaining cognitive functions. The problem seems to be in relating cognitive concepts that belong in the `top-down' approach to models grounded in the `bottom-up' connectionist methodology. Merging the two fundamentally different paradigms within a single model can obfuscate what is really modeled. When the tools (simple artificial neural networks) to solve the problems (explaining aspects of higher cognitive functions) are mismatched, models with little value in terms of explaining functions of the human mind are produced. The ability to learn functions from data-points makes ANNs very attractive analytical tools. These tools can be developed into valuable models, if the data is adequate and a meaningful interpretation of the data is possible. The problem is, that with appropriate data and labels that fit the desired level of description, almost any function can be modeled. It is my argument that small networks offer a universal framework for modeling any conceivable cognitive theory, so that neurological possibility can be demonstrated easily with relatively simple models. However, a model demonstrating the possibility of implementation of a cognitive function using a distributed methodology, does not necessarily add support to any claims or assumptions that the cognitive function in question, is neurologically plausible

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    The acquisition of tense-aspect morphology and the regular-irregular debate

    Get PDF
    This paper reviews research on English past-tense acquisition to test the validity of the single mechanism model and the dual mechanism model, focusing on regular-irregular dissociation and semantic bias. Based on the review, it is suggested that in L1 acquisition, both regular and irregular verbs are governed by semantics; that is, early use of past tense forms are restricted to achievement verbs—regular or irregular. In contrast, some L2 acquisition studies show stronger semantic bias for regular past tense forms (e.g., Housen, 2002, Rohde, 1996). It is argued that L1 acquisition of the past-tense morphology can be accounted for more adequately by the single-mechanism model

    A Connectionist Theory of Phenomenal Experience

    Get PDF
    When cognitive scientists apply computational theory to the problem of phenomenal consciousness, as many of them have been doing recently, there are two fundamentally distinct approaches available. Either consciousness is to be explained in terms of the nature of the representational vehicles the brain deploys; or it is to be explained in terms of the computational processes defined over these vehicles. We call versions of these two approaches vehicle and process theories of consciousness, respectively. However, while there may be space for vehicle theories of consciousness in cognitive science, they are relatively rare. This is because of the influence exerted, on the one hand, by a large body of research which purports to show that the explicit representation of information in the brain and conscious experience are dissociable, and on the other, by the classical computational theory of mind – the theory that takes human cognition to be a species of symbol manipulation. But two recent developments in cognitive science combine to suggest that a reappraisal of this situation is in order. First, a number of theorists have recently been highly critical of the experimental methodologies employed in the dissociation studies – so critical, in fact, it’s no longer reasonable to assume that the dissociability of conscious experience and explicit representation has been adequately demonstrated. Second, classicism, as a theory of human cognition, is no longer as dominant in cognitive science as it once was. It now has a lively competitor in the form of connectionism; and connectionism, unlike classicism, does have the computational resources to support a robust vehicle theory of consciousness. In this paper we develop and defend this connectionist vehicle theory of consciousness. It takes the form of the following simple empirical hypothesis: phenomenal experience consists in the explicit representation of information in neurally realized PDP networks. This hypothesis leads us to re-assess some common wisdom about consciousness, but, we will argue, in fruitful and ultimately plausible ways

    Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling

    Get PDF
    It is often assumed that similar domain-specific behavioural impairments found in cases of adult brain damage and developmental disorders correspond to similar underlying causes, and can serve as convergent evidence for the modular structure of the normal adult cognitive system. We argue that this correspondence is contingent on an unsupported assumption that atypical development can produce selective deficits while the rest of the system develops normally (Residual Normality), and that this assumption tends to bias data collection in the field. Based on a review of connectionist models of acquired and developmental disorders in the domains of reading and past tense, as well as on new simulations, we explore the computational viability of Residual Normality and the potential role of development in producing behavioural deficits. Simulations demonstrate that damage to a developmental model can produce very different effects depending on whether it occurs prior to or following the training process. Because developmental disorders typically involve damage prior to learning, we conclude that the developmental process is a key component of the explanation of endstate impairments in such disorders. Further simulations demonstrate that in simple connectionist learning systems, the assumption of Residual Normality is undermined by processes of compensation or alteration elsewhere in the system. We outline the precise computational conditions required for Residual Normality to hold in development, and suggest that in many cases it is an unlikely hypothesis. We conclude that in developmental disorders, inferences from behavioural deficits to underlying structure crucially depend on developmental conditions, and that the process of ontogenetic development cannot be ignored in constructing models of developmental disorders

    The Mode of Computing

    Full text link
    The Turing Machine is the paradigmatic case of computing machines, but there are others, such as Artificial Neural Networks, Table Computing, Relational-Indeterminate Computing and diverse forms of analogical computing, each of which based on a particular underlying intuition of the phenomenon of computing. This variety can be captured in terms of system levels, re-interpreting and generalizing Newell's hierarchy, which includes the knowledge level at the top and the symbol level immediately below it. In this re-interpretation the knowledge level consists of human knowledge and the symbol level is generalized into a new level that here is called The Mode of Computing. Natural computing performed by the brains of humans and non-human animals with a developed enough neural system should be understood in terms of a hierarchy of system levels too. By analogy from standard computing machinery there must be a system level above the neural circuitry levels and directly below the knowledge level that is named here The mode of Natural Computing. A central question for Cognition is the characterization of this mode. The Mode of Computing provides a novel perspective on the phenomena of computing, interpreting, the representational and non-representational views of cognition, and consciousness.Comment: 35 pages, 8 figure

    Transfer in a Connectionist Model of the Acquisition of Morphology

    Full text link
    The morphological systems of natural languages are replete with examples of the same devices used for multiple purposes: (1) the same type of morphological process (for example, suffixation for both noun case and verb tense) and (2) identical morphemes (for example, the same suffix for English noun plural and possessive). These sorts of similarity would be expected to convey advantages on language learners in the form of transfer from one morphological category to another. Connectionist models of morphology acquisition have been faulted for their supposed inability to represent phonological similarity across morphological categories and hence to facilitate transfer. This paper describes a connectionist model of the acquisition of morphology which is shown to exhibit transfer of this type. The model treats the morphology acquisition problem as one of learning to map forms onto meanings and vice versa. As the network learns these mappings, it makes phonological generalizations which are embedded in connection weights. Since these weights are shared by different morphological categories, transfer is enabled. In a set of experiments with artificial stimuli, networks were trained first on one morphological task (e.g., tense) and then on a second (e.g., number). It is shown that in the context of suffixation, prefixation, and template rules, the second task is facilitated when the second category either makes use of the same forms or the same general process type (e.g., prefixation) as the first.Comment: 21 pages, uuencoded compressed Postscrip

    Models of atypical development must also be models of normal development

    Get PDF
    Functional magnetic resonance imaging studies of developmental disorders and normal cognition that include children are becoming increasingly common and represent part of a newly expanding field of developmental cognitive neuroscience. These studies have illustrated the importance of the process of development in understanding brain mechanisms underlying cognition and including children ill the study of the etiology of developmental disorders
    corecore