2,219 research outputs found

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    A Reliable and Cost-Efficient Auto-Scaling System for Web Applications Using Heterogeneous Spot Instances

    Full text link
    Cloud providers sell their idle capacity on markets through an auction-like mechanism to increase their return on investment. The instances sold in this way are called spot instances. In spite that spot instances are usually 90% cheaper than on-demand instances, they can be terminated by provider when their bidding prices are lower than market prices. Thus, they are largely used to provision fault-tolerant applications only. In this paper, we explore how to utilize spot instances to provision web applications, which are usually considered availability-critical. The idea is to take advantage of differences in price among various types of spot instances to reach both high availability and significant cost saving. We first propose a fault-tolerant model for web applications provisioned by spot instances. Based on that, we devise novel auto-scaling polices for hourly billed cloud markets. We implemented the proposed model and policies both on a simulation testbed for repeatable validation and Amazon EC2. The experiments on the simulation testbed and the real platform against the benchmarks show that the proposed approach can greatly reduce resource cost and still achieve satisfactory Quality of Service (QoS) in terms of response time and availability

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    A study on performance measures for auto-scaling CPU-intensive containerized applications

    Get PDF
    Autoscaling of containers can leverage performance measures from the different layers of the computational stack. This paper investigate the problem of selecting the most appropriate performance measure to activate auto-scaling actions aiming at guaranteeing QoS constraints. First, the correlation between absolute and relative usage measures and how a resource allocation decision can be influenced by them is analyzed in different workload scenarios. Absolute and relative measures could assume quite different values. The former account for the actual utilization of resources in the host system, while the latter account for the share that each container has of the resources used. Then, the performance of a variant of Kubernetes’ auto-scaling algorithm, that transparently uses the absolute usage measures to scale-in/out containers, is evaluated through a wide set of experiments. Finally, a detailed analysis of the state-of-the-art is presented

    RHAS: robust hybrid auto-scaling for web applications in cloud computing

    Get PDF
    • …
    corecore