4,689 research outputs found

    A Formal Approach based on Fuzzy Logic for the Specification of Component-Based Interactive Systems

    Full text link
    Formal methods are widely recognized as a powerful engineering method for the specification, simulation, development, and verification of distributed interactive systems. However, most formal methods rely on a two-valued logic, and are therefore limited to the axioms of that logic: a specification is valid or invalid, component behavior is realizable or not, safety properties hold or are violated, systems are available or unavailable. Especially when the problem domain entails uncertainty, impreciseness, and vagueness, the appliance of such methods becomes a challenging task. In order to overcome the limitations resulting from the strict modus operandi of formal methods, the main objective of this work is to relax the boolean notion of formal specifications by using fuzzy logic. The present approach is based on Focus theory, a model-based and strictly formal method for componentbased interactive systems. The contribution of this work is twofold: i) we introduce a specification technique based on fuzzy logic which can be used on top of Focus to develop formal specifications in a qualitative fashion; ii) we partially extend Focus theory to a fuzzy one which allows the specification of fuzzy components and fuzzy interactions. While the former provides a methodology for approximating I/O behaviors under imprecision, the latter enables to capture a more quantitative view of specification properties such as realizability.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    Formalizing the Panarchy Adaptive Cycle with the Cusp Catastrophe

    Get PDF
    The panarchy adaptive cycle, a general model for change in natural and human systems, can be formalized by the cusp catastrophe of René Thom\u27s topological theory. Both the adaptive cycle and the cusp catastrophe have been used to model ecological, economic, and social systems in which slow and small continuous changes in two control variables produce fast and large discontinuous changes in system behavior. The panarchy adaptive cycle, the more recent of the two models, has been used so far only for qualitative descriptions of typical dynamics of such systems. The cusp catastrophe, while also often employed qualitatively, is a mathematical model capable of being used rigorously. If the control variables from the adaptive cycle are taken as parameters in the equation for the cusp catastrophe, a cycle very similar to the adaptive cycle can be constructed. Formalizing the panarchy adaptive cycle with the cusp catastrophe may provide direction for more rigorous applications of the adaptive cycle, thereby augmenting its usefulness in guiding sustainability efforts

    Norm-Establishing and Norm-Following in Autonomous Agency

    Get PDF
    Living agency is subject to a normative dimension (good-bad, adaptive-maladaptive) that is absent from other types of interaction. We review current and historical attempts to naturalize normativity from an organism-centered perspective, identifying two central problems and their solution: (1) How to define the topology of the viability space so as to include a sense of gradation that permits reversible failure, and (2) how to relate both the processes that establish norms and those that result in norm-following behavior. We present a minimal metabolic system that is coupled to a gradient-climbing chemotactic mechanism. Studying the relationship between metabolic dynamics and environmental resource conditions, we identify an emergent viable region and a precarious region where the system tends to die unless environmental conditions change. We introduce the concept of normative field as the change of environmental conditions required to bring the system back to its viable region. Norm-following, or normative action, is defined as the course of behavior whose effect is positively correlated with the normative field. We close with a discussion of the limitations and extensions of our model and some final reflections on the nature of norms and teleology in agency

    Designing Trustworthy Autonomous Systems

    Get PDF
    The design of autonomous systems is challenging and ensuring their trustworthiness can have different meanings, such as i) ensuring consistency and completeness of the requirements by a correct elicitation and formalization process; ii) ensuring that requirements are correctly mapped to system implementations so that any system behaviors never violate its requirements; iii) maximizing the reuse of available components and subsystems in order to cope with the design complexity; and iv) ensuring correct coordination of the system with its environment.Several techniques have been proposed over the years to cope with specific problems. However, a holistic design framework that, leveraging on existing tools and methodologies, practically helps the analysis and design of autonomous systems is still missing. This thesis explores the problem of building trustworthy autonomous systems from different angles. We have analyzed how current approaches of formal verification can provide assurances: 1) to the requirement corpora itself by formalizing requirements with assume/guarantee contracts to detect incompleteness and conflicts; 2) to the reward function used to then train the system so that the requirements do not get misinterpreted; 3) to the execution of the system by run-time monitoring and enforcing certain invariants; 4) to the coordination of the system with other external entities in a system of system scenario and 5) to system behaviors by automatically synthesize a policy which is correct

    Research Priorities for Robust and Beneficial Artificial Intelligence

    Get PDF
    Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.Comment: This article gives examples of the type of research advocated by the open letter for robust & beneficial AI at http://futureoflife.org/ai-open-lette

    Computational Modeling of Emotion: Towards Improving the Inter- and Intradisciplinary Exchange

    Get PDF
    International audienceThe past years have seen increasing cooperation between psychology and computer science in the field of computational modeling of emotion. However, to realize its potential, the exchange between the two disciplines, as well as the intradisciplinary coordination, should be further improved. We make three proposals for how this could be achieved. The proposals refer to: 1) systematizing and classifying the assumptions of psychological emotion theories; 2) formalizing emotion theories in implementation-independent formal languages (set theory, agent logics); and 3) modeling emotions using general cognitive architectures (such as Soar and ACT-R), general agent architectures (such as the BDI architecture) or general-purpose affective agent architectures. These proposals share two overarching themes. The first is a proposal for modularization: deconstruct emotion theories into basic assumptions; modularize architectures. The second is a proposal for unification and standardization: Translate different emotion theories into a common informal conceptual system or a formal language, or implement them in a common architecture

    A Mathematical Model of Organizing the Developmental Instruction in the System of Professional Education

    Get PDF
    One of the most important tasks of vocational education is to increase the intellectual potential of students, as this allows them to increase their competitiveness and demand for the labor market. The use of a competence-based methodological approach allows analyzing the processes taking place in the system of professional education and optimizing them. Within this study an original mathematical model of developing education was considered, which allows the decomposition, formalization and multi-criteria optimization of the learning process, and raise of its efficiency and effectiveness. Within the framework of the presented model, the key indicators of competency formation, the approaches to the organization of students\u27 individual work are presented. An adaptive developmental education system was formulated and substantiated based on the conducted formalization of educational processes and the use of mathematical modeling methods, the methodology for designing. Successful solution to the problem of developing education optimization will provide the needs of the employer community for trained professionals, and students for high-quality, competitive education. The presented models and methods were used for the practical implementation of the information system of the score-rating system of a higher educational institution. The scientific results presented in the work can be used in the development and implementation of information systems for the management of vocational education, which will improve the quality of the educational process
    • …
    corecore