THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Designing Trustworthy Autonomous Systems

PIERGIUSEPPE MALLOZZI

Division of Software Engineering
Department of Computer Science & Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2021

Designing Trustworthy Autonomous Systems

PIERGIUSEPPE MALLOZZI

Copyright (©)2021 Piergiuseppe Mallozzi
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-506-6
Doktorsavhandlingar vid Chalmers tekniska hogskola, Ny serie nr 4973.
ISSN 0346-718X

Technical Report No 198D

Department of Computer Science & Engineering

Division of Software Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using IXTEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii

“Without a specification, a system cannot be wrong,
it can only be surprising!”
- Gary McGraw

iv

Abstract

The design of autonomous systems is challenging and ensuring their trust-
worthiness can have different meanings, such as i) ensuring consistency and
completeness of the requirements by a correct elicitation and formalization
process; ii) ensuring that requirements are correctly mapped to system imple-
mentations so that any system behaviors never violate its requirements; iii)
maximizing the reuse of available components and subsystems in order to cope
with the design complexity; and iv) ensuring correct coordination of the system
with its environment.

Several techniques have been proposed over the years to cope with specific
problems. However, a holistic design framework that, leveraging on existing
tools and methodologies, practically helps the analysis and design of autonomous
systems is still missing.

This thesis explores the problem of building trustworthy autonomous sys-
tems from different angles. We have analyzed how current approaches of formal
verification can provide assurances: 1) to the requirement corpora itself by
formalizing requirements with assume/guarantee contracts to detect incom-
pleteness and conflicts; 2) to the reward function used to then train the system
so that the requirements do not get misinterpreted; 3) to the execution of
the system by run-time monitoring and enforcing certain invariants; 4) to the
coordination of the system with other external entities in a system of system
scenario and 5) to system behaviors by automatically synthesize a policy which
is correct.

Keywords

Autonomous Systems, System Trustworthiness, Formal Verification, Reinforce-
ment Learning, Runtime verification, Monitoring and enforcement, Assume-
Guarantee Contracts, Reactive Synthesis.

Acknowledgment

First of all, I would like to thank my supervisor Patrizio Pelliccione for believing
in me and allowing me to embark on an incredible journey. Thank you also for
giving me the freedom to explore different topics and find my way.

I would like to express my sincere gratitude to my co-supervisor Gerardo
Schneider for welcoming me in the formal methods division and never giving
up answering all my critical questions that have often lead to engaging in
interesting discussions.

To my examiner Ivica Crnkovic for always being there for me where I
needed support. Thank you so much also for giving me the opportunity and
the responsibility to design and teach the machine learning course, it has been
a truly rewarding experience.

I am deeply grateful to Alberto Sangiovanni-Vincentelli for inviting me to
UC Berkeley and showing new perspectives on how research can be conducted.
Thank you Antonio and Inigo for the helpful discussions during my stay there. I
am looking forward to coming back to such a rich environment full of inspiration,
ideas, and incredibly talented people.

I would also like to thank all my collaborators. In particular, I am grateful
to Pierluigi Nuzzo for the constant support, for answering my doubts, and for
helping me steer my research in new and exciting directions. Thank you also
to Nir Piterman for your insightful comments and suggestions. I look forward
to continuing our collaboration in the future.

This work would not have been possible without the support of the Wallen-
berg AI, Autonomous Systems and Software Program (WASP), funded by the
Knut and Alice Wallenberg Foundation. I can not believe how lucky I am for
being part of such an ambitious program. I will always be grateful for all the
opportunities that WASP has offered me.

I want to thank all my colleagues at the Computer Science and Engineering
department. In particular, I would like to thank my office mates Katja, Sergio,
Rebekka, and Claudia for always making the office a fun place to work and for
the deep discussions during lunch.

Finally, I would like to express my deepest gratitude to my family and all
my friends. To my music friends in Gothenburg, thank you Enzo, Eric, and
Max for jamming together and playing Take Five in all kinds of time signatures
possible. Thank you also to Marco, Evgeni, Carlo, and Grischa for the gigs
around the city and the good old times in the music room. Special thanks to
Ron and Margaret for listening to our music. To all other Gothenburg people,
in particular, Payam for the long discussions on life and politics; Romaric for

vii

viii

climbing together, and to always entertain everybody during our poker nights;
Lydia and Tugge for inviting me to your nice parties and cooking amazing
food; Tim and Francis for getting drunk together; Katja for the good old
jazz and cigars nights; Giacomo, Luca, and Riccardo for making me feel like
I was still in Italy. To Marta for sharing these last years of pandemic and
fake lockdowns at home eating and cooking delicious food and never being
bored. Thank you Giammi for often buying my groceries and for being who
you are. To my ‘japanese’ friends Veronica, Erik, Javi, Julen, Chris, and Anna
and to Japan Society for the Promotion of Science (JSPS) for making our
experience possible. Thank you, Ezequiel and Kenji for hosting me at Waseda
University. To my ‘french’ friends, particularly thank you Mancho for being a
good friend and often beating me at chess. To my ‘UK’ friends Lili and August
for all our adventures around London back in the days. To my ‘american’
friends, especially Sarah, Tommaso, and Andrea for making my stay there truly
memorable and joining me on trips around the world. I can not wait to see
you soon and start new adventures together! Last but not least, to my Pisa
friends Giacomo, Tanne, Joy, Angelo, Pierf, Carols, Polli, Colzi and Michela
for keeping in touch after all these years, for participating in the sometimes
heated WhatsApp discussions, and for always welcoming back to Pisa. And to
my hometown friends Federico, Stefano, Stefy, Micol, and Chiara for always
trying to be there for our reunions. Special thanks also to Argo and Nina for
always making me happy. I love you all, see you soon!

List of Publications

Appended publications

This thesis is based on the following publications:

A

P. Mallozzi, M. Sciancalepore, and P. Pelliccione “Formal verification of
the on-the-fly vehicle platooning protocol”

in Software Engineering for Resilient Systems (SERENE), Gothenburg
(Sweden), 2016, Springer

P. Mallozzi, R. Pardo, V. Duplessis, P. Pelliccione, and G. Schneider
“MoVEMo - A structured approach for engineering reward functions”
in International Conference on Robotic Computing (IRC), Laguna Hills
(CA), 2018, IEEE

P. Mallozzi, E. Castellano, P. Pelliccione, G. Schneider, and K. Tei

“A runtime monitoring framework to enforce invariants on reinforcement
learning agents exploring complex environments”

International Workshop on Robotics Software Engineering (ROSE),
Montreal (Canada), 2019, IEEE/ACM

P. Mallozzi, P. Nuzzo, P. Pelliccione and G. Schneider

“CROME: Contract-Based Robotic Mission Specification”
International Conference on Formal Methods and Models for System
Design (MEMOCODE), Jammu (India), 2020, IEEE/ACM

P. Mallozzi, P. Nuzzo, P. Pelliccione
“Incremental Refinement of Goal Models with Contracts”

International Conference on Fundamentals of Software Engineering
(FSEN), Tehran (Iran), 2021, IPM

P. Mallozzi, G. Schneider, N. Piterman, P. Nuzzo, and P. Pelliccione
“A Framework for Specifying and Realizing Correct—by—Construction
Contextual Robotic Missions using Contracts”

in submission

ix

Other publications

The following publications were published during my PhD studies. However,
they are not appended to this thesis, due to contents overlapping that of
appended publications or contents not related to the thesis.

G

P. Mallozzi, P. Pelliccione, A. Knauss, C. Berger, and N. Mohammadiha
“Autonomous vehicles: state of art, future trends, and challenges”

book chapter in Automotive Software Engineering: State of the Art and
Future Trends, 2017, Springer

P. Mallozzi, P. Pelliccione, and C. Menghi

“Keeping intelligence under control”

in International Workshop on Software Engineering for Cognitive
Services (SE4COG), Gothenburg (Sweden), 2018, ACM

P. Pelliccione, E. Knauss, R. Heldal, S. M. gren, P. Mallozzi, A.
Alminger, and D. Borgentun “Automotive architecture framework: The
experience of Volvo cars”

in Journal of Systems Architecture (JSA), 2017, Elsevier

P. Pelliccione, E. Knauss, R. Heldal, M. Agren, P. Mallozzi, A. Alminger,
and D. Borgentun “A proposal for an automotive architecture
framework for Volvo Cars”

in Automotive Systems/Software Architectures (WASA), Venice (Italy),
2016, IEEE

P. Mallozzi “Combining machine-learning with invariants assurance
techniques for autonomous systems”

in International Conference on Software Engineering Companion
(Doctoral Symposium), 2017, IEEE

Research Contribution

I took the lead in all the included papers.

The implementation, evaluation of the protocol and the formalization of
the properties described in PAPER A was done entirely by me. The remaining
authors supported me with the formal verification of the properties in randomly
generated scenarios and by reviewing the paper.

In PAPER B I have designed the method, set up the experiment and collected
and analyzed the data. The implementation was partially realized by me and
partially by the third author. The remaining authors contributed to reviewing
the paper, writing paragraphs related to the run-time monitoring and external
tools support.

Most of the contribution of the PAPER C is the result of my work. I have
designed the method and implemented the approach. The remaining authors
have helped me launching the experiments and collecting data.

I have designed the methodologies, implemented the tools and collected
the results of PAPER D, PAPER E and PAPER F. The remaining authors have
helped me addressing theoretical doubts, and polishing the paper.

xii

Contents

[Abstractl v
|Acknowledgement)| vii
G FPublications ix
[Personal Contributionl xi
1__Introductionl 1
(L1 _The world and the machinel 5
[1.2 Challenges and Related Work| 7
(1.2.1 Challenge 1: Capturing and modeling requirements|. . . 7

[1.2.2 Challenge 2: From requirement to specification| 8

[1.2.3 Challenge 3: Environment assumptions are unknown| . . 10

[1.2.4 Challenge 4: Gap between system specification and sys- |

| tem 1mplementation| oL 11
3 Trustworthiness| o ot ie 13
[1.3.1 Linear Temporal Logic[. 13

[1.3.2 Model Checkingl 15

[L.3.3 Runtime Verificationl 15

[1.3.4 Reactive Synthesis| 15

[1.3.5 Contracts for System Design| 16

[1.3.6 Reinforcement Learning| 18

1.4 Goals and Methodology| 21
[1.5 Summary ot Contributions|. 23
[1.5.1 Building a system model and verity invariants|. 23

[1.5.2 From the system requirements to reward function|. . . . 24

[1.5.3 Train a system and later monitor its invariants| 25

[1.5.4 Modeling requirements as Goal Model and incrementally |

| refining them|o o000 25
[1.5.5 Modeling system specifications and automatically realize |

| them in the context of robotic missionsl 26
[1.5.6 Dynamically orchestrate controllers for several system |

| specifications providing guarantees on the overall system |
| behaviorl 28
[1.6 Conclusions and Future Workl 29

xiv CONTENTS

Pap A 31
2.1 Introductionl. 31
2.2 Multi-Mode System| 0oL 33
2.3 Uppaal Model Description| 34
2.4 Requirement specifications veritied with model checkingl 36
25 Simulation]. oo 38
2.6 Verification resultsl oo 39
2.7 Related Worksl oo 41
28 Conclusion| 42
2.9 Acknowledgement|.o 0oL 43

Pap B 45
BI Tntroductionl. 45
8.2 Background| oo 47

[3.2.1 Reinforcement Learning| 47
[3.2.2 Formal Verificationl. 48
3.2.3 Runtime Enforcement! 49

3.3 Reward engineering: state of theart| 50
[3.3.1 Conveying rewards to the agents| 50
[3.3.2 Unexpected behaviours| 51

B4 MoOVEMOl o 52
[3.4.1 Step 1: From requirements to reward function|. 53
[3.4.2 Step 2: Verifying the requirement|. 53
[3.4.3 Stepd: Enforcing the reward tunction. 54

3.5 Autonomous Driving with TORCS 54
[3.5.1 Conveying the goals to the agent| 55
[3.5.2 Veritying properties| 57
BE3 Resultd . .« v v o oo e 57

3.6 Conclusion and future workl 59
4 Pap 61
4.1 Introductionl.o 61
4.2 Background| o 63
[4.2.1 Specification patterns| 63
[4.2.2 Reinforcement learningl 63
(423 Runtime verification] 64

4.3 Related Workl oL oo 65
HEIWISEMID .« . . o oo oo 65
[4.4.1 Monitoring] oo 67
4.4.2 Shaping| 68
[4.4.3 Enforcing| oo o 69

E5 Evaluation]. . . - o v oo v 69
[4.51 Gridworld Environmentl 69
[4.52 Fvaluation| 71

4.6 __Conclusions and Future Workl 74

CONTENTS XV

Pap D 75
b1 Introductionl. 75
.2 Background and Related Workl 77

b.2.1 Assume-Guarantee Contractsl 78
0.2.1.1 Contract Refinement] 78

p.2.1.2 Contract Composition|. 78

p.2.1.3 Contract Conjunction| 79

[5.2.2 Linear Temporal Logic|. 79
[5.2.3 Specification Patterns and Context| 79
5.2.3. Robotic Patterndl. 79

9.2.3.2 Specification Patterns with Scopes| 80

©.233 Contextl. 80

0.3 Overview of CROME| 82
5.4 Capturing Mission Requirements| 83
[.4.1 Atomic Propositions| 83
BA2 _Context] - -« v v vovoee e 83
BA3 _Goald 83
[0.4.4 Domain Properties| 84

b.5 Context-Based Specification Clustering|. 84
5.6 Mission Specification via Contract-Based Goal Graphs| 87
[5.6.1 Contract Formalization and Analysis|. 87
[0.6.2 Contract-Based Goal Graph|. 88
9.6.2.1 Building the CGG via Composition and Con- |

| junction|.o Lo 88
[5.6.2.2 Extending the CGG via Refinement from Li- |

[brary of Goals| 89
9.6.2.3 Controller Synthesis| 89

b.7 Case Study: Urgent Care] 90
B8 Conclusionsl o 91
6 Paper K 93
6.1 Introductionl. 93
6.2 Background| o o 94
6.3 Running Example: Vehicle Platooning| 95
6.4 The CoGoMo Approach| 96
[6.41 Goal Formalization] 97
6.4.1.1 Detecting Conflicts.| 97

6.4.1.2 Checking Completeness.|. 97

[6.4.2 Goal Manipulation via Composition and Refinement| . . 97
6.4.2.1 Assumptions Propagation| 98

[6.4.3 Goal Manipulation via Conjunction| 99
6.4.3.1 Goal Priority. 99

6.5 CGT Extensionl 100
[6.5.0.1 Numerical ValidationJ 102

6.6 Related Workl 103

xvi CONTENTS

7 Paper F 107
[t.1 Introductionl. 107
[c.1.1 Main contributionsf, 108
[7.1.2 Running Example and Mission Requirements| 109
|Z.1.3 andmap of thepaper[. 109

.2 ackground an elated works|o oL 110
-G contractsl 110

[r.2.1.1 Contract Refinement| 111

[7.2.1.2 Contract Composition|. 111

[.2.1.3 Contract Conjunctionf 111

2.2 inear Temporal Logic|. 111

[7.2.3 Reactive Synthesis| 112
[7.2.4 Mission specification and Robotic Patterns| 112
[£.2.5 Contexts and mission-related contextsl 114

[7.3 From Mission Requirements to Mission Specifications|. 115
. om Mission Specification to Mission Controllerf 121
[c.41 Problem Definition| 123
[7.4.2 Dithculties by using only LLTLL Contracts to define the |

| IISSION & v v v v e e e e e e e e e e e e e e e e 125
[C.5 Controllers Orchestration] 127
[7.5.1 Specification and Transition Controllers| 127
[752 The orchestration system] 130
[7.5.3 Time Synchronization| 136

7.6 Orchestration in the running example] 137
[7.6.1 'T'imeline of the full running examplef 138
[7.7_Mission satisfaction and CGG satisfaction Relationship] 140
M8 Evaluafion] . - « « v v ovovovoee e e e 142
[[.9 Conclusions 144

Chapter 1

Introduction

Autonomous vehicles, unmanned aerial vehicles (UAV), autonomous trading
systems, self-managing telecom networks, smart factories can be all considered
Autonomous Systems. They are becoming ubiquitous in our society and in
the near future, we will assist in systems exhibiting higher and higher levels of
autonomy that will put new demands on the engineering of such systems.

Autonomous Systems are characterized by the interaction between the sys-
tem and its environment and how they respond to changes in their environment.
The interaction can be physical, like in Cyber-Physical Systems (CPS), i.e.
systems that rely on the seamless integration of their digital components with
the physical world (e.g. autonomous vehicles). The interaction with the envi-
ronment can also be completely digital (e.g. autonomous trading systems). The
response of the autonomous system to changes in their environment without
human interventions determines the degree of autonomy that the system has.

Some communities refer to autonomous systems as self-adaptive systems, i.e.
systems that can adapt their behavior at runtime without human intervention [1}-
3] in response to changes in the environment or their internal state. They
implement some sort of feedback loop to perform their adaptations [4]. A
self-adaptive system gathers observations from the environment, processes
them considering also its internal state, and adapts itself to achieve its goals.

Self-adaptive systems implement some sort of feedback loop that drives
their adaptations [4]. This basic mechanism for adaptation has been applied for
years in control engineering; it consists of four main activities: collect, analyze,
decide, and act.A feedback loop particularly important for decision-making is
the OODA loop by Boyd [5] where we do not only predict what our system has
to do but also what the external systems are going to be doing.Another well-
known reference model for describing the adaptation processes is the MAPE-K
loop (consisting of the parts Model, Analyse, Plan, Execute, and the Knowledge
Base) [6]. Furthermore, often systems collect data from the environment, learn
from them, and, consequently, continuously improve. An example of such a
system is the Never-Ending Language Learning [7].

System design is the process that, starting from some problem and going
to several phases, ultimately provides a system that is the solution to the
identified problem. We consider the three major phases of system design to be
modeling, design, and analysis [8]. Modeling is the process of imitation of

2 CHAPTER 1. INTRODUCTION

the system in order to accurately describes the properties of our interest. In the
design phase, we build the system through a structured process. Finally, the
analysis phase aims at ensuring that the system behaves as it should. System
design consists of iteratively moving from one phase to another in order to
ultimately build the system.

A lot of problems in the design of autonomous systems concern how to deal
with uncertainties. Sources of uncertainty could be external to the system,
such as the environment in which the software is deployed, the availability of
the resources that the system can access at a given time, or the difficulty of
predicting the other systems behavior. Other sources of uncertainty can be
internal to the system, such as the inability of the system to predict the impact
of its actions on the environment. Uncertainty requires the system designer
to carefully analyze the requirements, the environment assumptions, and the
system specification. Often, uncertainties require the system to change and
adapt at run-time or evolve at design-time.

Classical software development techniques require to fully describe the
system behavior in each possible environmental condition. The developer
models different configurations at design-time that are then activated at run-
time according to the events coming from the environment [9]. This is becoming
unpractical — if not even impossible — in AS, where there is a high, or even
infinite, number of environmental conditions to be considered for adaptation.
For this reason, modern development techniques for AS must rely on techniques
that allow creating systems that autonomously learn how to behave in different
environmental conditions.

Reinforcement Learning [10] has been successfully used as a technique to
act in an unknown environment to achieve a goal. It enables the software
agent to autonomously learn to perform actions by trial and error. As with
self-adaptive systems, it is based on a feedback loop where the software agent
performs actions on the environment in response to the observations, receiving
a numerical value (reward) for each action. The goal of the RL agent is to
maximize the cumulative received reward. After training, the RL agent can
effectively handle changes i.e., when a change occurs, the system autonomously
learns new policies for action execution.

The use of reinforcement learning as the main driver of the systems adap-
tation introduces flexibility in terms of explore and acting in an unknown
environment but it also poses new challenges. The choice of which adaptation
to perform in the environment is no longer in the developers hands but is rather
automatic. When dealing with safety-critical systems one major challenge is
the assurance safety.

Trustworthiness aims at establishing some degree of trust that the system
is performing what it is supposed to do. Especially when dealing with safety-
critical applications, it is essential to guarantee that AS act safely in the
environment where they are deployed. In other words, the software must work
reliably and must be safe for humans as life may depend on it. In this thesis, we
refer to building trustworthy autonomous systems meaning to provide evidence
that important aspects of the AS are correct. In presence of self-adaptation
systems, the fulfillment of the requirements cannot be guaranteed completely
at design-time but at least part of the assurance needs to be performed at
runtime [11}[12].

In this thesis, we aim to provide assurance to the software system by
combining design-time modeling and verification techniques. We leverage on
the theory of contracts of system design for expressing a set of properties that
the system components have to satisfy. Then, we use techniques such as model
checking, reactive synthesis, and runtime verification to i) check that a model
of the system satisfies its properties, i) automatically synthesizes a model of
the system, and 4i) providing runtime assurances while the system is running,
respectively.

Contract-based design |13|/14] has emerged over the years as a design
paradigm capable of providing formal support for building complex systems in
a modular way, rooted in sound representations of the system semantics and
decomposition architecture. A contract specifies the behavior of a component
by distinguishing the respounsibilities of the component (guarantees) from those
of its environment (assumptions). Contract operations and relations provide
formal support for notions such as stepwise refinement of high-level contracts
into lower-level contracts,compositional reasoning about contract aggregations,
and reuse of pre-designed components satisfying a contract.

Model Checking [15,[16] is used to verify that a given model of a system
respects some requirement specification which could be expressed, for example,
with contracts. It works by exhaustively and automatically checking all the
states of the system. The state space is a directed graph whose nodes encode
the states of the whole system and whose edges represent the state change. It
ultimately represents all the behaviors of the modeled system by branching all
possible ways the components can interact with each other. Because of the
exploration of all states in a brute-force manner, model checking suffers from
the scalability problem.

Reactive Synthesis [17/18] is used to automatically generate a model of
the system acting in an environment when the specification requirements are
expressed using some discrete-time temporal logic (e.g. LTL). It can be viewed
as a two-player game where on one hand we have the environment that attempts
to falsify the specification and, on the other hand, we have the system that
tries to satisfy it. The system implementation is a controller, given in the
form of a finite-state machine, which reacts to any possible input assignment
(controller by the environment) with some actions (controlled by the system)
that do not violate its specification requirements as long the environment does
satisfy its constraints. If such controller exists we say that the specification
is realizable. Synthesis from an LTL specification is even more complex than
verifying that a specification holds on a given model as with model checking.
For a general LTL formula, the synthesis problem has a doubly exponential
complexity with respect to the size of the formula, while for a subset of LTL,
namely generalized reactivity (GR(1)) |19] the complexity is exponential.

Runtime Verification (RV) [20L21] is a lightweight verification technique
based on monitoring software executions. It has its origins in model checking
but it mitigates the state explosion problem by having a more scalable approach
to software verification. It detects violations of properties, occurring while the
monitored program is running, eventually providing the possibility of reacting
to the incorrect behavior of the program whenever an error is detected. One way
to verify properties at runtime is through the use of monitors. A monitor is a
piece of software that runs in parallel to the program under scrutiny, controlling

4 CHAPTER 1. INTRODUCTION

that the execution of the latter does not violate any of the properties. Besides,
monitors usually create a log file where they add entries reflecting the verdict
obtained when a property is verified. In general, monitors are automatically
generated from the annotated/specified properties [22].

On one hand, static verification and synthesis approaches such as model
checking and reactive synthesis can respectively verify that system is compliant
with some important properties or synthesize it, but these techniques can
be sometimes very difficult to use in practice due to their computational
complexity. On the other hand, runtime verification can prove the satisfaction
of the properties on large systems but only on the fraction that is executing
during the verification.

Our research goes in the direction of building trustworthy autonomous
systems with particular emphasis on the theory of contracts as a method-
ology to formalize the system requirements, reinforcement learning to drive
the system adaptations under uncertainty and model checking, reactive syn-
thesis, and runtime-verification as formal machinery to provide certificates
of trustworthiness. In Section [1.1} we present the general problem framed
with a trustworthiness argument, in Section [I.2] we present the challenges and
related work associated in the satisfaction of the trustworthiness argument, in
Section [1.3] we present the background on the formal machinery that we use to
provide trustworthiness and drive the system adaptations, in Section [1.4] we
present the goals methodology of this thesis and addressed research questions,
and in Section [1.5| we present our contribution and a summary of the studies.
Finally in Section [I.6] we present our conclusions and future work.

1.1 The world and the machine

A system might be seen as a machine that is expected to solve some problem in
the real world. The interaction between the system and the world happens via
an interface containing the shared phenomena between the machine and world.
Through this interface the system observes some phenomena and controls
others in order to solve some problem [23].

The requirements formulate what the system has to achieve in the world
in order to solve some problem. Understanding what is the problem that needs
to be solved can be extremely difficult. Requirements are concerns with what
the system should do, possibly in cooperation with other systems. Usually,
they are presented in the form of prescriptive statements to be enforced by
the system-to-be. In the requirements elicitation phase besides understanding
what problem needs to be solved and why we have to understand who are the
entities involved and what are their responsibilities in solving the problem.

The system specification prescribes what the system does. It is a descrip-
tion of what happens at the interface between the machine and the world. A
specification can be a formal model that describes what the system achieves in
the world.

To bridge the gap between requirements and specification, we have to make
assumptions on what environment property holds in the world. Assumptions
are properties of the world, i.e. statements about expected behaviors of the
environment. For example, we might take into account physical laws, network
latency, user profiles, and so on.

In the design process, we first model requirements, specification, and envi-
ronment assumptions with some formalism. Then, we have to design a system
that meets its specifications. Finally, in the analysis phase, as system designers,
we have to prove that the specification under the assumptions satisfies the
requirements.

Requirements R

[® | v —

System Specification § Environment Assumptions E

!é ® S,EE=R
@ 9

Figure 1.1: Interaction between system specificaiton, environment assumptions
and requirments framed in a trustworthiness argument.

Let R, S, and E be the models of the requirements, specification, and
environment assumptions, respectively. Then, we want to be able to prove that
S under F satisfies R. In the context of this thesis, a system is trustworthy if
S, E = R, where [represents the ‘entailment’ operator. Figure shows this
relationship that we refer to as the trustworthiness argument. Such satisfiability
relation assumes that:

6 CHAPTER 1. INTRODUCTION

— the requirements R precisely and unambiguously capture the problem to
solve in the world by the system:;

— the system behaves according to the specification S;

— the environment assumption E hold in the real world.

Any of the assumptions above can be violated. Such violation can be caused
by the presence of uncertainty during the modeling or designing phase. In
the following sections, we discuss the different sources of uncertainty that can
pose several challenges to the system designer and ultimately can jeopardize
the satisfaction of the trustworthiness argument. Specifically, we discuss the
challenges affecting the formulation of requirements, system specification, and
environment assumptions in Section In Section we give some back-
ground of the formal techniques used in this thesis to facilitate the satisfaction
of the trustworthiness argument.

Challenge 1
R
DOMAIN

_PROPERTY

LI
\
N

Challenge 4) »

Figure 1.2: Challenges that could jeopardize the satisfaction of the trustworthi-
ness argument.

1.2 Challenges and Related Work

In this section, we present some challenges that the system designer has to
deal with while building a system that satisfies the trustworthiness argument.
Figure shows the different problems that can emerge and that can jeopar-
dize the satisfaction of our trustworthiness argument. Challenge 1 concerns
the elicitation and modeling of requirements while keeping them consistent
and complete. Challenge 2 deals with the problem of producing a system
specification from its requirements. Challenge 3 analyzes the gap between
the environment assumptions made by the designer and the real world where
the system is operating. Finally, challenge 4 deals with the gap between the
system specification and the actual system that is being built. In the following
sections, we describe all of these challenges and present some related work that
deals with them.

1.2.1 Challenge 1: Capturing and modeling requirements

Requirement elicitation often revolves around human-related considerations
that are intrinsically difficult to capture. Furthermore, existing requirement-
management tools are mostly based on natural language constructs that leave
space for ambiguities and conflicts. Goal models have been used over the years
as an intuitive and effective means to capture the designer’s intents and their
hierarchical structure, mostly following an “optative” (i.e. expressing a wish)
approach oriented to the design objectives.

Goal Models KAOS [24], TROPOS [25], and i* [26] are established for-
malisms, used to capture system goals and elicit high-level requirements. An
extensive systematic mapping study in the area of goal-oriented requirement
engineering has recently appeared [27].

A goal is a prescriptive statement of intent that the system should satisfy,
formulated in a declarative way. Goals can be decomposed, progressing from
high-level objectives to fine-grained system prescriptions [28]. In the context of
this thesis, a goal model is a directed acyclic graph, where nodes denote goals.
Child nodes can be linked to parent nodes via AND/OR refinement links. An
AND-decomposed goal is satisfied if and only if all its sub-goals are satisfied.
An OR-decomposed goal is satisfied if and only if at least one of its sub-goals
is satisfied. OR-refinement links are used to represent different alternative
options, usually concerning different systems.

Figure shows an AND-refinement of a goal G into sub-goals where the
leaf-nodes are assigned to be system requirements, environment ezpectations
or domain properties. Domain properties are descriptive statements about the
problem world (such as physical laws) while the environment expectations, or
domain hypotheses, are only assumed to be true by the system designer.

Abstraction/Refinement in goal models The refinement process in goal
models mostly follows informal procedures [29}/30]. Goal refinement can be
performed during the elicitation process by posing how questions to find possible
sub-goals (e.g., ‘how can the goal G be satisfied?’ or ‘are there other sub-goals
needed to satisfy G77). Goal abstraction uses, instead, why questions aiming to

8 CHAPTER 1. INTRODUCTION

_ _ - - complete refinement

HOW?

incomplete
refinement

WHY?

Figure 1.3: Goal model with AND-refinements and leaf nodes.

identify which goals may be established behind a set of elicited requirements.
For example, in Figure the parent goal of G5 can be inferred by asking
‘why should G5 be satisfied by the system?’ or ‘is there any other parent goal
that G5 contributes to?’

Consistency and Completeness Problems Establishing correctness of
the refinement amounts to ensuring that the sub-goals are consistent, i.e., there
are no conflicts among them, and complete, i.e., there are no behaviors left
unspecified that could result in a violation of the high-level goal even if the
lower-level goals are satisfied. We only refer to internal completeness, i.e., we
are not concerned with investigating whether all the information required to
define a design problem is in the specification [31]. Formally, we say that the
refinement of goal G into sub-goals G1,Gs, ..., G, is correct if and only if

{G1,G2,...,Gn} = false A {Gi1,Ga,...,Gn} EG,

consistency completeness

where we denote by |= the entailment operator between goals and say that
{G1,...,G,} entails G to mean that, if all G1,...,G,, are satisfied then G is
satisfied. Similarly, we write {G1,Ga,...,G,} [~ false to indicate that the
logical conjunction of {G1,Ga,...,G,} does not lead to false.

1.2.2 Challenge 2: From requirement to specification

While requirements formulate what the system has to achieve in the world, the
specification prescribes what the system does. A requirement is an informal
description of the problem to be solved while a specification indicates the
behaviors of the system in a formal language with precise semantics. Bridging
the gap between requirement and specification is one of the challenges to be
overcome by the system designer.

Use of formal (logic) languages Many results in the literature highlight
the advantages of formulating system specifications in temporal logic language,

1.2. CHALLENGES AND RELATED WORK 9

like linear temporal logic (LTL) or computation tree logic (CTL) [32H45]. Using
formal languages makes behavioral specifications precise and unambiguous.

Expressing the system and its properties with formal languages like LTL
is very useful to verify the correctness of the system via a model checker.
We describe the syntax and semantic of LTL in Section [[.3.1] and the model
checking problem in Section [1.3.2] However, logic formulas can be difficult
to interpret for the end-user, and generating them can be an error-prone
process [46-48]. Specification patterns have been proposed as a solution for
bridging the gap between informal requirements and system specifications. In
this thesis, we use general specification patterns proposed by Dywers [49] and
in the context of robotic mission specifications we use the robotic patterns
proposed by Menghi [48].

Specification Patterns with Scopes Dwyers et al. [49] developed a catalog
of generic property specification patterns for a broader range of applications.
Each pattern can be instantiated in a scope, which provides a way to define the
extent to which a property must hold [49]. For example, for the universality
pattern, in which we require that a property e be true, we can introduce the
following scopes:

e global = G(e)
e before r = F(r) — (e U r)
e after ¢ = G(q¢ — G(e))
e between g and r =G((¢ A - A Fr)—(eUr))
e after g until r = (G(g A —-r—= ((e U r) | G p)))

where ¢, 7 are also properties or events. The patterns proposed by Dwyers
et al. |[49] were also extended to incorporate time [50] and probability [51].
Autili et al. [52] present a unified catalogue of property specification patterns
including, among others, the patterns mentioned above [49451]. A description
of the patterns in this catalogue [52] is also available online [53].

Robotic Missions Specification Robotic mission requirements are often
ambiguous [54H56] and make it hard to assess the correctness of the specifica-
tion [57H60]. In recent years, there have been many proposals for describing
mission requirements based on: i) domain specific languages [61-63], i) natu-
ral language [55], and #44) visual and end-user-oriented environments [64H67],
mostly used for educational purposes. While the approaches above provide
substantial contributions to the mission specification problem, solutions that
can scale to complex missions and enable the deployment of service robots in
everyday life are still elusive.

Robotic patterns have been proposed as a solution to recurrent mission
specification problems based on the analysis of mission requirements in the
robotic literature [48]. There are 22 patterns [48], capturing robot movements
and actions performed as a robot move in the environment, organized into
three groups: core movement patterns, triggers, and avoidance patterns.

For example, let us assume that the mission requirement is: ‘A robot must
patrol a set of locations in a certain strict order.” The designer can formulate

10 CHAPTER 1. INTRODUCTION

this requirement by using the Strict Ordered Patroling pattern, instantiated
for the required set of locations. Let [1, s, and I3 be the atomic propositions
of type location that the robot must visit in the given order. The mission
requirement can then be reformulated as ‘Given the locations I, 12, and I3, the
robot should visit all the locations indefinitely and following a strict order,EI
leading to the following LTL formulation:

GEF(L AF(2 AF(3) A (mla Uly) A (=3 U ly)

G(ls = X(-l2 U 1)) AG(l3 =» X(—l3 U 1))

G(l; = X(-l; Uly))

G(l1 = X(-l; U ly)) AG(ly = X(—ly U ly)).

As shown in this example, a robotic pattern can significantly facilitate the
difficult and error-prone task of mission specification.

1.2.3 Challenge 3: Environment assumptions are unknown

Any autonomous system acts on an environment, however, to prove the trust-
worthiness argument we must produce a model of the environment. The model
represents an abstraction of the actual environment in which the system op-
erates. The correctness of the trustworthiness argument is subject to the
correctness of the model abstracting the environment. If the actual environ-
ment does not match the model then we cannot guarantee that the system
requirements are respected.

We differentiate two kinds of assumption violations. On one hand, we
have the assumptions of internal system components requirements that are in
conflict; these violations can be detected and mitigated at design-time. On the
other hand, we have assumptions that are ezternal to the system being built,
and their violation can only be detected at run-time.

Incomplete Refinements at Design-Time When eliciting the top-level
requirements of a specification in a hierarchical way, we may discover additional
assumptions, associated with lower-level requirements in the hierarchy, which
were not known a priori. This inconsistency between assumptions at different
levels of the hierarchy may be a reason for incompleteness in the refinement,
which results in the assumptions made on top-level requirements being violated.
Often, initially, the designer does not have a clear idea of what the assump-
tions of the top-level requirements should be. The assumptions required by the
implementation might conflict with the assumptions originally made by the
designer since they were agnostic on the components being used to realize the
requirements. We might then have a series of iteration where assumptions are
negotiated and refined to accommodate different system implementations.

World Assumptions Determined at Run-Time Autonomous Systems
can operate under highly complex and uncertain environments. One of the
challenges is modeling the environment in which the autonomous system oper-
ates and keeping the model updated as the environment changes. Sometimes

Thttp://roboticpatterns.com/pattern/strictorderedpatrolling/

http://roboticpatterns.com/pattern/strictorderedpatrolling/

1.2. CHALLENGES AND RELATED WORK 11

the environment model falling outside its abstraction can only be captured at
runtime. One of the reasons for inaccuracy in the model is that sometimes
some of its assumptions are not held at runtime [68]. For example, making
simplifying assumptions on the transmission delay of network packets might
result in the assumption violation when the system is running due to network
congestion.

Sometimes the environment model falling outside its abstraction can only
be captured at runtime. One of the reasons for inaccuracy in the model is
that sometimes some of its assumptions are not held at runtime [68]. For
example, making simplifying assumptions on the transmission delay of network
packets might cause the assumption violation when the system is running due
to network congestion.

Typically, the environment model, sometimes referred to as world model,
is a structure created manually, which can be monitored and updated at run-
time [69]. Ghosh et al. show how to algorithmically repair specifications that
include environment assumptions [70,/71]. Li et al. |[72] propose an approach
with the human in the loop where, as soon as the environment fails to meet its
assumptions, a flag is raised and the control of the system is safely switched to
the human operator.

In the context of reactive synthesis, we have that incomplete or wrongly
specified environment assumptions are a common reason for the unrealizability
of a system specification. Several works go in the direction of finding new
assumptions or relaxing existing ones in a way that the system becomes
realizable [73H77].

1.2.4 Challenge 4: Gap between system specification and
system implementation

The system specification describes the function that the system should provide
(i.e. what) while the system implementations provide the components and
their interconnection needed to realize the function (i.e. how). Verifying that
the specification is compliant with some requirements might not be enough to
certify the system is also compliant. It can happen that the behaviors that
the system can exhibit might not be fully captured by its specification, hence
leading to the gap between specification and implementation that jeopardizes
the trustworthy argument. Formal methods such as reactive synthesis can
automatically generate a system implementation that is mathematically proven
to be compliant with its specification. Other formal techniques such as run-time
verification can monitor the system execution and detect when its behaviors
violate some specification. We take a look at these techniques in Section
and Section

More generally, Platform-based design [78] is a paradigm that capture the
design process of mapping a high-level specification to a potential implemen-
tation via a sequence of top-down refinement step that meet a bottom-up
abstractions. At the top, we have the application space with the system specifi-
cation, at the bottom we have the architectural space with collections of system
components. The system specification is an instance of the application space
which via a series of refinement steps is eventually mapped on an instance of the
architectural space, i.e. a composition of system components according to some

12 CHAPTER 1. INTRODUCTION

composition rule. The system specification constrains the space of possible
system architecture that is possible out of all the available ones. Once an
architecture is found at some abstraction level, it then becomes the specification
at the lower abstraction level. Another architectural space is then searched
and the process is repeated until all the components are implemented in their
final form. Each abstraction layer is defined by a platform.

1.3 Trustworthiness

To address the challenges described in Section [I.2] and provide guarantees of
correctness in establishing the trustworthiness argument, we need to establish
formally:

1. what are system and specification,

2. what does it mean for requirements to be consistent and complete,

3. what are system components and how they can be aggregated,

4. refinement/abstraction relationships among specification and components,

5. what does it mean that aggregation of components implements a specifi-
cation,

6. how does a system learn and adapts to the environment with reinforcement
learning.

In this section, we present the formalisms used in this thesis that can be
used to address all the points above and establish trustworthiness in the system.

1.3.1 Linear Temporal Logic

The system can be modeled as a set of behaviors over some variables.

Definition 1.3.1 (System). A system X is a set of variables V' over a domain
D in which the variables take value, and a set of behaviors over V.

Definition 1.3.2 (State). A state s of a system ¥ is a valuation (i.e. an
assignment of a value) of all its variables V' within their domain D. We denote
with S the set of all states of a system 3.

Definition 1.3.3 (Behavior). A behavior of a system ¥ is an infinite sequence
of states sg, 1, 82,... in S.

Definition 1.3.4 (Language). A language of a system X, written £(X) is the
set of all behaviors.

Definition 1.3.5 (Atomic Proposition). An atomic proposition is a statement
on system variables that has a unique truth value (i.e. it can be either true
or false). Given an atomic proposition 7 and a state of the system s € S we
can always determine if 7w holds in s (i.e. pi is true at the state s and we write
m = s) or otherwise (i.e. m [~ s).

We model the system as a transition system, i.e. a having a set of states
(static structure) and transitions (dynamic structure). One of the way to
represent a transition system is a Kripke structure, which is formally defined
as follows:

Definition 1.3.6 (Kripke structure). ¥ = (S, Sy, d, L) where:

— S is a set of states.

14 CHAPTER 1. INTRODUCTION

— Sp is a set of initial states.

— 6 € S x S is a transition relation which is left-total, i.e. for every state
s € S there has to be at least one other state s’ state such that (s, s’) € 4.

— L : 8 — 247 is a labeling (or interpretation) function that maps a state
to a set of atomic propositions (AP). We can think of L as assignment
of truth values to all the atomic propositions that depends on the state
of the system. That is L(s) contains all the atomic propositions which
are true in the state s.

Definition 1.3.7 (Run). A run, (also referred as path or ezecution), of a
system X defined as a Kripke structure (S, Sp,d, L) is an infinite sequence of
states sg, s1, 82, ... in .S such that:

1. sp € Sy
2. Vi > 1,(5(81‘_1,80)

Definition 1.3.8 (Trace). A trace, of a system X defined as a Kripke struc-
ture (S,S50,0,L) is a sequence of labels observed during a run of X, i.e.
L(So),L(Sl),L(SQ)... .

Definition 1.3.9 (Property). A property o is a set of runes. A run o satisfies
a property ¢ if 0 € p. A run o violates a property ¢ if o & .

Linear Temporal Logic (LTL) is one of the logic that can be used to
specifying properties of a system related to its evolution over time. LTL can
express the properties of the system over a single timeline. We can construct
LTL formulas over AP according to the following recursive grammar:

pi=peAP |~ | o1V | X | e Up

where @, ¢1, and ¢y are LTL formulas. From the negation (—) and disjunction
(V) of the formula we can define the conjunction (A), implication (—) and
equivalence (++). Boolean constants true and false are defined as true = pV —p
and false = —true. The temporal operator X stands for next and U for until.
Other temporal operators such as globally (G) and eventually (F) can be
derived as follows: F ¢ = true U ¢ and G ¢ = —(F(—¢)).

Let 0 = sg, 51, 52,... be a path of the system ¥. We denote with o’ the
suffiz of o starting at s;, e.g. 03 = s3, 54, S5, Whether o satisfies and LTL
formula ¢ is defined by the satisfaction relation = as follows:

— 0 | true

— o [~ false

— o Epiff p € L(so)
—okEpiffo e

— o Epi AN iff o= @1 and o | @o

—oEwiVeiff o=@ or o= @

1.3. TRUSTWORTHINESS 15

— 0 E @1 = e iff 0 = v2 whenever o = ¢y

— o EXpiffol o

— o E Gpiff, for all i > 0, o' | ¢

— o |= Fy iff, there some i > 0 such that o = ¢

— o0 = p;Up, iff, there some i > 0 such that o = ¢o and for all j =
0,...,4 — 1 we have 07 |= ¢

1.3.2 Model Checking

Model checking is an algorithmic method for establishing whether a system
satisfies a specification formalized as a temporal logic formula.

Definition 1.3.10 (Model Checking Problem). Given a system X and an LTL
formula ¢ the model checking algorithm returns weather 3 satisfies . If “yes”,
written ¥ = ¢, then we have a proof of the system correctness with respect to
the property . If “no”, written X £ ¢, typically we receive a counterexample,
i.e. a trace of the system where ¢ does not hold.

The model-checking problem reduces in checking whether all the possible
behaviors of the system is a subset of all possible executions of the property.
That is whether the language of the system is a subset of the language of the
property, i.e. L(X) C L(y).

1.3.3 Runtime Verification

Runtime verification is only concerned with the detection of violations (or
satisfactions) of properties on a system. While model checking considers all
ezecutions of a given system to assert if it satisfies a given property, runtime
verification only checks certain finite execution traces.

Definition 1.3.11 (Runtime Verification). A verification technique that allows
checking whether a run of a system satisfies or violates a given property.

While model checking checks if the language of a system is included in the
language of the property, runtime verification answer whether a given word is
included in some language. Checking whether a finite system execution trace
satisfies a property is performed using a monitor.

Definition 1.3.12 (Monitor). A monitor is some device that reads a finite
trace w and returns weather it satisfies a given correctness property ¢.

1.3.4 Reactive Synthesis

An alternative technique to model checking and run-time verification is to
systematically build the system which satisfies a given specification where its
correctness is guaranteed from its construction.

16 CHAPTER 1. INTRODUCTION

Definition 1.3.13 (Reactive Synthesis). Given an LTL specification ¢ over a
set of atomic proposition partitioned into inputs and outputs, i.e. AP =ZUQ,
the synthesis problem determines whether there exists a finite-state machine
M= (5,Z,0,s0,0) that satisfies p. Where S is the set of states, so € S is the
initial state, and § : S x 27 — S x 29 is the transition function. M satisfies a
formula ¢ if all its runs satisfy ¢. If such machine exists it computes it and we
say that M realizes the formula ¢.

1.3.5 Contracts for System Design

We use assume/guarantees contracts to model the system specification for the
system components. A/G contracts explicitly distinguish the responsibilities of
a component (guarantees) from those of its environment (assumptions). In the
following, we provide informal definitions of the different operations and the
formulae used to compute them. We refer to the literature [13] for the formal
definitions.

Definition 1.3.14 (Components). System components are typically regarded
as open systems [79], i.e. systems that perceive some inputs from other
components in the system or the external world and it produces some out-
puts. Anything external to the component is referred to as the environment.
Components represent design elements that express a behavior over a set of
inputs/output variables which are defined over a certain domain. Formally, we
can regard a component in the same way we have defined a system in [1.3.1
where the system variables V' are partitioned into input and output.

Definition 1.3.15 (Contract). A contract C is a triple (V, A, G) where V is a
set of system variables (including, e.g., input and output variables or ports),
and A and G are sets of behaviors over V. For simplicity, whenever possible,
we drop V from the definition and refer to contracts as pairs of assumptions
and guarantees, i.e., C = (4, G).

The assumptions A express the behaviors that are expected from the en-
vironment, while the guarantees G express the behaviors that a component
promises under the environment assumptions. In this thesis, we express as-
sumptions and guarantees as sets of behaviors satisfying a logic formula; we
then use the formula itself to denote them, with a slight abuse of notation,
whenever there is no confusion.

Definition 1.3.16 (Contract Environment). An environment E satisfies a
contract C whenever E and C are defined over the same set of variables and all
the behaviors of E are included in the assumptions of C, i.e., when |E| C A,
where |E| is the set of behaviors of E.

Definition 1.3.17 (Contract Implementation). A component M, or implemen-
tation, satisfies a contract C whenever M and C are defined over the same set of
variables, and all the behaviors of M are included in the guarantees of C when
considered in the context of the assumptions A, i.e., when |[M|N A C G, where
| M| represents the set of the behaviors of M. We refer to the set of mazimal
implementations of C as Mc = G U A, where A denotes the complement of

1.3. TRUSTWORTHINESS 17

A. That is, Mc is the maximal set of behaviors (with respect to set inclusion)
satisfying the contract C.

Definition 1.3.18 (Contract Equivalence). Two contracts C; = (4, G) and
Cs = (A, G3) are semantically equivalent if they possess identical variables,
identical assumptions, and such that Go U A = G U A4, i.e. they have identical
maximal implementations Mg, = Mg, .

Definition 1.3.19 (Contract Saturation). A contract C = (A4, G) can be placed
in saturated form by re-defining its guarantees as Gyt = G U A. A saturated
contract explicitly contains the biggest set of guarantees possible, i.e. the
guarantees coincide with the union of the behaviors of all its implementations.

A contract and its saturated forms are semantically equivalent since the two
contracts possess identical sets of environments and implementations. Therefore,
in the rest of the thesis, we assume that all the contracts are expressed in
saturated form.

Definition 1.3.20 (Compatibility and Consistency). A contract C is compatible
if there exists an environment for it, i.e., if and only if A # (. Similarly, a
saturated contract C is consistent if and only if there exists an implementation
satisfying it, i.e., if and only if G # (. We say that a contract is well-formed
if and only if it is compatible and consistent. We detail below the contract
operations and relations used in this thesis.

Refinement establishes a pre-order between contracts, which formalizes the
notion of replacement.

Definition 1.3.21 (Contract Refinement). Let C = (A,G) and ¢’ = (A’, G’) be
two contracts. C refines C’, denoted by C < C’, if and only if all the assumptions
of C' are contained in the assumptions of C and all the guarantees of C are
included in the guarantees of C’, that is, if and only if A D A’ and G C G'.
Refinement entails relaxing the assumptions and strengthening the guarantees.
When C < C’, we also say that C’ is an abstraction of C and can be replaced by
C in the design.

Contracts associated with distinct implementations can be combined via the
composition operation (]|) to specify the composition between the corresponding
implementations.

Definition 1.3.22 (Contract Composition). Let C; = (A41,G1) and Co =
(A2,G2) be two contracts. The composition C = (A,G) = C; || C2 can be
computed as follows:

A= (Al n Az) U (Gl N Gg), (1.1)
G=GiNGs. (1.2)

Intuitively, an implementation satisfying C must satisfy the guarantees of both
Cy1 and Csy, hence the operation of intersection in . An environment for C
should also satisfy all the assumptions, motivating the conjunction of A; and
A in . However, part of the assumptions in C; may be already supported
by Co and wvice versa. This allows relaxing A; N As with the complement of the
guarantees of C [13].

18 CHAPTER 1. INTRODUCTION

Different contracts on a single implementation can be combined using the
conjunction operation (A).

Definition 1.3.23 (Contract Conjunction). Let C; = (A;,G1) and Co =
(A2, G2) be two contracts. We can compute their conjunction by taking the
greatest lower bound of C; and Cy with respect to the renement relation.
Intuitively, the conjunction C = C; A Cs is the weakest (most general) contract
that refines both C; and Cs. C can be computed by taking the intersection of
the guarantees and the union of the assumptions, that is:

C = (Al U AQ,Gl N Gg)

Intuitively, an implementation satisfying C must satisfy the guarantees of both
Cy and Cy, while being able to operate in either of the environments of C; or Cs.

1.3.6 Reinforcement Learning

Reinforcement Learning (RL) [80] is a machine learning approach where a
software agent learns what to do by taking actions on an environment in order
to maximize a numerical reward signal. Actions may not have an immediate
effect on the reward, instead, rewards might be delayed. The mathematical
model typically used to formalize the reinforcement learning problem is the
Markov decision process.

Definition 1.3.24 (Markov Decision Process (MDP)). An MDP is a tuple
< S,A,T,R,~v > where:

— S is a finite set of states
— A is a finite set of actions

— T :S5%xAxS — [0,1] is a state transition probability function such
that for any s, € S and any action a € A allowed in state s, T'(s, a, s’)
returns the probability associated to the transition from state s to state
s" when performing action a.

— R:S%xAxS — Risareward function such that R(s,a, s’) is the reward
returned by taking action a from state s and reaching the state s’.

— v €[0,1] is the discount factor which indicates the preference between
receiving a short-term reward (v = 0) versus a long-term reward (y = 1).

The agent and the environment interact in discrete time steps as shown in
the Figure At each time step t = 0,1, 2, ... the agent receives observations
from the environment that correspond to a certain state s; € S. It then chooses
an action a; € A among the set of possible actions. The action is then applied
to the environment that moves to a state sy;1 and returns a reward 7,41 to
the agent. At each step all future rewards are discounted by « as follows:
e+ YT + 'yerg + 'y3rt+3 + The discount factor represents the difference
in importance between future rewards and present rewards.

Definition 1.3.25 (Markov Property). The MDP satisfies the Markov Prop-
erty: the next state only depends on the current state and the chosen action,
so it is conditionally independent of all previous states and actions. We have
that T(s¢y1]|8t, aty St—1,a¢-1...) = T(St11]8¢, ar).

1.3. TRUSTWORTHINESS 19

State s

reward 1y RL Agent

action ¢4 1.

el ttl

A

Environement

St

Figure 1.4: Reinforcement learning framework showing the interaction between
the agent and the environment.

Definition 1.3.26 (Return). The return G = >_,-7'7441 is the sum of all
the discounted rewards that the agent will get from time step 0 infinitely into
the future.

Definition 1.3.27 (Policy). A policy 7 fully defines the behavior of a RL
agent. It can be either deterministic or stochastic. If the policy is deterministic
it simply mapping function from state to action 7 : S — A. A stochastic policy
returns a probability distribution over actions given a state: w: S x A — [0,1].
That is, it maps each state s and action a to the probability that action a is
taken in state s, where we have that) ., 7(s,a) =1 for any s € S.

Definition 1.3.28 (State Value). Vi : S — R returns the expected return
received by the agent when starting from state s and following a policy 7.

Vi(s) = Ex[Gy|s; = s] = E [Z Yorspr1]se = s] (1.3)
k=0

Since the reward function R(s, a, s’) depends on the current state s, the action a
and the next state s’ in which the agent lands, which depends on the transition
probability function T'(s, a, s’), we need to sum of all its possible reward values
weighted by their probability of being observed. With E,[G¢|s; = s] we denote
the expected value of the return at time-step t given that the agent is in the
state s and follows a policy .

Definition 1.3.29 (Action Value). @, : Sx A — R returns the value of taking
action a in state s under a policy policy 7.

oo

Qr(s,a) =E;[Gilse = s,a. = a] = E, Z’yerkH\St =s,a;=a (1.4)
k=0

Definition 1.3.30 (Solving the MDP problem). Given an MDP, find the
optimal policy 7*, that is the policy having optimal state-value function V* for
all s € S and optimal action-value function Q* for all s € S and a € A, defined
as:

V*(s) = max Va(s) (1.5)
Q*(s) = mﬁxew(s,a) (1.6)

20 CHAPTER 1. INTRODUCTION

Definition 1.3.31 (Bellman optimally equations). Specify optimally in a
recursive way. Intuitively the state value of a state under optimal policy must
be equal to the action value for the best action form that state

V*(s) = ¥ 1.7
(5) = max Q" (s) (17)
Where we have that the optimal action value for taking action a in a given state
s is equal to the instantaneous reward for the transition plus the optimal value
of state s’ (discounted), for all outcomes s’ and their probability of occurrence.
That is:

Q*(s,a) = Z:T(s7 a,s')[R(s,a,s") +~yV*(s")] (1.8)
Substituting equation ([1.8]) in equation (|1.7)) we have that:

V*(s) = max T(s,a,s)[R(s,a,s) +yV*(s')] (1.9)
o

If the elements of the MDP are fully known, then the problem of solving
the MDP becomes a planning problem which can be solved via dynamic
programming algorithms. Iterative methods such as value iteration can solve
the Bellman equations and compute the optimal policy.

However, usually, we do not have access to the full MDP, instead, the
software agent interacts with the environment collecting samples. A sample is
a tuple (s, a, s,r) representing the experience of the agent performing an action
a in a state s, landing in a state s’ and receiving an immediate reward r. In
model-based learning, we use the sample to estimate the underline MDP and
then do planning on it. In model-free learning, we use the sample to directly
estimate the values of the states.

For example, Q-learning [81] is a simple and effective way to learn the
optimal policy by interacting with the environment via samples. It estimates
the action-values for each state, i.e. the long-term expected return of each
action that can be executed from a given state.

Definition 1.3.32 (Q-Learning update). In Q-learning at each interaction
with the environment at time step t we update g-value associated with the
state s and action a by integrating the reward received for performing action a
in state s and landing in state s’.

Q(s¢,a¢) < Q(s¢,at) + a[rt+157m(?XQ(st+17a) — Q(st,a1)] (1.10)

where « € [0,1] is the learning rate and determines how much the newly
acquired information from the sample overrides the previous knowledge of the
action-value.

1.4. GOALS AND METHODOLOGY 21

1.4 Goals and Methodology

The overall goals of this thesis are:

G1: Analyze system requirements and translate them in system specifications
also in presence of uncertainty.

G2: Design and build Autonomous Systems that satisfy the requirements while
maximizing some system quality.

The goal G1 aims at modeling system requirements and transferring the
designer’s intentions into some system specification. The uncertainty can be
because the designer does not know how the system should achieve some goal
or what component the system should be composed of. For the first goal we
have formulated the following research questions:

RQ1.1: How can we formulate system specifications from system requirements
also in presence of uncertainties?

RQ1.2: How do we make sure that system requirements are complete and
consistent and do not express unwanted behaviors?

The goal G2 aims at engineering the actual system and prove its compliance
with some specifications while minimizing some cost function (e.g. reuse of
system components). For the second goal we have formulated the following
research questions:

RQ2.1: How to make sure that the resulting system satisfies certain desired
properties while maximizing some quality?

RQ2.2: How to provide assurances when several autonomous systems collabo-
rate to create a new and more complex system?

Research question RQ1.1 aims at producing a formal system specification
from informal designer intentions.

In cases, of uncertainty on how the system should achieve some requirements.
We have used specification patterns and robotic specification patterns to
formulate an unambiguous specification. We have also refined the specification
via several refinement steps both performed manually and automatically from
a collection of pre-defined goals. This approach is found in PAPER D, PAPER
E, and PAPER F.

In cases of uncertainty on what the system should do to achieve its goals,
instead of breaking down its requirements via refinement steps, we have formu-
lated them as a reward function and used reinforcement learning. Given the
reward function, the system figures out by trial-and-error what it should do
to maximize the cumulative sum of rewards. We have used this approach in
PaPER C and PAPER B.

The question RQ1.2 builds in the direction of assuring that the goals as
intended by the designer are complete, consistent, and correctly transferred to
the AS itself.

22 CHAPTER 1. INTRODUCTION

In PAPER B, we deal with the problem of conveying the functional require-
ments to a machine learning agent solely using the reward function. A problem
with such systems is that the agent could manifest unwanted behaviors and
consequences. We aim to give the system designer more control and under-
standing of the reward function on which the reinforcement learning agent is
going to build its decision-making policy.

In PAPER D, PAPER E, and PAPER F, we use Contract-Based Design as
a methodology to guide the design of the system. First, we formalized the
requirements in specifications using patterns, and the specifications in assume-
guarantee contracts. Then, we can reformulate questions on completeness
and consistency of system requirements into question checking refinement,
compatibility, and consistency on assume-guarantees contracts.

The question RQ2.1 aims at producing a system that satisfies its specification
in all environmental conditions while minimizing some cost.

In PAPER D, PAPER E, and PAPER F we generate the final system acting
on the environment via reactive synthesis, hence having the guarantees that
the specification will never be violated. We also maximize the reuse of existing
system components by automatically refining the system specification from a
collection of pre-defined goals. In PAPER A we built a model of the system using
timed-automata and automatically check its compliance with some important
properties of its specification using model checking. Finally in PAPER C we
formally verify that the behavior emerging from the system is compliant with
some important safety properties (invariants) also while the system is learning
and exploring the environment using runtime monitoring techniques.

The research question RQ2.3 does not focus on the behavior of a single
autonomous system but instead, deals with a system constituted by several
individual systems (System of Systems, SoS). We want to investigate how
current verification techniques can be applied to such systems. We have
addressed this research question in PAPER A by modeling a SoS scenario where
multiple vehicles have to interact to form a platoon. The individual systems
can independently adapt their behavior at runtime and the rules defining the
SoS are modeled at design time. We have modeled different modes where
the SoS can be and defined properties we want the SoS to have as invariants.
Finally, we have formally verified that in randomly generated scenarios the
resulting system is compliant with them using model checking.

Methodology We have used Design Science as research methodology [82].
The two main activities are of design science are: (i) designing an artifact, (ii)
empirically evaluating its performance in a context. In most of the papers
addressing the artifact is the proposed method. In PAPER C and PAPER B,
we have implemented a framework that supports the proposed methods; the
validation has been done by defining a case study and collecting data from
experiments conducted by computer simulation [83]. In PAPER E, PAPER D,
and PAPER F we have also implemented the framework and validated the
methodology both by collecting data from experiments and mathematically
proving the correctness of some results. In PAPER A the artifact is the protocol
for vehicle platooning and it has been validated by formal-verification (model-
checking) on randomly generated scenarios.

1.5 Summary of Contributions

System
[B] Requirements [D]
Reward Model T v Requirements Model
/brma(izing : : V — formalizing Requirements _
®_| Verifying a Model of | g reward function V) — goals model verification using A =)
-1 the Reward Function | P71 Assume-Guarantees [+
x 4 T - J Contracts h x
7

System Model

formalizing

system Formal verification of | »

»| the system via model

checking RN x

REINFORCEMENT e design time
LEARNING run-time
l Execution Traces
Run-time verification |,
of the system N
X

[A]

IC]

\

System Implementation

[F]

Figure 1.5: Overall contribution. The letters indicate the papers contributing
in different parts of the framework.

Figure maps the contributions of this thesis into a general framework
describing the design process of building a trustworthy autonomous system.
Starting from an informal description of the system requirements, we have
expressed them in terms of a reward function (PAPER B) or in terms of goal
model formalized with assume-guarantee contracts (PAPER E). A model of the
system can be automatically generated from the assume-guarantee contracts via
reactive synthesis (PAPER D). Otherwise, as in PAPER A, we have also directly
modeled the system and then checked its compliance with some properties via
model checking. When the model of the system is not available for a formal
verification at design-time we have analyzed the trace of the system at run-time
(PAPER C). Finally, in PAPER F we propose an all-encompassing framework to
model requirements and realize provably correct system implementations using
a combination of reactive synthesis and run-time monitoring. In the following
sections, we describe the included papers.

1.5.1 Building a system model and verify invariants

Some system requirements can be expressed in terms of invariants, meaning
properties that always have to hold, despite the system adaptations. Such

24 CHAPTER 1. INTRODUCTION

properties can target an individual system of multiple systems and the way
they interact with each other. Autonomous Systems can also collaborate with
other systems forming a System of System (SoS). Due to the complexity of
such systems, it becomes hard to verify the correctness of their actions.

Formal verification techniques such as model checking can prove that a
system satisfies certain desired formal properties. In Paper A, we model an
Autonomous Systems as a network timed-automata and verify that certain
properties hold when they interact. Specifically, we have modeled invariants in
terms of temporal logic properties and formally verified such invariants in a
system of systems scenario. We have successfully verified several invariants on
a vehicle platooning protocol with randomly generated scenarios.

1.5.2 From the system requirements to reward function

An intelligent autonomous system must figure out how to achieve its goals by
itself. The job of a system designer is to specify what goal to achieve and the
decision-making component of an Autonomous System must figure out how to
achieve it. In reinforcement learning, the only way that the system designer has
to convey the goal to the agent is through the reward function. The encoding
of system goals into a reward function can lead to unexpected behaviors in
the agent, either because the designer does not include or have the correct
information or because she/he makes mistakes during the design of the reward
function.

Paper B addresses some of the challenges identified in [84] regarding the
transfer of goals to a reinforcement learning agent, as also shown in Figure [I.5]
We have proposed an approach for engineering complex reward functions
that can be formally verified against defined properties at design time and
automatically enforced to the agent at runtime. We aim to reduce the gap
between the designer’s intention and the reward specification. By embedding
more domain knowledge in the reward function one could avoid the reward
hacking phenomenon; this would also help the agent to learn the desired policy
faster [85]. However, as reward functions become more complex, in turn, it
becomes harder to spot mistakes and to be confident whether the reward values
that are finally sent to the agent actually reflect the designer’s intentions.

Our work goes in the direction of a better structuring of the reward function
with the aim of closing the gap between the designer informal goals and the
reward signal. Our contribution is the design and validation of a software
infrastructure that enables the verification and enforcement of reward functions
to an RL agent. From a high-level perspective our approach, which we have
called MOVEMO, consists of four steps:

1. Modeling complex reward functions as a network of state machines.
2. Formally verifying the correctness of the reward model.

3. Enforcing the reward model to the agent at runtime using a monitoring
and enforcing approach called LARVA.

4. Monitoring the behavior of the agent as it transverses the state machines
to collect the rewards.

1.5. SUMMARY OF CONTRIBUTIONS 25

Steps 1 and 2 are performed by the designer that iterates the reward function
model until it is compliant with the high-level properties that she/he expresses.
Steps 3 and 4 are automatically derived and performed from the reward model.
We have validated our approach in the context of self-driving cars with an
open-source driving simulator.

1.5.3 Train a system and later monitor its invariants

Using techniques such as reinforcement learning we can create systems that
autonomously learn which action to execute in order to achieve the desired
informal goal. When a change occurs, machine learning techniques allow the
system to autonomously learn new policies and strategies for actions execution.
This flexibility comes at a cost: the developer has no longer full control over
the system behavior. To overcome this issue, we believe that machine learning
techniques should be combined with suitable reasoning mechanisms aimed at
assuring that the decisions taken by the machine learning algorithm do not
violate safety-critical requirements.

Paper C describes how to combine the decision-making agent with the
assurance of safety-critical properties. The approach aims at creating systems
that, on one hand, are able to learn and adapt their behavior based on changes
that occur in the environment using reinforcement learning, on the other are
able to ensure that adaptation does not cause invariants violation using runtime
monitoring. The runtime monitoring part is explained in detail and evaluated
in PAPER C.

Our approach uses reinforcement learning in combination with runtime
monitoring to prevent the agent from performing catastrophic actions in the
environment. The approach is general and external to the RL algorithm, so it
does not modify how the RL algorithm works; in this sense, the approach is
agnostic to the RL algorithm since one could use any RL algorithm. WISEML
wraps the RL agent at its interfaces and it places it inside a safety envelope that
protects it from performing actions that violate its safety-critical requirements.

The requirements of the RL agent are expressed in terms of patterns, they
describe the safety properties to be enforced by the monitoring component.
We have implemented four patterns that one can use to model the invariants:
absence, globally, precedence and response. Our results show that the runtime
monitors will always prevent the agent from violating any of the modeled
properties. Furthermore, the RL agent will converge faster to its goals thanks
to reward shaping that steer the agent towards its goal by modifying its rewards
at runtime, according to the compliance or the violation of the monitored
properties.

1.5.4 Modeling requirements as Goal Model and incre-
mentally refining them

Goal models have been used over the years as an intuitive and effective means
to capture the designer’s objectives and their hierarchical structure, mostly
following an optative approach (i.e. expressing a wish) oriented to the design
objectives. Contracts, on the other hand, enable formal requirement analysis
in a modular way, rooted in sound representations of the system semantics and

26 CHAPTER 1. INTRODUCTION

decomposition architecture, and offering an indicative approach oriented to
the system components and their interactions, which are less explicit in goal
models.

In PAPER E we present a framework, CoGoMo (Contract-based Goal
Modeling), for systematic requirement analysis, which leverages a new formal
model, termed contract-based goal tree, to represent goal models in terms
of hierarchies of contracts. Contract operations and relations provide formal
support for notions such as stepwise refinement of high-level contracts into
lower-level contracts, compositional reasoning about contract aggregations, and
reuse of pre-designed components satisfying a contract. COGOMO addresses
correctness and completeness of goal models by formulating and solving contract
consistency and refinement checking problems. Specifically, the contributions
of the paper can be summarized as follows:

— A novel formal model, namely, contract-based goal tree (CGT), which rep-
resents a goal model as a hierarchy of assume-guarantee (A/G) contracts.

— Algorithms that exploit the CGT as well as contract-based operations to
detect conflicts and perform complete hierarchical refinements of goals.
Specifically, we introduce mechanisms that help resolve inconsistencies
between goals during refinement and a goal extension algorithm to auto-
matically refine the CGT using new goals from a library.

— A tool, which implements the proposed model and algorithms to incre-
mentally formalize and refine goals via an easy-to-use web interface.

We illustrate the effectiveness of our approach and supporting tool on a case
study motivated by vehicle platooning.

1.5.5 Modeling system specifications and automatically
realize them in the context of robotic missions

The advent of multipurpose service robots, required to accomplish various
domain-specific missions, calls for new languages and tools to enable end-users
to accurately specify complex missions.

In PAPER D, we propose a framework, named CROME (Contract-based
RObotic Mission spEcification), that explicitly addresses the problems of
specification reuse and environment modeling in mission specification, enabling
the designer to cope with the variability of the application scenarios of a robotic
mission. By building on recent work on contract-based requirement engineering,
leveraging context-aware contract models and patterns to generate controller
specifications, we decouple the task specification from the specification of
the context in which the task is executed. End users explicitly specify the
various mission tasks together with their contexts. The overall mission is then
automatically compiled by CROME. CROME contributes to the following
aspects of the mission specification process:

— Formulating mission requirements. We model each requirement as a
goal, expressed using a set of previously proposed patterns [48/|49]. Goal
models have been used over the years as an intuitive and effective means
to capture the designer’s objectives and their hierarchical structure [86).

1.5. SUMMARY OF CONTRIBUTIONS 27

In this work, we augment the notion of goal to explicitly include a
concept of context, which enables building mission specifications that are
adaptable to different environmental conditions. Contexts help capture
the variability associated with a mission goal so that the same goal can
be implemented in different ways when used in different contexts.

— Generating mission specifications. We introduce a novel model, termed
contract-based goal graph (CGG), which is automatically generated to
formalize a mission and its sub-missions. The CGG is a graph of goals
where the root node represents the overall mission, its immediate children
represent mission scenarios, and the rest of the nodes are part of the sub-
missions. In a CGG, goals are captured by assume-guarantee contracts [13]
and are linked together using operations and relations between contracts.
We differentiate the scenario nodes from other nodes since they are goals
that have mutually exclusive contexts and identify sub-missions that
cannot be jointly realized.

— Refining mission specifications out of a library of goals. We introduce an
algorithm that automatically refines the leaf nodes of a CGG using the
goals in a library, so that “abstract” goals in the CGG can be further
implemented (refined) by more “concrete” goals.

By formalizing the mission specification with a CGG, CROME also offers
the following capabilities:

— Requirement conflict identification. By checking the satisfiability of
the CGG contracts, we are able to identify the presence of conflicts in
the mission requirements and immediately inform the designer, before
attempting at synthesizing a controller.

— Realizability checking and controller generation. CROME checks the
realizability of each scenario in the CGG and informs the designer of
which sub-goals can be realized (i.e., a controller can be synthesized),
given a model of the environment. For each realizable goal of the CGG,
CROME synthesizes a controller in the form of a Mealy machine. The
controllers are produced together with the CGG.

We illustrate the effectiveness of our methodology and supporting tool
on a case study. Our case study shows that the modularity of the CGG
allows efficiently checking the feasibility of a mission. The identification of
the scenarios allows analyzing the impact of environment variability on the
realizability of the robotic mission. The automatic refinement from a goal
library facilitates the reuse of existing goals to implement complex specifications.
Finally, mutually exclusive scenarios can point to control architectures that
may not have a centralized implementation, while still being realizable in a
decentralized fashion.

28 CHAPTER 1. INTRODUCTION

1.5.6 Dynamically orchestrate controllers for several sys-
tem specifications providing guarantees on the over-
all system behavior

Automatically synthesizing robotic mission controllers that are proven to be
correct from a formal specification is a hard problem that can be intractable
if the mission specification is too complicated. Decomposing a mission speci-
fication in various sub-missions can make the synthesis of independent parts
of the mission easy to achieve; however, we lose the guarantees on the overall
mission correctness.

In paper PAPER F, we address the problem of dynamic switching of con-
trollers of a distributed robotic mission while providing guarantees of correctness
on the overall mission specification under certain conditions. Our framework
allows us to model the overall mission in terms of mission scenarios that are
enabled under certain mission contexts. We represent the mission in terms of a
hierarchy of reusable goals, where each goal is rooted in formal contract-based
representations.

The major contribution is the possibility for the robot controller to perform
a mission while the context is being changed. Each context is related to
one specification controller. We have introduced a new formal methodology
to automatically switch from one specification controller to another while
providing guarantees on the satisfaction of the overall missions.

Overall our framework, named CROME, allows us to: i) decompose the
mission in several independent clusters, each containing mission scenarios acting
under a certain context, ii) automatically refine the mission using pre-defined
and reusable goals, i) synthesize controllers for each cluster and at different
abstraction levels, and) dynamically switch from one controller to another
at run-time while formally proving the correctness of the overall mission.

1.6. CONCLUSIONS AND FUTURE WORK 29

1.6 Conclusions and Future Work

In this thesis, we have presented the methodologies and techniques that can
help us build trustworthy autonomous systems. We have shown how formal
methods can be used effectively in any aspect of the design. Starting from
system requirements, we have seen how we can produce mission specifications
that are sound and complete. When uncertainty arises in what the specification
should be, we have used reinforcement learning techniques to let the system
learn and adapt in different environmental situations. We have seen how auto-
matically generate correct-by-construction system models from its specification
with reactive synthesis. Alternatively, we have seen how model-checking and
run-time verification can be used to provide assurances to existing systems.
Our contributions are both methodological and theoretical. Our frameworks
provide methodologies that can guide the system designer in the engineering
of autonomous systems while our algorithms enable the system designer to
practically realize them.

Assume-guarantee contracts provide the formal foundations for several of
our works, while methodologies such as platform-based design have guided our
design process. In the future, we plan to continue leveraging on the formal
machinery offered by the algebra of contracts together with core concepts
of modularity and step wise refinement. At the same time, we would like
to continue using platform-based design to bridge the gap between specifi-
cation and architecture while reasoning about abstraction layers, reuse, and
compositionality.

Specifically, we would like to investigate further how to combine formal
techniques such as reactive synthesis with more flexible ones such as rein-
forcement learning. On one hand, the synthesis methods provide a strategy,
usually a maximal permissive strategy (i.e. the one that restricts the behavior
of the environment as little as possible), that is functionally correct, but not
necessarily optimal. On the other hand, reinforcement learning, given a reward
function, can find the optimal policy. We plan to combine the two approaches
by synthesizing a functionally correct policy and then quantifying its optimality
with reinforcement learning.

30

CHAPTER 1.

INTRODUCTION

Chapter 2

Paper A

Formal verification of the on-the-fly vehicle platooning
protocol

P. Mallozzi, M. Sciancalepore, and P. Pelliccione

International Workshop on Software Engineering for Resilient Sys-
tems. Springer, 2016.

2.1. INTRODUCTION 31

Abstract

Future transportation systems are expected to be Systems of Systems (SoSs)
composed of vehicles, pedestrians, roads, signs and other parts of the infras-
tructure. The boundaries of such systems change frequently and unpredictably
and they have to cope with different degrees of uncertainty. At the same time,
these systems are expected to function correctly and reliably. This is why
designing for resilience is becoming extremely important for these systems.

One example of SoS collaboration is the vehicle platooning, a promising
concept that will help us dealing with traffic congestion in the near future.
Before deploying such scenarios on real roads, vehicles must be guaranteed to
act safely, hence their behaviour must be verified. In this paper, we describe a
vehicle platooning protocol focusing especially on dynamic leader negotiation
and message propagation. We have represented the vehicles behaviours with
timed automata so that we are able to formally verifying the correctness through
the use of model checking.

2.1 Introduction

Intelligent and connected vehicles will be key elements of future of transporta-
tion systems. Within these systems, vehicles will act as standalone systems
and at the same time they will interact each other as well as with pedestrians,
roads, signs and other parts of the infrastructure to achieve (even temporarily)
some common objectives. Future transportation systems might be then seen as
Systems of Systems (SoSs) [87] in which the boundaries will change frequently
and unpredictably. Moreover, these systems will need to cope with different
degrees of uncertainty both at the level of single constituent systems and the
entire SoS. Intelligent transport systems promise to solve issues related to
road congestion, environment pollution and accidents for a better and more
sustainable future [88]. In order to increase safety, reduce traffic congestion
and enhance driving comfort, vehicles will cooperate exchanging information
among each other and with the surrounding environment as well.

In this paper, we focus on a specific scenario, namely on-the-fly and op-
portunistic platooning, i.e. an unplanned platooning composed of cars that
temporarily join in an ensemble to share part of their journey. Platooning is
one of the promising concepts to help us dealing with traffic jams and at the
same time to increase the overall safety while driving. A platoon consists of
reducing the distances among following vehicles; it consists of a leading vehicle
driving manually and one or more following vehicles automatically driving
and following the leader one after another. This concept has been studied
and applied especially in trucks for the transportation of goods [89] with the
aim of reducing the impact with air and consume less fuel, but not as much
work has been done regarding normal vehicles platooning. Each vehicle must
be able to communicate with the others, or at least with the cars adjacent in
the platoon. The communication is important because each vehicle needs to
adjust the speed and the distance according to the other vehicles information.
Also, the leader of the platoon is responsible for managing the overall platoon
formation, by accepting new vehicles or responding to vehicles leaving.

Platooning is also a way towards autonomous vehicles since, except for

32 CHAPTER 2. PAPER A

the leader, the vehicles do not need human intervention during the travel
journey. Since human intervention is no longer needed, all decisions must be
taken autonomously by the vehicle, and this is a huge challenge for safety
assurance. Consequently, on the one side the use of platooning promises to
enhance safety, and on the other side safety is exposed to new threats and
challenges. It is important to notice that nowadays most of the systems are
guaranteed to operate correctly only in certain configurations and within the
system boundaries. When these boundaries are removed and the system is
exposed to unpredictable and uncontrollable scenarios and environments, safety
guarantees no longer hold. This will be one of the greatest challenges of future
autonomous and connected vehicles that will cooperate with other vehicles,
pedestrians, roads, etc. in a SoS setting.

Although there are different levels of autonomy of vehicledl} autonomous
vehicles can be considered as particular self-adaptive systems [90] since they
are capable of adapting themselves at runtime. A connected vehicle beside
being self-adaptive is also open to interactions with other vehicles and other
elements of the external environment. The unpredictability and uncontrollably
of the environment hamper the complete understanding of the system at design
time. Often uncertainty is resolved only at runtime when vehicles will face with
concrete and specific instantiations of the pre-defined environment parameters.
This implies that the certification process for safety has to be extended also to
runtime phases.

In this paper, we focus on a platooning scenario where the different vehicle’s
behaviours are organized in various modes [91]. A mode is a concept for
structuring the overall behaviour of the system into a set of different behaviours,
each of them activated at different times according to specific circumstances.
The behaviour of each mode is then represented in terms of a state machine
that captures the behaviour of the system in a specific modality, e.g. during
the selection of a leader of the platoon, leaving a platoon, etc. Transitions
among states can be triggered by timing constraints or external events. A
special transition can lead the system to a different mode: in this case the
two states involved are border states of the modes. Figure shows a vehicle
platooning scenario that involves different heterogeneous vehicles. Each vehicle
is in a certain mode according to its behaviour; we will describe the modes in
more detail later. The communication among the vehicles is represented with
dotted blue lines.

In this paper, we formally verify the on-the-fly vehicle platooning protocol
through the use of the Uppaal [92] model checker. More precisely we verify the
absence of deadlocks in the mode-switching protocol as well as other interesting
properties.

The rest of the paper is structured as follows: Section [2.2] presents all
the modes of our platooning scenario, Section describes some parts of the
Uppaal model, and Section describes the properties we checked on our
model. In Section 25 we show the results of a concrete simulation of our
model in Uppal. Section [2.0] presents the results of the validation we performed

IThe National Highway Traffic Safety Administration (NHTSA) has proposed a formal
classification system based on five levels: “U.S. Department of Transportation Releases
Policy on Automated Vehicle Development. National Highway Traffic Safety Administration,
2013”.

2.2. MULTI-MODE SYSTEM 33

D:‘SEE VEHﬂ\IG . LEADEJF_?S}-!& inGOTIATION

(.o
— e
7N ‘_ e L
JOINING S FOLLOWING FOLLOWING _ LEADING
0
G

Figure 2.1: Dynamic vehicle platooning scenarios. Each vehicle is in a certain
mode according to its behaviour in the platoon.

through the use of the model checker Uppaal. Section discusses works
that are related to our work and finally Section 2.8 concludes the paper with
directions for our future work.

2.2 Multi-Mode System

Partitioning a system into multiple modes, each of which describing a specific
behaviour of the system, is a common approach in system design. It leads to
a series of advantages, such as reducing the software complexity and easing
the addition of new features [91]. A self-adaptive system can be considered as
a multi-mode system; if something happens in the environment, the system
switches mode in order to adapt to the new conditions. This is the design
strategy we follow in this paper.

We start by partitioning our system into different operational modes, rec-
ognizing different system behaviours. We have defined the different modes
as a set of connected states with common behaviours. There are particular
states that we call border states: to pass from one mode to another, the system
passes through these states. All the modes have one or more border states that
allow the mode switching of the system. Switching from one mode to another
means that the system is passing from one border state of the current mode to
a border state of another mode. For each vehicle taking part in the platoon we
have identified the following modes:

— Discovering: this is the entering mode of the vehicle that wants to take
part in a platoon and searches for other vehicles that have the same goals
(e.g common destination).

— Forming: the first two vehicles that want to form a new platoon enter
into this mode. To do that, they decide who will be the leading vehicle
of the platoon.

— Joining: a vehicle has found an existing platoon and it wants to join it.
The vehicle can be accepted in the platoon within a certain time interval;

— Leading: the vehicle with the best safety attributes is elected as leader
of the platoon. We have assumed that each vehicle shares its safety
attributes with the other vehicles. Once in this mode, the vehicle has
to steer the following vehicles, propagate information, keep track of the

34 CHAPTER 2. PAPER A

list of the followers, accept new vehicles that want to join, and, finally,
manage the leaving of the followers.

— Following: all the vehicles drive in automated manner and follow the
leader. A follower can receive information from the leader and propagate
it to the other members of the platoon. It also supports the changing of
the leader and if the leader leaves then the vehicle goes into the discovering
mode again.

— Leaving: all the vehicles can leave the platoon at arbitrary time. When
the leader leaves, the platoon dissolves. When a follower leaves, it must
advise the leader and receive acknowledgement.

— Dissolving: vehicle goes in the dissolving mode when (i) it is a follower
and does not have a leader anymore or (ii) it is a leader and does not
have followers anymore. From this mode, it can either leave or go back
to the discovering mode and start a new platoon.

— Negotiation: when a new vehicle wants to take part of an existing platoon,
either it becomes a follower or it has to negotiate the leadership with
the current leader. The vehicle with the highest safety attributes will
always be the leader. Leadership negotiation can also be triggered by
two platoons that want to merge.

2.3 Uppaal Model Description

Our strategy to model the behaviour of the on-the-fly platooning is to build a
generic Uppaal template that incorporates all the modes. This template can
be then instantiated for each vehicle that will take part to a specific scenario.
More precisely, this model can be instantiated by all the vehicles regardless of
their role in the platoon. We can then simulate a variety of scenarios by tuning
the vehicles intrinsic properties. This solution is more scalable than having
multiple models for different roles of the platoon (leader, follower).

The dynamic leader negotiation is a property of our scenario since we do
not know who is going to be the leader beforehand. Furthermore, the leader
can be changed during the platoon life. In order to this, we assume that each
vehicle has associated a parameter representing its safety characteristics, called
safety index, before it enters the platoon. Our models and protocol assure
that the leader is always the vehicle with the highest safety index. The safety
index it is just a value and it represents the overall safety score of the vehicle,
the higher the better. We can assume that this value is calculated taking into
consideration all safety-related parameters of the vehicle, either static ones such
as the year of the vehicle, the size or dynamic ones taking into consideration
the driver experience and the people on board.

In our model every vehicle starts from a discovering mode where it looks
for other vehicles or platoons to join. In fact, the formation of a platoon can
happen in different ways:

— Two vehicles negotiating with each other and forming one platoon with
one leader and one follower. The two vehicles negotiate the leadership
according to their safety index.

35

UPPAAL MODEL DESCRIPTION

2.3.

(PL1=<1

aNNOE + INIL ILYDVOUd=>X%

$533014 aEbedolg

Qleqojbdod

()baydosd
o @<—ouore; @<

[PI1L7>3 B Qauoyse|

e @rebedold

ANNOE - JWIL ILVOVdOUd = <X

inbas = baj
ipiere6edos

0==6ubuey> gy

uonenobay~buipes]
T + yibua| siamoj|o) = Buibuey
(Buimoy|oy a3y,

ibayopifo]) mal

0<yIBU3| S1MO|[0) {52107 pIJA2EBUIARS| 13MO] |0
==bujbueys Py 0= “siamoljo) 03NosEIni
- } X 0==0 B3| sIemofo}d
NJsZ => X bujaea7 BuIMG|[04 \ e - ~ - (1Bua| s1amo| |0, P
Ik ! i[p1][43pEa||BuiARa| JaMmOjjo) wea ssamolioy 1 174apeat Buteal i k Ehmw, ;Lh%_ B Bues- 10 BunrEm
T ———— 0==0 qIBus| T B PR DU g ERETIED JapesT BuiAea]
bu Hoy : 1Eqo)|
0= N N G AR
‘++[13pe3||BUIAR| S13MO) |0} B2IY3N 2AES [;1 »
P L] .owh l]menobau PILY
[PILT=<3 B Daucise| ++[sapra|]buines| s1amo||o, 0==6uiBury> 9 p==[piIBuIAEa|"SIamo| |0y s

Lamoljo4”ppy

I |
(BuIpes| 23Y;

¥ 0==07416ua|"Sigmoljojd ¥ dvD - [PIILT=<
1ne3| S1oM0)|0)]
| amEee G==5 busT Siamol
Buibsa lJawmojjo) 2% 0==[pi1bulnTa] s13molj0)
APEI w7 0==buibueyp

dvD + [PI]L1=>3
Buipea

1apeay ajebed:

ZPIPPE s1eBedoid [Pl=>1

i[03uoixaujaiefedoid
()baydoid

0T1apeay arebedo.d
isapeajaebedoid

g=auwn
o 1= @
“()s12mo)) "areBedosd
{DPI”s2mo)j0jAuL
1 = J3yio py
ZNp1IBUIARa| 13m0 [0
0==Buibueys
Aprcy

i[13y10™pi]y3e"Buines| samo|jo)

(Janjossip

i[1ay30” pI]y e BUIARR| Jamo||0)

. B N —-BuibUey; PP apea) maul peaj -
== buaf siamojod mwhn”@ [pL1=<1 (R T AR Y piliamoyjoy mal
dvD + [Pl11=>1 Bumojjoy o 093N >\u_oum_
. = 0 I J
Z[13pea||BuIAe3| I3pE3) 1][13y10” pilsamojjo) ppe) (3 -]
Apeay Buimo|jo4 Bujwiiog ApeayBuipea]
' i ++suoojeid {)4apeapnas
y: Toulpea|Paus
. (1apeajppy nbai=hai N N Y
yay Japea) el || e 120" pilamo|joy Ma L :
oBumolopayy | Jiipibapesmau . INLLT¥IAVITIDNVHO >
[pi]a3enoBau ONI § o _ ~
PR [F5puss baippe 1opes] Mol 1apeat abury ap1yanane
. N il i)z Aian0ds)
AP
WIL DNINIOT=>X IWIL YIAVIT IONVHI==
o= J91D1aR"aALS)
22112 A W kianodsip p
) Moawy &
S u
BUISAG351a HGD SEEEET) wpre
dvD + [PLT=>1
[p=>1 o
—sucowd 1- = sapea
x / ENET
ooy ore: @) | \&
HDNIAT0SSIa —SUOORM@IPIITST o0pe1q Bumossia

0=x ‘0|egojbTI3sa1

a1 1amolj0d

ONIaval

B

1pi1s=>1(@)

ey

15=<1

Uppaal model with modes.

Figure 2.2

36 CHAPTER 2. PAPER A

— One vehicle joining an existing platoon if there is already a formed platoon
and the new vehicle is in discovery mode.

— Two existing platoons merging into one after the two leaders have per-
formed a re-negotiation of their leadership.

If the joining of a platoon takes more than the pre-defined constant time
(JOINING_TIME) to a vehicle, then it goes into discovering mode again. After
the formation phase a vehicle can be either in Leaving or in Following state.
The leader keeps track of all its followers at any time by listening to new joining
or leaving requests. It can also send messages to all its followers. Message
propagation can happen in two ways:

— The leader can reach all its followers and communicate with them all.

— The leader sends a message to the follower immediately behind him and
then the message will propagate from follower to follower until reaching
the last vehicle in the platoon.

We also take into consideration the propagation time that is needed for a
vehicle to pass on the message to the next vehicle. The time is, in fact, crucial
for safety-related messages; we want to be sure that the message reaches the
whole platoon in the shortest time. We guarantee this by formulating and
verifying time-related properties on the message propagation as described in the
section below. Another feature of our model is the dynamic leader negotiation
also after the platoon has been formed. This can happen in two cases:

— Two platoons want to merge. The platoon with the leader having the
highest safety index will take the leadership while the other leader acti-
vates the joining procedure to the new leader that has to be completed in
CHANGE_LEADER_ TIME and afterward it becomes a follower of the newly
elected leader.

— A vehicle wants to join an existing platoon and it has a safety index
higher than the platoon leader. The current leader passes its followers to
the new leader and itself becomes a follower.

2.4 Requirement specifications verified with model
checking

The main purpose of a model-checker is to verify the model with respect
to a requirement specification. With the timed-automata representation of
the system, it is possible to verify safety and behavioural properties of our
model such as the absence of deadlocks or the propagation of a safety-critical
message within a certain time. Like the model, the requirement specification
(or properties) to be checked must be expressed in a formally well-defined
and machine readable language. Uppaal utilizes a subset of TCTL (timed
computation tree logic) [93,[94]. The path formulae A <> ¢ (or equivalently
A <> ¢ = =E[]-p) expresses that ¢ will be eventually satisfied or more
precisely that in each path will exist a state that satisfies ¢. The path formulae
Al] expresses that ¢ should be true in all reachable states.

2.4. REQUIREMENT SPECIFICATIONS VERIFIED WITH MODEL CHECKING 37

In order to verify the safety requirements, we have to build a scenario first,
i.e., a particular instantiation of the system. Our model is made in order to be
configured according to the scenario we want to verify. We first need to set
the number of vehicles involved and for each vehicle we need to configure few
parameters such as its arrival time, leaving time, and safety index. We have
automated the configuration process by assigning random values to these values
as we explain in the following section. The automation process involves also
the properties that are tuned according to the scenario we want to verify. Once
we have configured our scenario we can formally verify the following properties:

— Property 1: If a vehicle is in the leading mode then its safety index is
higher then all other vehicles involved in the platoon.
Assuming a scenario where Vehicle 3 has the highest safety index the
instantiated property would be expressed as:

A[] (Vehicle(3).Leading = V(i:id.v) S[3]>=S[i])

— Property 2: The propagation of a message from the leader to the last
follower happens in a bounded amount of time.
The time in which the propagation has to happen varies according to
the size of the platoon and the maximum acceptable delay is kept by the
predefined variable MAX_PROP_DELAY.

A[] (b==1 — time<=MAX_PROP_DELAY)

A boolean variable b and a clock variable time are two global variables
that are used to measure the propagation time from when a message is
fired. In order to measure that, when a message starts propagating, the
variable b is set to 1 while time is reset. The properties assures that
time will always be inferior to the constant MAX_PROP_DELAY while b is
kept to 1. The variable b will be reset when the message has reached the
last follower of the platoon.

— Property 3: For each vehicle in the following state exists at least one
vehicle in leading mode.

A[1(V(k:id_v) Vehicle(k).Following —
3 (i:id.v) Vehicle(i).All_Leading_States)

Since the leading mode is formed by a series of states this property is
verified by including all the states of the leading mode (as a series of or
elements). We did not write the full property for readability purposes.

— Property 4: Whenever the vehicle with the highest safety index starts
participating in the platooning it will eventually become the leader.
Assuming that Vehicle 1 is the one with the highest safety index, the
property becomes:

Vehicle(1) .Start = <> Vehicle(1).Leading

38 CHAPTER 2. PAPER A

— Property 5: For all the path, the vehicle with the highest safety index goes
into the leading state.
Assuming the Vehicle 1 is the one with the highest safety index, the
property becomes:

A<> Vehicle(1) .Leading

— Property 6: All vehicles will eventually leave the platoon.
Since all the vehicles have a leaving time we can verify that:

A<> (V(i:id_v) Vehicle(i).Start —
V(k:id_v)Vehicle(k) .Left)

— Property 7: If a leader leaves the platoon then all its followers leave as
well.

A[l((d(i:id_v) Vehicle(i).Leaving Leader A
V(k:id_v) Vehicle(k).Following) —
V(j:id_v) Vehicle(j).Dissolving Platoon)

— Property 8: The model is deadlock free.
Finally, this property assures that for all possible paths there are no
deadlocks in our model:

A[]— deadlock

In Section [2.6]| we present the verification times of the properties described
above. We have noticed that properties apparently very similar require a
very different amount of processing time in order to be verified. For example,
both properties 4 and 5 verify the leadership of the vehicle with the highest
safety index. Property 5 is always verified in less than 1 second, with the time
increasing linearly with the number of vehicles. Property 4, instead, can take
up to hundreds of seconds with an exponential increase with respect to the
number of vehicles.

2.5 Simulation

Latest versions of Uppaal offer the possibility to perform a concrete simulation
of the model. It is a verification tool that enables examination of the dynamic
executions of a system. The simulation is based on concrete traces, e.g., one
can choose a specific time to fire a transition. The tool helps to see at which
time a transition can be fired. We have modeled some transition to fire with
a uniform probability distribution. For example, in the propagation of the
message, the transition will fire somewhere between PROPAGATE_TIME-BOUND
and PROPAGATE_TIME+BOUND time units. We have used these time constraints
to verify time properties based on the worst case scenarios when a message has
to be propagated from the leader throughout the entire platoon.

In order to perform a simulation, we have to configure our model specifying
parameters such as the number of vehicles, starting times, leaving times, and
safety indexes. Each vehicle is an instance of the general vehicle template
and by launching the simulation we can see how the vehicles interact with

2.6. VERIFICATION RESULTS 39

each other. All instances start from the same state and as the time flows
Uppaal randomly selects which edge to fire among the available ones of each
state. Some edges have guards and invariant in order to model the time of the
transition from one state to another as a uniform probability distribution.

Gantt Chart

0 1 2 3 4 5 6 7 8 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 23 30 31 32 3
vehicle(0)|60
vehicle(1)|70
vehicle(2){94
vehicle(3)[65
vehicle(4)|75

Leaving. .

Leading (queue: 0-1-3-2)
Leading

Safety Leader Leader Hazard Leader
Indexes negatiation negotiation negatiation

Figure 2.3: Concrete simulation with Gantt Chart in Uppaal.

Figure [2.3] shows the Gantt chart of a simulation. The horizontal axis
represents the time span and in the vertical axis the list of vehicles instanti-
ated in the simulation. A vertical line is used to represent the current time
(which corresponds to the one displayed in the Simulation Trace-combo box).
Horizontal bars of varying lengths and colours represent the different modes of
the vehicles. Due to the limited amount of colours we are only able to show a
limited amount of modes, specifically: discovering (purple), leading (blue), and
following modes (green).

In the simulation showed in Figure 2.3 we can see 5 vehicles participating
in the platooning, each with a different safety index. vehicleO starts first
stays in the discovering mode until other vehicles enter in the platoon. When
vehiclel and vehicle4 enter, the three vehicles perform a leader negotiation
and vehicle4 goes starts leading the platoon since it has the highest index.
At time 4 vehicle3 joins the existing platoon until vehicle2 comes into play
and renegotiate the leadership with vehicle4 and so on. It is also interesting
to see the message propagation of a hazard from the leader to all its following
vehicles (marked in red).

2.6 Verification results

The simulation shown in Figure 2:3]refers exclusively to a particular scenario. In
this section, we instead report the results of an exhaustive verification that we
performed on a number of different scenarios. This is obtained by automating
the verification process with an external script that is able to generate different
scenarios by changing the number of vehicles involved in the platoon and by
randomly selecting independent variables within each vehicle, such as:

— Arriwal time: the arrival time of a vehicle;
— Leaving time: the leaving time of a vehicle;
— Safety index: the safety index of a vehicle.

We are then able to verify all the properties described in Section [2.4] with
a number of vehicles from 2 to 5 and for each vehicle configuration we run
100 tests with random scenarios. The height properties are verified by each
generated configuration.

40 CHAPTER 2. PAPER A

0.45

0.35 - B
0.3 —
0.25 - = — 4

0.2 B

0.1 B

0.05 - B

Lol ol ol o anl]

1 2 3 4 5 6 7 8

Figure 2.4: Average verification times for 100 iterations. X-axes represent the
property being verified. Y-axes the time to verifying it (in seconds). 2-3-4
vehicles scenario respectively

The script generates different models of the system based on a progressive
number of the vehicles N and random values of some attributes. It executes
two big loops, one to change the random values and one to increment the
number of vehicles N. Thanks to the standalone Uppaal verifier, the script
verifies the above-mentioned properties with random attribute values of all
the models generated. If one property is not satisfied, the standalone verifier
generates the counterexample, which is useful to understand why the property
is not satisfied. Counterexample files can be open within the GUI of Uppaal.
In the end, the script generates a report of the verification, i.e., a text file that
traces all the properties, both if they are satisfied or not.

Figure reports the time required to verify the 8 properties. The time
shown in the figure is the average time required in 100 iterations. Since the
time to complete the verification is exponential with respect to the number
of vehicles the figure shows the time required by configurations of 2, 3, and 4
vehicles for verifying the 8 properties. For readability purpose, the verification
time for configurations of 5 vehicles is not shown in the figure and the average
times for 100 iterations are shown in Figure As we can see from the figure
properties 5 and 6 have times comparable with the verifications times of 2, 3
and 4 vehicles. In fact, these two properties scale linearly while the others scale
exponentially.

We have seen how changing the number of vehicles affects the verification
time although these change a lot also for every configuration taken into consid-
eration. Within the same number of vehicles, we have performed 100 iterations
assigning random values to the vehicle attributes. Figure [2.6] shows how the
verification time of a single property with a 5 vehicles configuration is affected
by the random assignment of the vehicle attributes.

2.7. RELATED WORKS 41

100

1 2 3 4 5 6 7 8

Figure 2.5: Average times of 100 iterations for verifying the properties 5
vehicles.

1000 I

900 — | |

700 — | ‘ |

00— I

500 — | | |

400 ‘ . ‘ [
| |

300 — M | [l | ‘ =

200 - I | I\ oA

100 \ [N [| A VYA H

\ \ ~ | | - N
ol I N) S _ _] y SV \
o 10 20 30 40 50 60 70 80 %0 100

Figure 2.6: Verification times of the deadlock free property for 5 vehicles
scenario in 100 iterations.

2.7 Related Works

Kamali et al. have also investigated the verification of vehicle platooning
representing it as a multi-agents system. They verified the behaviour partly on
the actual agent code and partly with Uppaal with timed-automata abstractions
by using two different models, one for the follower and one for the leader.

One of the main challenges in open and self-adaptive systems is to certify
that the system is always in a safe state. Since safety cannot be completely
evaluated and assured at design time, at least part of the safety assurance must
be shifted at run-time. The first ideas for certifying safety at runtime were
introduced by Rushby , . He proposes an initial idea to certification
based on formal analysis at runtime; however much work must be done to
produce a solution that can be used concretely.

A promising approach to deal with safety certification at runtime is Con-
Sert . ConSert introduces the idea of Conditional Safety Certificates to
facilitate the certification of open adaptive systems. Each subsystem is certi-

42 CHAPTER 2. PAPER A

fied by a modular safety certificate based on a contract-like approach. The
evaluation and the composition of the modular certificates happen at runtime.
This framework offers flexibility as allows designers to specify safety through
variable safety-certificates. Within the approach, all the configurations that a
component of the system can assume must be predefined at design time in order
to be certified “safe” at runtime. It allows emergent adaptive behaviours only if
they can be tamed in certain boundaries with the concept of safety cages. Fully
emergent behaviours are not possible to certify with ConSert hence ensuring
safety in these cases is a much more difficult problem. A possible research
direction can be investigating the theoretical assume-guarantee framework
proposed in [99]. This framework allows one to efficiently define under which
conditions adaptation can be performed by still preserving desired properties.
The framework might provide the infrastructure to automatically calculate at
runtime which properties are verified in specific scenarios. For instance, this
might suggest excluding some vehicles from the platooning since their inclusion
might compromise important properties.

Regarding the automotive domain a more practical approach is the one
proposed by Kenneth Ostberg and Magnus Bengtsson [100]; they deal with
run-time safety by extending the AUTomotive Open System Architecture
(AUTOSAR |[101]). Claudia Priesterjahnr et al. [102] tackle the runtime safety
problem at a component level performing a runtime risk analysis. When a
system is trying to connect to another system (for example in a platoon) it
computes all reachable configurations and, for each of them, it computes the
hazard probabilities at runtime in order to judge whether the configuration is
safe or not.

2.8 Conclusion

In this paper, we have presented the formal verification of on-the-fly vehicle
platooning. We have modeled the vehicle behaviours with timed-automata so
that we were able to verify the correctness of the protocol with model checking.
We were able to verify that some properties always hold for a different number
of vehicles each with random attributes. All the vehicles are modeled with a
unique generic Uppaal model that can be instantiated for each specific vehicle.
In this way, it is possible to simulate different scenarios and the verification is
easily scalable to more vehicles. Each scenario has been generated with a script,
which changes parameters such as the number of vehicles and the attributes for
each vehicle and then it verifies that all the proeperties hold. We have focused
our attention only to some interesting part of the model such as the dynamic
leader negotiation and the message propagation of the vehicles leaving other
parts to be further exploited. As future work, we plan to refine our model
by releasing some assumptions made during the creation of the model and
verifying more properties. As a long term goal, we plan to experiment with
the protocol by using a set of miniature vehicles.

2.9. ACKNOWLEDGEMENT 43

2.9 Acknowledgement

This work was partially supported by the NGEA Vinnova project and by the
Wallenberg Autonomous Systems Program (WASP).

44

CHAPTER 2. PAPER A

Chapter 3

Paper B

MoVEMo - A structured approach for engineering reward
functions

P. Mallozzi, R. Pardo, V. Duplessis, P. Pelliccione, and G. Schneider
International Conference on Robotic Computing. IEEE, 2018.

3.1. INTRODUCTION 45

Abstract

Reinforcement learning (RL) is a machine learning technique that has been
increasingly used in robotic systems. In reinforcement learning, instead of
manually pre-program what action to take at each step, we convey the goal a
software agent in terms of reward functions. The agent tries different actions
in order to maximize a numerical value, i.e. the reward. A misspecified reward
function can cause problems such as reward hacking, where the agent finds out
ways that maximize the reward without achieving the intended goal.

As RL agents become more general and autonomous, the design of reward
functions that elicit the desired behaviour in the agent becomes more important
and cumbersome. In this paper, we present a technique to formally express
reward functions in a structured way; this stimulates a proper reward function
design and as well enables the formal verification of it. We start by defining the
reward function using state machines. In this way, we can statically check that
the reward function satisfies certain properties, e.g., high-level requirements
of the function to learn. Later we automatically generate a runtime monitor—
which runs in parallel with the learning agent—that provides the rewards
according to the definition of the state machine and based on the behaviour of
the agent.

We use the UPPAAL model checker to design the reward model and verify
the TCTL properties that model high-level requirements of the reward function
and LARVA to monitor and enforce the reward model to the RL agent at
runtime.

3.1 Introduction

The behaviour of autonomous robotic systems is traditionally designed manually
and their correctness relies on extensive testing of their requirements. Other
approaches can generate optimal controllers of the robot from a synthesis
process that starts from the specification of the system [103,[104]. However,
the presence of uncertainty makes it hard to model all the requirements at
design-time (the partial knowledge of the environment and its dynamic nature
will make the specification necessarily incomplete).

Uncertainty may come from the system’s environment, unavailability of
resources, the difficulty of predicting users’ behaviour, etc. [105H107]. Con-
sequently, it is extremely difficult to anticipate all the possible and subtle
variations of the environment at design-time. In a goal-oriented approach,
we set the objective that we want the system to achieve without specifying
how. By using model-free reinforcement learning [10] we let the agent explore
the environment by trial and error, ultimately producing an optimal policy
according to the predefined goal. The policy is learned by interacting with the
environment and collecting a reinforcement signal, i.e. a numerical reward for
each action that the agent performs on it.

An incorrect specification of the reward function, and consequently a gap
between the designer’s intention and the specification, can cause unexpected
behaviours in the agent. One of the problems is reward hacking [108], meaning
that the agent, by taking into account the reward function, manages to get a
high reward without achieving the designer’s intentions; this is because it might

46 CHAPTER 3. PAPER B

optimize towards the rewards function that is indeed not exactly representing
the designer’s intentions. For example, in a cleaning robot setting, if the reward
function gives a positive reward for not seeing any dirt then the agent might
learn to disable its vision rather than cleaning up. Instead, if the reward is
given only when the robot actually cleans up then the robot might learn to
make a mess first and then cleaning up so that it keeps receiving more and
more reward.

By embedding more domain knowledge in the reward function one could
avoid the reward hacking phenomenon; this would also help the agent to learn
the desired policy faster [85]. However, as reward functions become more
complex, in turn, it becomes harder to spot mistakes and to be confident
whether the reward values that are finally sent to the agent actually reflect the
designer’s intentions.

Our work goes in the direction of a better structuring of the reward function
with the aim of closing the gap between the designer informal goals and the
reward signal. Our contribution is the design and validation of a software
infrastructure that enables the verification and enforcement of reward functions
to an RL agent. From a high-level perspective our approach, which we have
called MOVEMO, consists of four steps:

1. Modelling complex reward functions as a network of state machines.
2. Formally verifying the correctness of the reward model.

3. Enforcing the reward model to the agent at runtime using a monitoring
and enforcing approach called LARVA.

4. Monitoring the behaviour of the agent as it transverses the state machines
to collect the rewards.

Steps 1 and 2 are performed by the designer that iterates the reward function
model until it is compliant with the high-level properties that she/he expresses.
Steps 3 and 4 are automatically derived and performed from the reward model.

We have validated our approach in an autonomous driving scenario using
the TORCS [109] simulation environment. After modelling the goal of the
system with our approach, the reinforcement learning agent learns how to steer,
accelerate, and break. We are able to detect bugs in reward functions before
enforcing them to the agent. We have packaged the software infrastructure in
a stand-alone docker image [110].

The rest of the paper is structured as follows. In Section we introduce
background information needed to understand our approach, such as reinforce-
ment learning, formal verification, and runtime enforcement. In Section we
give an overview of existing methods to convey rewards to the agent and the
problems that come with it. In Section [3.:4] we present the four phases of our
approach: modelling, formal verification, enforcement, and monitoring. Finally,
in Section we present a case study in a racing car simulation environment.
We conclude and depict future research directions in Section [3.6

3.2. BACKGROUND 47

3.2 Background

3.2.1 Reinforcement Learning

Reinforcement learning is a machine learning technique that involves an agent
acting in an environment by choosing predefined actions with the goal of
maximizing a numerical reward.

At each time step ¢t an agent receives an observation from the environment
that it associates with a certain state. It chooses an action from that state and
applies it to the environment that moves to a new state. A reward associated
with this transition state-action-newstate is determined and sent back to the
agent.

In model-free RL, a learning agent starts with no prior knowledge about
the environment and, as it receives observations, it tries actions and then
collects a reward. It selects its actions by exploiting the knowledge from its
past experiences but also by exploring the environment by trial and error
learning. The environment evaluates the action taken by the agent at each
step by sending back a reward signal to the agent. The goal of the agent is to
maximize the expected rewards over time, also known as return.

The agent does not learn the reward function but instead it learns the
@-values, which are numerical values associated to each action that it can take
in a state. In Q-learning [81], a model-free reinforcement learning algorithm,
at each time step the agent updates the Q-values associated to the state-action
pair as follows:

Q(st,at) = Q(st,ar) + a(ry + v - maxy(Q(si+1,a)) — Q(St,ar))
where:

— 14 is the reward for the current agent’s state;
— s8¢ is the current state of the agent;
— ay is the action picked by the agent;

— « is the learning rate; it indicates how much the agent will consider the
newly acquired information into its previous state-action value;

— ~y is the discount factor; If the factor is close to 0 the agent will only
consider the current reward; contrariwise, if the factor is close to 1 the
agent will try to maximize the long-term sum of the future rewards.

In this paper, we use the Deep Deterministic Policy Gradient (DDPG) algo-
rithm, which uses the ideas of Q-learning in a continuous action domain [111].
It is an actor-critic algorithm and it uses two neural networks, one for the actor
and one for the critic. The actor is a policy: it produces the action a given a
state s. The critic is the value function: it estimates the action-value function
Q(s,a). The critic estimates the value of the current policy by Q-learning, so
using the rewards from the environment to improve its estimations. The critic
also provides a loss function to the actor that updates its policy in a direction
that improves the Q value.

48 CHAPTER 3. PAPER B

event? / x <20 / reward := 1

event? / x > 20 / reward := —1

event! / /| x := environment.x
20 @

Figure 3.1: Example of a network of UPPAAL automata

3.2.2 Formal Verification

Depending on the system to be analyzed and the kind of properties to be
proved, different formalisms are used for their description, giving also rise to
different verification techniques. One common technique consists in using finite
state machines (e.g., autornata) to model the system and temporal logic to
describe the specification or properties. Formulating specifications in temporal
properties is an error-prone task that requires mathematical expertise. In order
to facilitate the task of specifying formulas in a correct and accurate way, we
plan to use user-friendly notations and approaches, like [112,|113].

In this paper, we use the model-checker UPPAAL [114] to guarantee that
the reward function of the reinforcement learning algorithm complies with
certain requirements. In UPPAAL the system is modelled as a network of ¢timed
automata |115]. These automata are state machines where nodes can be labelled
with invariants and transitions are labelled with synchronization primitives,
guards, and updates. It also allows the definition of discrete variables, and
in particular, a special kind of continuous variables called clocks to measure
the pass of time. Synchronization is carried out using channels. There are
two synchronization primitives associated with channels. For a channel ¢, we
can send information to the channel (c!) or receive from it (c?). Receiving is
a blocking primitive, therefore the automaton waits until another automaton
sends information to the channel. Guards are Boolean expressions involving
any of the variables of the automaton. Likewise, using updates we can modify
the value of variables of the automaton. Figure shows an example of a
network of two automata, the labels on the transitions are in the form of
synch/guard/update.

In this network of automata, there is a channel event, and two integer
variables x and reward. Intuitively, the top automaton models a reward function,
and the bottom automaton the environment in which the reinforcement learning
agent is working. Initially, the automaton at the top is waiting for an event
to occur, since it is in state sy and both transitions are labelled with event?.
When the bottom automaton—initially in state sj;—changes state, it sends a
message to the channel event (event!) and updates the value of variable x of the
automaton with the value of variable x in the environment (z = environment.x).

3.2. BACKGROUND 49

The automaton modelling the reward function now reads the value of x and
depending on whether it is greater than 20, it gives the agent a positive or a
negative reward.

In UPPAAL, properties to verify are written in Timed Computational Tree
Logic (TCTL) [116]. This logic consists of the usual propositional logical
connectives: =, A, V, =, and some operators to quantify over the execution
paths of the system and their states. In this paper, we only make use of the
operator AG—Always Globally, or, more formally, for all execution paths and
in all states. The meaning of this operator is better explained with an example.
Consider the automata above, the following TCTL formula checks that for all
executions paths and all states in the system the value of reward will always be
either -1 and 1,

AG(reward =1V reward = —1)

this formula will be satisfied in our model of the reward function. We can also
specify properties of states where some condition holds. Consider the following
property if © goes above 20 the agent should always get a negative reward. This
property can be expressed as follows:

AG(z > 20 = reward < 0)

This property only considers the state of the execution paths where z > 20.
Again, it is easy to see that the previous property is satisfied in the system.

UpPPAAL offers the possibility of defining functions that can be associated
with the guard or update fields of the automata. This is very convenient as the
user can specify complex reward functions in a syntax similar to C' and then
use the model checker to verify that the specified properties hold across all
possible input values.

As we show in the following sections, we formalize the high-level require-
ments of the reward function in TCTL so that we can automatically check that
our model of the reward function satisfies them. Nevertheless, there is still a
gap between the model of the reward function and its implementation. We
bridge this gap using runtime enforcement tools.

3.2.3 Runtime Enforcement

Runtime enforcement is a technique that ensures that the behaviour of a
system—to which we do not have access a priori, i.e., we can only access
the system after it has been deployed and is running—complies with certain
properties. Runtime monitors are small programs that passively run in parallel
with the system while the enforcers act on the monitored systems. Monitors
observe the system and based on their perceptions, influence the behaviour of
the system to guarantee that some properties are satisfied.

The tool LARVA [117] offers the possibility of defining runtime monitors using
special kind of automata called DATEs (Dynamic Automata with Timers and
FEvents) [118]. DATESs can be automatically compiled into an executable Java
program. All elements in a timed automaton can be converted into a DATE (see
Section for the details), which makes LARVA an ideal candidate to define
(and generate) the monitor for reward function specified using timed automata.
DATES consist of states and transitions labelled with triples event/guard/update.

50 CHAPTER 3. PAPER B

event / © <20 / agentReward(1)

event / x> 20 / agentReward(—1)

Figure 3.2: Example LARVA automaton

The labels on the transitions mean that if a matching event occurs in the system
and the guard—based on event parameters and the automaton state—holds,
then the update is carried out and the current state of the automaton updated.

Consider the LARVA automatorﬂ in Fig. 3.2l This automaton is almost
identical to the reward function UPPAAL automaton presented above. There
are only two differences: i) event represents that the transition that will be
triggered every time the monitor observes that the reinforcement learning agent
performed an event; ii) the function agentReward sends the reward to the
reinforcement learning agent, instead of storing it in a local variable. As in
UPPAAL automata, transitions are triggered if the guards are true.

We translate UPPAAL automata to LARVA (we describe the details of the
translation in Section to automatically generate a Java monitor. This
monitor will run in parallel with the learning agent. LARVA automatically
instruments the monitor and the learning agent so that the monitor can observe
the events that the agent performs and its impact on the environment. Based
on the events and the observation the monitor will provide the agent with the
corresponding reward. The reward that the monitor produce is guaranteed to
comply with the high-level requirements of the agent since the monitor behaves
as defined in the UPPAAL automaton which has been formally verified.

3.3 Reward engineering: state of the art

3.3.1 Conveying rewards to the agents

Daniel Dewey stated the reward engineering principle [119] as follows: as
reinforcement-learning-based Al systems become more general and autonomous,
the design of reward mechanisms that elicit the desired behaviour becomes
both more important and more difficult.

In reinforcement learning the only way to convey the goal that the agent
has to achieve is the reward signal, which determines the success of an action’s
outcome. The system designer has to engineer the reward function so that it
encodes the informal objective that he wants the agent to achieve. He has to
translate these goals into a numerical form, rewarding the agent for acting good
and penalizing it for acting bad.

In what follows we will use both “DATEs” and “LARVA automata” to refer to the
underlying specification language of LARVA.

3.3. REWARD ENGINEERING: STATE OF THE ART 51

A well-defined reward function has demonstrated to be successful in several
cases such as Atari games |[120] and board games [120]. These examples show
that a simple reward function, such as the score of the game, can teach the
agent to achieve the optimal policy. However, in many tasks the right reward
function is less clear. In more complex domains such as in automotive, we
need more complex functions to produce the desired behaviour of the agent.
For example, let us assume that we want to make an agent steering a car.
Then, imagine that as reward function we only model the travel time from a
point A to a point B. The agent might take an almost infinite amount of trials
to drive properly, since it will have to try different combinations of steering,
accelerating, and breaking actions.

When the action domain of the agent is continuous, a common way to
convey the right rewards is to elicit it from demonstrations of an expert. In
methods such as apprenticeship learning, the reward function is learned from
observations [121]. The idea is that we take as given an expert optimal policy
and we determine the underlying reward structure. This problem is also known
as inverse reinforcement learning. The given policy follows some optimal reward
function but there is no need to articulate it. The agent will derive it by seeing
demonstrations.

Another issue with determining the right reward is that the agents need an
early feedback on the success of their actions without having to wait for the end
of the task. Reward shaping has been addressing such challenge by providing
guidance to the agent and incorporating prior knowledge in the reinforcement
learning. For example, in potential-based reward shaping we provide heuristic
knowledge by an additional reward F'(s,s’) = y¢(s') — #(s) when moving from
state s to s’. Where ¢(s) is a potential function associated with the state
s. Prior knowledge can also be encoded directly into the initial Q-values of
the agent, which can be equivalent to shape the reward by using a potential
function [122].

Multiple sources of rewards can also make the reward function more robust
and difficult to hack, as also proposed by Amodei et al. [123]. The reward
signals might be independent, complementary, or conflicting with each other.
When the RL agent has to deal with multiple reward signals we refer to
Multi-Objective Reinforcement Learning (MORL) [124]. There are two main
categories in MORL depending on the number of policies to be learned by the
agent: single-policy and multiple-policy approach [125]. In our approach, the
RL agent learns a single policy based on multiple sources of rewards.

3.3.2 Unexpected behaviours

The encoding of system goals into a reward function can lead to unexpected
behaviours in the agent, either because the designer does not include or have
the correct information or because she/he makes mistakes during the design of
the reward function. Amodei et al. [123] point out some of the major problems
in achieving safe and expected behaviours in machine learning agents, such as
avoiding negative side effects and avoiding reward hacking.

The first problem emerges in large environments when the designer of the
reward function focuses on few aspects of the environment omitting others.
The agent might manage to achieve the designer’s goal by doing something

52 CHAPTER 3. PAPER B

unrelated or destructive to parts of the environment that the designer did
not include in the reward function. Basically, the designer should include
constraints to what the agent can and cannot do in the environment and not
only inferring the system goal. However, in large environments, it might not
be possible to identify all the constraints.

We have talked about how simple reward functions such as the score of the
game can lead the agent to play several ATARI games. This is not always the
case as the agent might simply learn to maximize the reward function without
satisfying the specifications of the game (reward hacking). For example, in
CoastRunner, a boat race game, a human player understands that the goal
is to finish the race as quickly as possible while collecting points on the way.
The reinforcement learning agent instead keeps hitting some targets on the
way without finishing the race because it learns that by doing so it can gain a
higher scoreﬂ There is a wrong assumption here: the reward function does not
properly reflect the informal goal of the game to finish the race but rather to
simply maximise the score.

Finally, we have a designer that wants the agent to accomplish a certain
objective. He has to encode the objective as a reward function and convey
it to the agent. We have seen how this encoding can lead to unexpected
behaviour in the agent, either because the designer does not include or have
the correct information or because he makes mistakes in the designing of the
reward function.

3.4 MoVEMOo

We propose an approach called MOVEMO to model, verify, enforce and monitor
reward functions. MOVEMO goes in the direction of carefully engineering
complex reward functions by using formal methods combined with the use of
multiple reward signals. Our approach is shown in Figure [3-3] and consists of
four main steps:

1. The designer graphically models different goals that want the system to
achieve as state machines using UPPAAL, hence creating a reward model.

2. The designer expresses the requirements of its reward function in terms
of TCTL properties. UPPAAL automatically verifies that the properties
hold in the reward model across all possible inputs that the environment
could issue.

3. The reward model is automatically translated into a LARVA model pre-
serving the original behaviour. This model interacts with the RL agent
at runtime issuing rewards.

4. The LARvVA model also serves the purpose of monitoring the behaviour
of the RL agent.

2Faulty reward functions https://blog.openai.com/faulty-reward-functions/

https://blog.openai.com/faulty-reward-functions/

3.4. MOVEMO 53

Design-time model

—> i.i :> of the reward function
@ sync / guard / update

Properties

O

D @ Properties
— 0O : M
Model Checking #

—M

properties not verified

see counter-example and refine the model all properties are verified

automatic mapping to
run-time model

action Run-time model
of the reward function

1L event / guard / update

Agent
P~ reward __—
LARVA

Figure 3.3: Proposed approach: MOVEMO

3.4.1 Step 1: From requirements to reward function

Traditional software development cycle starts with the definition of high-
level requirements of the system that are then broken down into smaller
objectives that have to be achieved by the individual components. Goal-oriented
approaches can be helpful in refining high-level functional requirements into
operational goals and non-functional requirements in system invariants [24,/126],
127].

In this phase, after an initial elicitation of the high-level goals to be conveyed
to the agent, the designer models them as automata in UPPAAL. Each goal is
represented by a separate automaton whose states encode a configuration of
the agent in the environment. A reward function is associated with each state.

At all times, the state of the agent resolves in multiple states in the monitor,
one state for each automaton. Each state is issuing a reward proportional to
how distant is the agent to the goal modelled in the automata. We compute a
single scalar value from all individual rewards that we then feed to the agent
as in the standard reinforcement learning framework.

3.4.2 Step 2: Verifying the requirement

The designer expresses the reward function requirements in terms of TCTL
properties. Furthermore, all the environment variables that interact with the
reward model have to be expressed as simple automata that can produce values
within a certain range. UPPAAL can then formally verify the compliance of the
reward model with the properties expressed by the designer.

In case any of the properties is not verified, UPPAAL will show a coun-

54 CHAPTER 3. PAPER B

terexample. The designer is then able to understand in which case its reward
function does not hold the specified property. This is a very useful feature that
allows the designer to go back and iterate on the reward model until she/he is
satisfied with the result.

3.4.3 Step3: Enforcing the reward function

To enforce the reward function we convert the UPPAAL model into a LARVA
monitor. To do so, we have established mapping rules between UPPAAL and
LARVA automata. More specifically:

— Channels in UPPAAL automata become event listeners in LARvVA. In
UPPAAL the reward model sync with the environment model. In LARVA
the events are automatically fired from the real or simulated environment
values.

— Guards on the transitions of UPPAAL automata are directly mapped as
guards in LARVA automata.

— Updates in UPPAAL are also mapped directly to updates in LARvVA, which
can be associated with actions such as the execution of an arbitrary
program. This transformation also requires defining the same variables
in both automata. For example, the variable associated with the rewards
in UPPAAL are converted into equivalent variables in larva that are then
updated and sent to the RL agent as part of a LARVA update.

— Clocks in UPPAAL become timers in LARVA.

Following the previous steps, the UPPAAL model is automatically translated
into a LARVA DATE that issues rewards to the RL agent at runtime.

The LARVA model encapsulates all the states in which the agent can be
at any time in the environment. This model can also be used to monitor the
agent behaviour. At the moment the model only collects data on which state
the agent visits and issues a reward for each state. However, having a model
that encapsulates the possible behaviours of the system into states can serve
the purpose of preventing the agent to reach bad states. We are currently
exploiting such aspects of preventive monitoring.

3.5 Autonomous Driving with TORCS

In order to validate our approach, we have used The Open Racing Car Simulator
(TORCS) [109] to simulate an environment where a RL agent can apply its
action and learn how to drive. We have used the DDPG algorithm [111]
as the decision-making policy of the agent. We have extended an existing
implementation [128] of the DDPG in order to support external rewards
coming from the LARVA model. We have encapsulated all the software platform
in a docker image so that it is very easy to build a reward function, lunch a
simulation and collect the results [110].

The RL agent uses the following signals from the simulation environment:

— TrackPos: Distance between the car and the track axis.

3.5. AUTONOMOUS DRIVING WITH TORCS 55

TrackPos| | b b |

Figure 3.4: Some of the monitored values from one of the simulations in TORCS.
The red lines are the goals inferred by the UPPAAL reward model.

— Track: Vector of 19 range finder sensors around the vehicle. Each sensor
returns the distance between the track edge and the car within a range
of 200 meters.

— Opponents: Vector of 36 sensors around the vehicle. Each sensor returns
the distance of the closest opponent within 200 meters range.

— Damage: Current damage of the vehicle, the higher is the value the higher
is the damage.

— Angle: Angle between the car direction and the track axis
— SpeedX: Speed of the car along its longitudinal axis.

Based on the above observations the RL agent can apply the following
actions:

— Steering: The steering value can be between —1 (full left) and 1 (full
right).

— Accelerating: The value of the virtual gas pedal can be between 0 (no
gas) and 1 (full gas).

— Breaking: The value of the virtual break pedal can be between 0 (no
break) and 1 (full break).

3.5.1 Conveying the goals to the agent

Each state provides a reward value that should reflect how much the agent is
compliant with the goal associated with the automata that the state belongs
to. The reward value can be a simple scalar or it can come from a complex
function. Below we describe the goals we have modelled.

Staying in the middle of the lane

This goal corresponds to try to keep the value of TrackPos equal to zero. We
have modelled 4 states in which the vehicle can be: CenterRoad, LimitRoad,
RightOffRoad, Left0ffRoad according to the position of the vehicle on the
road. In each state the reward function is proportional to the error with
TrackPos. Each state has additional rewards according to how far the car is
from the centre. Furthermore, we take into consideration the previous action

56 CHAPTER 3. PAPER B

taken by the agent, penalizing it more if it keeps steering towards the wrong
direction.

Keeping a certain speed

We want the agent to keep a constant speed of 100 Km/h, slowing down when
approaching a curve. For this goal we have modelled 3 states in UPPAAL,
according to the state of the vehicle in the road: GoingStraight and Curve.
The reward, when there are no curves ahead of the vehicle, is proportional to
the error related to the goal of keeping the speed at 100Km/h. In order to
detect if a curve is in front of the car, we have used the 19 range finder sensors
around the vehicle (Track) to build a function that is used in the guard to
transit to the state Curve. Since we want to stimulate the car to slow down
when a curve is detected, the reward function of this state is proportional to
the error of a lower speed than the goal speed of 100 Km/h.

Avoid damages

We have modeled this goal in two states: Damage and Normal. The reward
function penalizes the agent by a constant value every time it receives a damage,
this can happen by hitting other vehicles or going off-track.

Avoid getting stuck

When the LARVA monitor detects that the vehicle keeps going at a very slow
speed for a while, it might be because the vehicle is in a state where is trying
actions but it is physically blocked by the limit of the road. We have modelled
this situation in a Stuck state where the agent gets penalized if it stops going
forward. At the same time, it is also encouraged to try hard steering manoeuvres
that can get it out of this state.

Avoid other vehicles

When racing with other cars we want to avoid collisions with the other vehicles.
We have split this goal into four UPPAAL automata with the purpose of detecting
the presence of other vehicles in the four sides of the car: Ahead, Behind, Left,
Right. Fach automaton is composed of several states according to how distant
are the other cars to the side of the vehicle, a reward function is assigned to
each of these states penalizing the agent for being close to other cars.

Furthermore, in the presence of other vehicles, staying in the middle might
not always be the best policy. The RL agent might want to overtake or simply
avoid collisions with other vehicles by going to the right or to the left of the
road. This is why, when other vehicles are racing, we update the TrackPos
goal according to which side of the road is free to drive. For example, if a car
is detected on the right side, we reward the agent for driving to the left side,
and so on. This is directly encoded in the UPPAAL model so we do not need to
re-run the verification of the properties.

3.5. AUTONOMOUS DRIVING WITH TORCS 57

3.5.2 Verifying properties

Combining multiple sources of rewards, each contributing with complex func-
tions, will create a big reward model with many states. As we have chosen
UPPAAL as modelling environment, we can verify that the properties hold
across all possible states of the system.

We have only modeled the signals that the reward model uses to compute
the reward such as TrakcPos, SpeedX, Angle, Damage. After discretizing each
signal with a step value and a range with a lower and upper bound, we are able
to run simulations in UPPAAL and verify that the properties that we specify
hold across all possible states. In our example, we have modelled 6 automata
with a total of 21 states.

We have verified several high-level design goals that helped us fixing mistakes
or bugs in the reward functions that we have encoded in UPPAAL. Though
we could have assigned any value as a reward, in our model we have assigned
only positive values to states of the system that are good and negative values
when it deviates from the goal of the system. In the following, we describe two
examples of TCTL properties that we have verified in the reward model for
TORCS.

If the deviation from the speed goal is more than 10 km/h, the
reward associated with the speed should be negative
AG((Speed.goingStraight) A
(goalSpeedStraight — speedX > 10)
g speeereward < O)
where Speed is the automaton connected to the speed goal and it is in the state
GoingStraight, where there are no curves ahead of the car. goalSpeedStraight

and speedX are two variables representing respectively the target speed for
when the road ahead is straight and the current speed of the vehicle.

If the vehicle is proceeding in the centre of the road, it has no
damage and with a speed less than 10Km/s from the goal speed,
then the overall reward should be positive
AG(TrackPos.centerRoad A Speed.goingStraight N
Damage.no A (speederror < 10) A
(goalSpeedStraight — speedX > 10)
= combined,cwara > 0)

In this case we take in consideration three goal models TrackPos, Speed,
Damage and we verify that the combination of all their rewards is positive.

3.5.3 Results

We have compared our UPPAAL reward model (URM) with the reward function
proposed in |128] that has already been shown to be an improvement of the
original reward function proposed by Google in [111]. We will refer to this
function as BRF (benchmark reward function) and it is expressed as follows:

58 CHAPTER 3. PAPER B

Without opponents With opponents

BRF URM BRF URM

Time (h) 3.4 2.1 13.1 12.0
Episodes (#) 302.8 146.2 1312.7 925.7
Center (%) 60.9 83.6 47.3 61.4
Stuck (%) 5.3 4.6 29.7 37.2

Table 3.1: Average results of the Uppaal Reward Model (URM) compared with
a Benchmark Reward Function (BRF).

Ry =V, *x cos(0) — Vysin(0) — V, * |[TrackPos|

Where V,, is the vector representing the car velocity, and 6 is the angle
between V,, and the track axis. The above reward function aims to maximize
the longitudinal velocity (first term), minimize transverse velocity (second
term) while penalizing the agent if it deviates from the center of the road (third
term).

The results show that the agent learns much faster by using reward functions
produced through our approach. Table shows the average results of 100
iterations. In order to complete one iteration, the agent must learn how to
drive on the track and complete 20 laps. An episode of the algorithm ends
when the vehicle is perpendicular to the track axis.

The first two columns are the results when the car is racing without
opponents while the last two columns are the results with other vehicle racing
together. Table shows the values of Time (in hours) and the number of
episodes to complete 20 laps. Furthermore, we see the percentage the agent
stayed in the state Center of the road (the higher the better) and how much it
got the state Stuck. We see that with the UPPAAL reward function it achieves
its goal faster and with less number of episodes than the simple python function.
The agent performs quite well when there are no other cars on the track, but
not that good when racing with other vehicles. Dealing with opponents is a
more complicated problem and we believe the reward function can be further
improved.

Figure [3-4] shows some of the monitored values i.e. TrackPos, SpeedX,
Damage of one iteration of the agent using the UPPAAL reward model. The
red lines indicate the goals set in the UPPAAL model for each value: stay
close to the centre of the road, keep a speed of 100 Km/h and avoid damages.
We can see that the agent starts with a random behaviour, receiving a lot of
damages and continuously changing speed as it learns the goals by trial and
error. The green line indicates the point when the agent has learned the goals
and continues going at the desired speed while avoiding damages and staying
more or less in the middle of the road.

3.6. CONCLUSION AND FUTURE WORK 59

3.6 Conclusion and future work

We have presented a framework in which one can model reward functions for
reinforcement learning agents as state machines. This framework allows us to
verify properties of the reward function at design-time. We have also formalised
and implemented an automatic mapping between the design-time model of
the reward function and its implementation that is actually exploited by the
agent at runtime. Our results show that, by building more complex and robust
reward functions, the agent can learn faster to achieve its goal.

This work is a first step toward the engineering of the reward function.
This can help the designer eliciting the requirements in terms of goals to be
achieved by the agent as well as to identify the possible uncertainties due to,
e.g. the unpredictability of the environment.

The reward model can also be used to monitor the behaviour of the RL
agent at runtime. As future work, we envision to use such monitor as a safety
envelope for the agent. By doing preventive monitoring we can detect anomalies
in the behaviour of the agent and prevent potentially dangerous actions to be
executed on the environment.

Acknowledgment

This work has been partially supported by: the Wallenberg Autonomous Sys-
tems Program (WASP), the Swedish funding agency SSF under the grant Data
Driven Secure Business Intelligence, the Swedish Research Council (Veten-
skapsradet) under grant Nr. 2015-04154 (PolUser: Rich User-Controlled Privacy
Policies), and the European ICT COST Action IC1402 (Runtime Verification
beyond Monitoring (ARVI)).

60

CHAPTER 3.

PAPER B

Chapter 4

Paper C

A runtime monitoring framework to enforce invariants on
reinforcement learning agents exploring complex environ-
ments

P. Mallozzi, E. Castellano, P. Pelliccione, G. Schneider, and K. Tei

International Workshop on Robotics Software Engineering. IEEE/ACM,
20109.

4.1. INTRODUCTION 61

Abstract

Without prior knowledge of the environment, a software agent can learn to
achieve a goal using machine learning. Model-free Reinforcement Learning
(RL) can be used to make the agent explore the environment and learn to
achieve its goal by trial and error. Discovering effective policies to achieve
the goal in a complex environment is a major challenge for RL. Furthermore,
in safety-critical applications, such as robotics, an unsafe action may cause
catastrophic consequences in the agent or in the environment. In this paper, we
present an approach that uses runtime monitoring to prevent the reinforcement
learning agent to perform “wrong” actions and to exploit prior knowledge to
smartly explore the environment. Each monitor is defined by a property that we
want to enforce to the agent and a context. The monitors are orchestrated by
a meta-monitor that activates and deactivates them dynamically according to
the context in which the agent is learning. We have evaluated our approach by
training the agent in randomly generated learning environments. Our results
show that our approach blocks the agent from performing dangerous and
safety-critical actions in all the generated environments. Besides, our approach
helps the agent to achieve its goal faster by providing feedback and shaping its
reward during learning.

4.1 Introduction

Artificial intelligence is increasingly being used to solve problems in many
different domains, such as robotics, where a software agent is trained to act
autonomously in an, often, unknown environment. Reinforcement Learning
(RL) [80] algorithms can be used to train a software agent: the agent learns
a policy that maximizes a final reward by trying different actions on the
environment (trial and error) and collecting rewards.

During training, at learning time, the agent can perform actions that are
potentially dangerous to the environment or to itself. At execution time we
cannot be sure that the agent will always act correctly since it uses probabilistic
models to make decisions. By safe exploration [129] we refer to the problem of
guaranteeing that an agent has to act safely both at learning and execution
time. For example, a cleaning robot should learn to clean the dirt without
breaking other elements in a room, or without harming the agent itself.

Runtime verification techniques can prevent the agent to perform catas-
trophic actions. Safety-critical requirements can be encoded in one or more
monitors and enforced at learning and execution time when the monitor detects
that the agent is about to violate them. On one hand we have to convey goals
to the RL agent through the reward function, on the other hand we want
the agent to respect some important properties that include safety-critical
requirements, which we call invariants, at all time. The work in [130] goes
in the direction of conveying the goals by building more structured reward
functions, by modelling and verifying them at design-time. In this paper, we
address the problem of preserving the invariants of a RL agent at learning and
execution time with an approach called WISEML. In [131] we have presented
a preliminary idea of WISEML, a method that combines model-free RL with
runtime monitoring and enforcement, without providing a concrete solution.

62 CHAPTER 4. PAPER C

In this paper, we further develop the idea, provide a concrete solution, and
largely validate it.

WISEML is agnostic with respect to the RL algorithms used to train the
agent. We refer to WISEML as a safety envelope: it wraps the RL agent
and prevents the execution of actions that would violate its invariants. The
WIiSEML enhanced RL agent, which we call WISEML agent, analyses every
action that the RL agent proposes and those that do not violate the specified
invariants are sent to execution.

We express the invariants via the use of specification patterns, which based
on the work in [49}[132], we use 4 patterns: absence, universally, precedence,
and response. Once invariants are expressed in terms of patterns, then they
can be automatically translated in Linear-time Temporal Logic (LTL) [133] or
other logics thanks to the mappings provided in |49,/132]. We implement each
invariant the RL agent has to obey with a monitor. We introduce also a concept
of context that is similar to the concept of scope present in the specification
patterns proposed by Dwyer et al. [49]. Each pattern has a scope, which
defines in which part of the execution the pattern must hold. In WiSEML we
have a meta-monitor that dynamically activates and deactivates the individual
monitors according to their context.

Blocking unsafe actions will prevent the agent from damaging the environ-
ment or itself. However, the agent can also learn what caused the violation
in order to improve its policy in the future. The safety envelope includes a
reward shaping component that influences the rewards received by the agent at
runtime. This component penalizes the agent for attempting to violate specified
invariants since the RL agent performs its decisions based on probabilistic
models we can never be sure that the agent will never perform harmful actions
during execution time. For this reason the safety-envelope is active also during
execution time. However, in the current version, we have used WISEML only
at learning time. In the future, we will also investigate and experiment during
execution time.

The approach has been evaluated extending the gym-minigrid platform |134]
with our environments and the WISEML safety envelope. We have evaluated
the RL agent in 150 randomly generated environments of different sizes, each
executed 10 times with the presence of WISEML and 10 times without. Our
results show that WISEML correctly enforces the invariants in all the simulated
scenarios. Furthermore, thanks to the reward shaping feature, the agent learns
much faster with the presence of WISEML. In fact, our experiments show
that WISEML blocked violations 100% of the times while helping the agent
converging up to 55% faster with respect to the learning performed without
WISsEML.

Summarizing, the main contributions of this paper are:

— WISEML, a framework that uses runtime monitoring to prevent wrong
behaviours of an RL agent and to convey prior knowledge of the envi-
ronment to the agent while it is exploring. The approach is completely
independent of the RL algorithm chosen to train the agent.

— WISEML contributes shaping the rewards by using invariant violation as
punishments for the RL agent.

— To facilitate the specification of invariants we enable the users to specify
them via the use of specification patterns.

4.2. BACKGROUND 63

— An evaluation conducted on randomly generated environments; the agent
has only partial-observability of the underlying state of the environment.
The paper is structured as follows. Section [4.2] gives an overview of the
specification patterns, the reinforcement learning algorithm, and the runtime
monitor techniques. Section survey related works. Section [£.4] presents
our approach. Section presents the case study performed on a gridworld
environment, explains how the evaluation has been conducted and introduces
the results analysed from the collected data. Finally in Section |4.7] we discuss
our results and future work.

4.2 Background

4.2.1 Specification patterns

Capturing temporal properties in a concise and correct way is a major chal-
lenge [46}/135]. Syntactic correctness can easily be ensured through standard
language processing techniques. However, guaranteeing that a property matches
a software engineer’s intuition is much harder.

Several lightweight specification languages have been proposed in the last
years [135H137]. A different approach has been proposed by Dwyer et al. [49],
which proposed qualitative property specification patterns in the late nineties.
They analyzed a set of 555 specifications from at least 35 different sources in
order to define a catalogue of eight qualitative specification patternsﬂ These
specification patterns are organized in two major groups: occurrence patterns
and order patterns. Occurrence patterns focus on a single event (or state) during
system execution (e.g., absence or existence of an event). Order patterns capture
relations of multiple events can emerge during system execution (e.g., response
or precedence). Specification patterns are automatically translated to temporal
logics and query languages, e.g., LTL and CTL [49).

Qualitative specification patterns have been extended to express real-time
properties and the result is a catalogue of real-time specification patterns [138].
They have been also extended to express probabilistic quality requirements
(e.g., reliability, availability, and performance requirements) and the resulting
catalogue is known as probabilistic specification patterns [139]. Finally, the
work in [132] presents a unified catalogue that collects the existing specification
patterns and combines them together with 40 newly identified or extended
patterns.

4.2.2 Reinforcement learning

In reinforcement learning [10] a software agent collects observations from the
environment and performs actions. Each observation represents a state of the
environment and as the agent moves from one state to another it collects a
numerical reward. The goal of the agent is to maximize the reward collected
along the way. The environment can be formally described as a Markov Decision
Process (MDP) [140]. An MDP is a 5-tuple (S, A, T, R,v). At each timestep ¢
the agent interacts with the MDP by observing a state s; € S and by choosing

1ht‘.‘cp://patterns .projects.cis.ksu.edu/

http://patterns.projects.cis.ksu.edu/

64 CHAPTER 4. PAPER C

an action a; € A. The environment in response will transition to the next state
s¢+1 with probability 7T (s¢,a:) and give a reward r; ~ R(s¢, a;). The goal of
the agent is to maximize the return G = >, v'r41, which is the sum of all
the discounted rewards, where v € [0, 1] is known as the discount factor. The
value of a state V' (s) represents how good is for the agent to be in the state s.
Formally, it defines the expected sum of rewards from state s.

The agent will learn a policy or value function used to estimate the action
to perform given a state of the environment. It does not learn a model of the
environment and so it can not explicitly predict the effect of its action. Instead,
it needs to gather actual experience by exploring the environment, which can
make the exploration process dangerous. As the agent moves to a real-world
environment, it has to respect some safety constraints. An action that violates
some safety constraint can cause catastrophic consequences in both the agent
and the environment.

4.2.3 Runtime verification

Runtime verification (RV) |20,21] is a technique based on monitoring software
executions. It detects violations of properties, occurring while the monitored
program is running, eventually providing the possibility of reacting to the
incorrect behaviour of the program whenever an error is detected.

Properties verified with RV are specified using any of the following ap-
proaches: (i) annotating the source code of the program under scrutiny with
assertions |141]; (i) using a high-level specification language [142]; or (iii) using
an automaton-based specification language [143-145|.

One way to verify properties at runtime is through the use of monitors.
A monitor is a piece of software that runs in parallel to the program under
scrutiny, controlling that the execution of the latter does not violate any of the
properties. In addition, monitors may create a log file where they add entries
reflecting the verdict obtained when a property is verified. In general, monitors
are automatically generated from the annotated/specified properties [22,/146].

We will here consider the possibility of monitoring the execution of a
program for different purposes. We may distinguish three different “kinds” of
monitoring: (i) proper monitoring, where the monitor collects data, eventually
performs simple side-effect free computations (e.g., calculate an average during
a specific amount of time), sending the data to another device or monitor;
(ii) runtime verification is concerned with verification of one or more properties
about the expected behaviour of the system under monitoring; (iii) runtime
enforcement is performed by monitors that carry the code to be executed in the
monitored system, send specific commands to control the system, or enforce a
given property (as mentioned above) not allowing the system to act differently
from the specification.

Researchers usually talk about RV without distinguishing between the above
three meanings. In this paper we will instead use the term “monitor” to refer
to any of the above three specific uses, and we will clarify when confusion may
arise (e.g., we might talk about an “enforcer” if we want to emphasize that the
monitor is indeed enforcing a property).

4.3. RELATED WORK 65

4.3 Related Work

The literature on safe exploration has highlighted several directions to address
the problem [129,/147]/148]. Thomas et al. [149] focus on ensuring safety with a
policy improvement algorithm that provides probabilistic guarantees on the
agent policy, given that the environment can be modelled as an MDP, or
partially observable Markov decision process (POMDP) [10]. Lipton et al. [150]
modified the DQN algorithm with the concept of intrinsic fear that shapes the
rewards of the agent guiding it away from catastrophes. The agent interacts
with the environment through an MDP and the intrinsic fear model is learned
using the data collected from a finite sample of states.

Human Intervention RL (HIRL) is an approach by Saunder et al. [151]
that uses human overseer to avoid catastrophes in model-free reinforcement
learning agents. As the safety-envelope proposed by our approach WISEML,
the human overseer stands between the agent and the environment and it can
either let the agent’s actions to be applied to the environment or block them.
The decisions taken by the human are used to train a module, the blocker, via
supervised learning. The main difference with our approach is that they used
a trained model to block potentially dangerous actions at runtime. We use
a hand-coding approach to specifying invariants at design-time. This comes
with the trade-off of having less flexibility in terms of recognized violations
compared with a supervised learning model, but more assurances in term of
safety (since monitors are not based on machine learning models, will always
block the violation as specified).

The work in [152] expresses the properties that the agent must satisfy in
LTL and produces an MDP, which is the product of the original MDP and
a Limit Deterministic Biichi Automaton (LDBA) generated from the LTL
properties. In this work one needs to know the complete information about
the environment which is modelled as an MDP with labelled safe and unsafe
states. The agent explores only the safe parts using Q-learning to learn the
optimal policy.

Al-Shedivat et al. [153] focuses on intelligent exploration of the RL agent
on complex environment. They takes advantage of a hierarchical framework
for RL [154] by training a meta-controller on learning the sequence of known
subgoals while a low-level controller learn how achieve each subgoal.

Our approach builds on several of these ideas. We use LTL to easily encode
prior knowledge into formal rules and reward shaping as a basic technique to help
the agent to reach the goal. In real-world applications, since it is impractical
or even impossible to precisely and completely model the environment, the
agent partially observes the environment through its sensors. So in our work,
the agent has partial observability of the environment. The agent is able to
understand the underlying state of the environment by collecting multiple
observations and integrating them over-time. This process is performed by
Long Short-Term Memory (LSTM) [155], a particular kind of Recurrent Neural
Networks |156] used as main deep learning model of the RL algorithm.

4.4 WISEML

WISEML addresses the safe exploration problem of a RL agent, during and

66 CHAPTER 4. PAPER C

R RL Algorithm

— Environment
A
@ reward @) applied
observations action

I st T B T T Tt T .

! \ Agent i
1

1 . . |

I

! Perception @ Actuation :

1 perception 7 W :
1

R R e -q----1

E | Safety Envelope proposed safe | i

H | action action | i

E : A | :

. . B . !

E | Shaping result | Monitoring |74) Enforcing ! :

! | @ ! :

E | @ shaped @A proposed | :

| | v reward action : !

1

i | | 1

:] |

| ! !

i i

Figure 4.1: Overall architecture of WISEML

after training, in four main directions:

—_

. modeling invariants in terms of property specification patterns [49}/132];

2. monitoring the agent in different contexts as it performs actions freely in
the environment. We enable the definition of invariants that should be
checked and preserved in specific contexts of the environment. This is
realized through the use of various monitors that are orchestrated by a
meta-monitor.

3. enforcing a safe behaviour of the agent when it is about to violate the
invariants;

4. shaping the reward of the agent so it learns to avoid future bad situations,
converging faster to its goal.

Our approach consists of a safety envelope around the agent so that it
is protected from performing dangerous actions for the environment or itself.
Before a violation of any invariant is about to happen, the monitors stop the
unsafe action from being executed on the environment. The agent still learns
from its mistake as WISEML shapes its reward, meaning that the final reward
coming from the environment is modified to take into account the blocked
violation.

Figure shows the main architecture of WISEML. Both the agent and
the environment are unaware of the presence of WISEML. In this sense, our
approach is agnostic to the RL algorithm used. The Safety Envelope surrounds
the RL agent. The data between the safety envelope and the environment is
processed by the Perception and Actuation components.

From a high-level perspective, WISEML works as follows. At first, the
environment sends the observations of its current state to the RL agent. The
perception component analyses raw observations from the environment and

4.4. WISEML 67

converts them in perceptions, more high-level representations of the world
outside the agent (1). The perceptions are used to model the invariants in
the monitors. The monitoring component processes the perceptions and the
proposed action by the RL agent. In this phase, the meta-monitor activates the
monitors according to their contert and checks the satisfaction of the monitored
invariants. The results of this analysis are sent to the shaping and enforcing
component (3). Each monitor contributes to computing the overall shaped
reward (6) and the final action sent to the environment (4). This action can
be either the same proposed by the agent (3a) or a safe action computed by
the enforcing component (3b) according to the state of the monitors and their
operational mode. Each monitor can be configured to be in shaping or enforcing
operational mode. In shaping mode the monitor only influences the reward
given back to the agent; in enforcing mode, besides the reward, it also affects
the action proposed as explained in Section |4.4.3

With WiSEML we can model each invariant separately as one monitor to
be activated in a specific contezt. The meta-monitor will dynamically trigger
all the monitors that have the context matching with the current execution
of the agent in the environment. A context can be a function of the agent’s
perceptions, actions or both. It can also indicate that the invariant holds in
every situation, regardless of the context. Different monitors can be combined
in order to model all the invariants of the agent. For each monitor, the designer
can specify the rewards to be given to the RL agent in case of violation or
compliance with the monitored invariant. WISEML provides a simple interface
where the designer can specify all the monitors in a user-friendly JSON file. The
designer has to specify a few parameters for each monitor in order to activate
them as follows: (i) monitor-name (ii) monitor-type, (iii) monitor-context,
(iv) monitor-invariant, (v) monitor-operational-mode, and (vi) rewards.

In the following, we will describe in more detail the main components of the
safety envelope at the core of WISEML: monitoring, shaping, and enforcing.

4.4.1 Monitoring

The monitoring component continuously examines the status of the agenxt and
of the environment and communicates the results of its analysis to the shaping
and enforcing components. The analysis is performed by several monitors, one
for each invariant that the agent should respect in a specific context.
Invariants can be expressed as temporal specifications of constraints and
preferences, similarly to when specifying properties in Linear Time Logic
(LTL) [133]. The objective is to verify that, under specific context, the
conditions specified by the system designer are satisfied by the RL agent.
A context C' is a function f(s.), while a condition A can be expressed as a
function f(se, 8q,ap) where:
— S is the current state of the environment (as perceived by the agent
through the perception component);
— 8, is the current state of the agent;
— ayp is the action proposed by the agent to be executed on the environment.
The system designer can specify the context and the conditions using one
of the available patterns. In the following, we describe the patterns supported
by WISEML and the equivalent LTL formula, where A and B are the monitor

68 CHAPTER 4. PAPER C

post (pre)
condition
satisfied

property
respected,

property
yiolated

(a) Absence/Universally pattern

pre (post)
condition
violated

pre (post)
condition
respected

Violated

(b) Precedence/Response pattern

Figure 4.2: Examples of randomly generated environments.

conditions, and C' is a context condition as described above. We have chosen
the following patterns in order to capture the occurrences and the order of
events and operations that can occur while the agent is training by exploring
the environment:
— Absence: C = DO(lA).
A is never true. If active, this type of monitor verify that the condition
A is false at all times.
— Unidversally: C = O(A).
A is always true. If active, the universally monitor ensures that the
condition A is true at each step taken by the agent.
— Precedence: C = O(!BWA).
Globally, A precedes B. If active, if B is true then the monitor checks
that A has become true in the past.
— Response: C = 0O(A — OB).
Globally, B is eventually the response to A. If active, when A becomes
true the monitor checks that B will become true as well.

Figure shows the monitors associated with the absence and universally
patterns. Whenever a monitor is in an active state it can check if the invariant
is satisfied or violated. Figure [I.25] shows the monitors associated with the
precedence and response patterns. For the precedence, the monitor is triggered
by the post-condition and later checks violation of the pre-condition. For
the response, the monitor is triggered by the pre-condition and later checks
violation of the post-condition. All monitors are reset after the invariants have
been checked. When there is no label in the transition a monitor maintains
the same state.

4.4.2 Shaping

Reward shaping is a technique that allows modifying the rewards given to the
agent in some states of the environment so as to help the RL agent to learn
more accurately and converge to the goal faster. It provides more guidance to
the agent as it explores the environment. However, one has to be careful on how
to modify the rewards because this can lead to unexpected consequences. For

4.5. EVALUATION 69

example, if we only reward an agent for going in the right direction, the agent
could learn to go in circles rather than reach the goal [157]. WISEML utilizes
the rewards defined by the designer in order to shape the reward received by
the agent during learning. Ultimately, the shaping component will reward the
agent for respecting the invariants defined by the monitors and will punish it
for violating them.

4.4.3 Enforcing

Monitors can be configured to act as enforcers. In this case, they block the
action proposed by the agent from being executed in the environment if a
violation of the monitored invariant is about to happen. If the violation is not
safety-critical a monitor can be configured only to shape the reward in order
to help the agent with extra domain knowledge. On the other hand, if the
invariants modelled in a monitor are safety-critical, the monitor can enforce
them by blocking the dangerous action and executing a safe one. In the current
implementation of WISEML the developer can specify a particular action to
enforce. If no safe-action is specified and a violation is about to happen the
RL agent is asked to produce a new action that does not cause any violation.

Since several monitors can run in parallel, each modelling and possibly
enforcing different invariants, the enforcing module has to issue an action that
satisfies all invariants of the monitors. At each step, when the agent proposes
an action, it is possible that more than one monitor can transition to a violation
state. The monitoring component communicates the unsafe actions of each
monitor to the enforcing component that executes the actions that the designer
has specified to manage the violation of the invariant.

4.5 Evaluation

4.5.1 Gridworld Environment

In order to evaluate our approach, we have designed the WISEML framework
and developed an extension of the Minimalist Gridworld Environment for
OPENAI GyM [134] that supports the WISEML framework. The agent consists
of a known-working RL implementation [158]. It is based on a variant of one
of the latest RL algorithms developed by Google Deep Mind: Asynchronous
Advantage Actor-Critic method (A3C) [159]. The algorithm used here is often
referred to as A2C since it is a synchronous version of the A3C [160].

A gridworld environment consists of a two-dimensional grid of cells. The
agent always occupies one cell of the grid facing one of the four adjacent cells.
It can interact only with the cell it is currently facing or change direction inside
its cell. At each step the agent can choose to perform one of the following
actions: move forward, turn left, turn right, toggle, and wait. The action toggle
can both open/close a door and turn on/off a light switch.

We have extended the existing grid by introducing new elements in order to
evaluate some safety-critical scenarios with WISEML. Figure [£.3] shows some
examples of randomly generated safety-critical environments. The agent is
depicted as a red triangle (top-left corner). The green cell (bottom-right corner)
is the agent goal, in all the environments the agent has to learn to navigate

70 CHAPTER 4. PAPER C

(a) An initial configuration. The light (b) An intermediate step. The light is
is off and the door is closed. on and the door is opened.

Figure 4.3: Examples of randomly generated environments.

safely from the initial point of the grid to the goal. The lighter cells around the
agent represent its field of view, meaning the observations that agent perceives
from the environment. These cells are perceived at each step and semantically
analyzed by the perception component. The blue cells (randomly positioned
in around all the grid) are water cells, if the agent steps on them it drowns
and dies, specifically the RL algorithm terminates one episode and the agent
starts again from the initial position. There are also more complex elements
such as doors and a light switches (yellow tile with a red dot in the middle).
By turning on the light-switch next to the door the agent is able to perceive
observations in the other room, otherwise, its observations are altered and
it can not see potential hazards such as the water. Before reaching the goal
cell the agent has to learn to turn on the light by toggling the switch before
entering a new room.

The environment generation randomly places the wall, door, and n water
tiles. The minimum width of each room is two tiles. The light-switch is always
placed next to the door. The position of the agent and the goal are fixed
to ensure that the agent needs to traverse the entire room to reach the goal.
The algorithm also validates that the generated environment has a solution by
checking that the goal is reachable from the initial position (e.g., it checks that
water cells are not blocking it).

The goal of the agent is to localize the goal position and step on it. However,
when the light is off, due to the assumption that the sensors need a minimum
amount of light to work, the agent is not able to perceive any observations.
Hence, an implicit sub-goal is to turn on the light on before going back to the
original goal of reaching its final position.

We have modelled the invariants of the RL agent as LTL properties using
the patterns of WISEML. See below a list of some of the conditions used in the
formulation of the properties. Each condition is triggered by the perception
component of the agent.

Conditions used to detect the context of the agent (function of the
agent’s perceptions). (i) p.:: the agent is near the water, (ii) pg-: the
agent detects a door in front, (iii) pg.: the agent detects that the door is open,

4.5. EVALUATION 71

(iv) pae: the agent detects that the door is closed, (v) pj,: the agent detects
light-switch, (vi) pjo: the agent detects that the light is on, (vii), and (viii) p;;:
the agent detects that the light is off.
Conditions used to model the monitor invariants of the agent. These
are situations that might trigger the monitor (functions of the agent perception
and of the action proposed by the agent):
— Qfyue: the agent moves forward when facing water;
— ayqr: the agent is about to toggle a light-switch.
From the above conditions, we have formulated the following properties, and
easily model them as monitors in WiseML:
— (Absence) pwe = O(lafyt). Always avoid to step on water.
— (Universally) prw = O(p1o). The light is always on.
— (Precedence) par = O(!afrmWWpio). The light should have been turned
on before entering a room.
— (Response) pr, = O(piy = Caygr). If a light switch is detected and
the light is off. Enforced action: toggle
— (Response) pgr => O(pge — Cargr). If a door is detected and the door
is closed. Enforced action: toggle.

In our experiment each invariant is enforced to the agent. It is important
to highlight that for the response properties, we implemented the monitor
to respond immediately to the pre-condition. Then the post-condition is
enforced to happen in the next state. This is a valid implementation since
we have the knowledge from the environment that, when the pre-condition is
true, it is always possible to perform immediately the actions that satisfy the
post-condition.

The developer can choose to specify a particular action to enforce in case
of violation or let the agent propose a new suitable action. It is important to
notice that the invariants that we have modelled are very simple requirements
of the agent and are not related to the task that the agent has to achieve.

4.5.2 Evaluation

In order to evaluate WISEML, we have run the experiments in randomly
generated environments of different sizes. Starting from a configuration file
we generate the environment and the monitors inside WiSEML and run the
experiments inside a Docker container.

In each experiment, we have compared the performances of the RL agent
with the safety envelope of WISEML with another RL agent that uses the
exact same RL algorithm and configurations but it is no wrapped with the
WISEML framework. For the rest of the paper, we will refer to the WISEML
agent as the one with the safety-envelope and as SIMPLERL agent to the one
without.

After modelling the invariants into WISEML, we have collected the results
as follows. First we generate a random safety-critical environment Env of some
size N. Then we launch the training of WISEML agent and later the SIMPLERL
agent from scratch on Env until they converge and repeat the process for M
iterations. Finally, we collect the results of these runs and we start again the
training on a different random environment.

The environment is randomly generated regarding the number and position

72 CHAPTER 4. PAPER C

15
—— ClassicRL
109" — WiseML
5
0
0 20000 40000 60000 80000 100000 120000

Figure 4.4: Example of one experiment, comparing the convergence with and
without WISEML. The Y-axis represents the reward accumulated at each
episode by the RL agent. The X-axis represents the number of steps.

30 —— ClassicRL
—— WiseML
20
. AJ\J\J\W
0 T T
0 200000 400000 600000 800000 1000000

Figure 4.5: Example of one experiment, showing the number of deaths ac-
cumulated over time. The SIMPLERL agent can continue to die also after
convergence (indicated with the vertical green line).

of the water tiles, and the position of the door, light-switch and wall. Regarding
the convergence of the agents, we consider an agent to have terminated the
training when its convergence conditions, described below, are met for several
consecutive episodes. An episode terminates when the agent reaches a terminal
state, so when it reaches the goal, it dies (e.g. steps on the water) or it reaches
a maximum number of steps which is proportional to the size of the grid. The
algorithm converges if all the following conditions are satisfied: (i) the goal is
achieved, (ii) the number of steps to the goal stabilizes, (iii) the value loss is
less than 0.01, and (iv) the mean cumulative reward is positive.

The value loss measures the error between the predicted value of a state and
the updated value after the reward has been received from the environment.

We have formulated the following research questions:

RQ1 To what extent WISEML can assure the respect of invariants on a
reinforcement learning agent using runtime monitoring?

RQ2 Can WISEML help the agent to converge to its goal faster by combining
runtime monitoring with the use of reward shaping?

To answer the research questions we have modelled the five invariants
mentioned in this section as monitors in WISEML.

In our study, we have defined environments (grids) of sizes 7x7, 9x9, 11x11,
13x13, and 15x15. For each size, we have generated 10 random gridworld safety
environments, and for each environment, we have performed 10 iterations
of the WISEML and SIMPLERL agent for a total of 3000 runs of the RL
algorithm until the convergence criteria are met, or the maximum number of
steps is reached. Each iteration has a maximum of size? * 10000 time-steps.
The number of water tiles was defined as 25% of the free tiles. The agent
receives a positive reward of 10 when it reaches a goal and a negative reward of

4.5. EVALUATION 73

Size Max. number Convergence (%)
of steps WiseML |SiMpPLERL

7 490000 96.33 78.00

810000 91.33 47.67

11 1210000 80.67 33.00

13 1690000 55.33 9.00

15 2250000 66.00 2.00

Table 4.1: Percentage of learning iterations that converged.

Size Faster (%) Catastrophes
WISEML | SiIMPLERL
45.96 0.00 4483.83
9 38.77 0.00 8301.93
11 41.64 0.00 5970.11
13 41.07 0.00 2663.88
15 54.92 0.00 3053.00

Table 4.2: Comparison between the learning iterations that converged.

-10 for death, -0.1 for violations (only for the WISEML agent) and -0.005 for
each step. The agent view of the environment is a grid of size 7x7. We have
chosen such coefficient by empirically trying several values and noticing that
the agent converged better with these ones. Generally, the worst state is the
more negative is the reward.

Table [4.1] shows the percentage of iterations in which the reinforcement
learning converged before a predefined maximum number of steps. Table
shows a comparison between the WISEML and SIMPLERL agents for the cases
in which the reinforcement learning algorithm converged. The first column
shows the average of the comparison in terms of average time-steps between
the WISEML agent and SIMPLERL agent on the same random environment.
In some environments, it was not possible to do the comparison because the
SIMPLERL agent never converged for such environment. The second and third
columns show the average number of catastrophes in each iteration for the
WIiSEML and SIMPLERL agent.

Our experiments show that the WISEML agent converges from 55% to 96%
of the times, while the SIMPLERL agent only converges between 2% to 78% of
the times depending on the size of the random environment. Moreover, the
WISEML agent is on average faster to converge than the SIMPLERL agent.
Also, the monitors have prevented catastrophic events to occur (i.e. stepping
on the water).

Figure [4.4 and Figure [£.5] show an example of two experiments. Figure [{.4
shows the convergence of WISEML and the SIMPLERL agents. It represents
the total reward (mean and standard error) accumulated by each agent until
convergence, averaged every 8000 steps. Figure [4.5 shows the number of
deaths accumulated by the agents over one run; in particular, we show how

74 CHAPTER 4. PAPER C

the SIMPLERL agent can keep dying also long after its convergence (indicated
with the vertical green line). Obviously, assuming that the perception layer
is perfect, the WiSEML agent never died during all the experiments. All our
results, including some videos, are available in the link belowﬂ and they are
all reproducible by launching the same experiments via the original code on
Githuﬂﬂ or simply launching them via the Docker imageﬂ

To answer our research questions, our results show that with WISEML the
agent never violates its modelled requirements. Indeed, there is the implicit
assumption that the requirements should be correctly modelled using the
specification patterns and that the perception component is working correctly.
Furthermore, thanks to runtime monitoring and reward shaping the agent will
converge faster while avoiding catastrophes.

4.6 Conclusions and Future Work

We presented WISEML, an approach that uses runtime monitoring to prevent
a RL agent from performing actions that can be dangerous to the environment
or to itself. We specified invariants through the use of specification patterns,
which are translated into monitors that block and enforce them. The use of
WISEML during learning time improves also the learning of the RL agent.
Our approach is agnostic with respect to the chosen RL algorithm and it
assumes that the RL agent has no previous knowledge about the environment.
Furthermore the agent only has a partial-observability of the environment,
making it closer to real-world applications. We developed and evaluated our
approach using one of the latest RL algorithms. We collected data from
randomly generated environments and showed how the monitors always enforce
their invariants while helping the RL agent to converge to its goal.

As future work, we plan to perform larger experimentation by using other
RL algorithms and more complex environments. Moreover, we will investigate
more systematic ways of identifying invariants. Finally, we plan to extend our
approach by automatically synthesizing all the monitors from the invariants
that we want to preserve.

4.7 Acknowledgement

This work was supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP).

%https://goo.gl/FzgEdo
3https://rebrand.ly/wisemlpatterns
‘https://rebrand.ly/wisemldocker

https://goo.gl/FzgEdo
https://rebrand.ly/wisemlpatterns
https://rebrand.ly/wisemldocker

Chapter 5

Paper D

CROME: Contract-Based Robotic Mission Specication
P. Mallozzi, P. Nuzzo, P. Pelliccione and G. Schneider

International Conference on Formal Methods and Models for Sys-
tem Design. IEEE/ACM, 2020.

5.1. INTRODUCTION 75

Abstract

We address the problem of automatically constructing a formal robotic mission
specification in a logic language with precise semantics starting from an informal
description of the mission requirements. We present CROME (Contract-
based RObotic Mission spEcification), a framework that allows capturing
mission requirements in terms of goals by using specification patterns, and
automatically building linear temporal logic mission specifications conforming
with the requirements. CROME leverages a new formal model, termed Contract-
based Goal Graph (CGGQG), which enables organizing the requirements in a
modular way with a rigorous compositional semantics. By relying on the
CGG, it is then possible to automatically: i) check the feasibility of the overall
mission, ii) further refine it from a library of pre-defined goals, and iii) synthesize
multiple controllers that implement different parts of the mission at different
abstraction levels, when the specification is realizable. If the overall mission is
not realizable, CROME identifies mission scenarios, i.e., sub-missions that can
be realizable. We illustrate the effectiveness of our methodology and supporting
tool on a case study.

5.1 Introduction

In the near future, service robots will increasingly be used to support tasks in
everyday life [48}/161,/162], even though existing solutions are often not readily
usable [163]. Service robots are “a type of robot that performs useful tasks
for humans or equipment excluding industrial automation applications” [164].
The service robotics market is estimated to reach a value of $24 billion by
2022 |162]. However, the robots that we find in the market today are highly
specialized to accomplish a specific function. Their use often reduces to clicking
a specific button that will trigger the execution of the specific mission the robot
is programmed for. For instance, this is the case of commercial vacuum cleaner
robots like Roomba [165]. On the other hand, the advent of multipurpose
service robots, required to accomplish various domain-specific missions, calls
for new languages and tools to enable end users to accurately specify complex
missions [48,/611[166].

We make a distinction between a mission requirement, i.e., an informal
description of the mission the robots must perform, and a mission specification,
i.e., a formulation of the mission in a formal (logical) language with precise
semantics [48]. Producing a mission specification from a mission requirement
is identified as the mission specification problem. Many results in the liter-
ature highlight the advantages of specifying robotic missions in a temporal
logic language, like linear temporal logic (LTL) or computation tree logic
(CTL) [|32H45|. Using formal languages makes behavioral specifications precise
and unambiguous. However, logic formulas can be difficult to interpret for the
end user, and generating them can be an error-prone process [46-48]. Mission
requirements, on the other hand, are often ambiguous [54H-56] and make it hard
to assess the correctness of the specification [57-60]. In recent years, there
have been many proposals for describing mission requirements based on: i)
domain specific languages [61H63|, i) natural language [55], and 4ii) visual and
end-user-oriented environments [64-67], mostly used for educational purposes.

76 CHAPTER 5. PAPER D

While the approaches above provide substantial contributions to the mission
specification problem, solutions that can scale to complex missions and enable
the deployment of service robots in everyday life are still elusive.

As stated in the Multi-Annual Roadmap for Robotics in Europe (MAR) [167],
to reduce costs and establish a vibrant component market, we need tools that
can support mission reuse and diversification, as well as the wvariability of
conditions and application scenarios occurring in a real mission. This is also
witnessed by our findings during a collaboration with practitioners in the
robotic domain [168]. While it is often not difficult to define what the robots
should do, the challenge is in coping with the variability of the environments in
which the robots operate, especially those involving humans [168]. To address
this issue, we would need to explicitly enumerate all the possible variants of
a mission using, e.g., state diagrams or flow charts, which can be difficult,
tedious, and error-prone.

Menghi et al. [48] have recently identified and proposed a catalogue of
robotic movement patterns, which are solutions to recurring problems in mission
specification. Patterns are based on LTL formulas, which are often used to
automatically synthesize plans [35[38,169H171]. While grounded in a formal
language, these patterns can also be used by non-experts and there exist tool
support to compose them via conjunction or disjunction for the specification of
complex missions [172]. Garcia et al. [61] introduce more complex composition
rules, including control-flow operators like fall-back (to define alternative
strategies when the previous ones fail), exception-handling (to stop the current
execution when an exception is raised and then continue with the current task),
and sequence (to perform a sequence of tasks). However, control-flow operators
are implemented in software but lack a formal representation in logic, which
makes it difficult to verify the feasibility of the entire mission specification in a
way that is independent of the implementation.

In this paper, we propose a framework, named CROME (Contract-based
RObotic Mission spEcification), that explicitly addresses the problems of
specification reuse and environment modeling in mission specification, enabling
the designer to cope with the variability of the application scenarios of a
robotic mission. By building on recent work on contract-based requirement
engineering [144169/[170], leveraging context-aware contract models and patterns
to generate controller specifications, we decouple the task specification from the
specification of the context in which the task is executed. End users explicitly
specify the various mission tasks together with their contexts. The overall
mission is then automatically compiled by CROME. CROME contributes to
the following aspects of the mission specification process:

— Formulating mission requirements. We model each requirement as a
goal, expressed using a set of previously proposed patterns [48}|49]. Goal
models have been used over the years as an intuitive and effective means
to capture the designer’s objectives and their hierarchical structure [86].
In this paper, we augment the notion of goal to explicitly include a
concept of context, which enables building mission specifications that are
adaptable to different environmental conditions. Contexts help capture
the variability associated with a mission goal, so that the same goal can
be implemented in different ways when used in different contexts.

5.2. BACKGROUND AND RELATED WORK 7

— Generating mission specifications. We introduce a novel model, termed
contract-based goal graph (CGG), which is automatically generated to
formalize a mission and its sub-missions. The CGG is a graph of goals
where the root node represents the overall mission, its immediate children
represent mission scenarios, and the rest of the nodes are part of the sub-
missions. In a CGG, goals are captured by assume-guarantee contracts [13]
and are linked together using operations and relations between contracts.
We differentiate the scenario nodes from other nodes since they are goals
that have mutually exclusive contexts and identify sub-missions that
cannot be jointly realized.

— Refining mission specifications out of a library of goals. We introduce an
algorithm that automatically refines the leaf nodes of a CGG using the
goals in a library, so that “abstract” goals in the CGG can be further
implemented (refined) by more “concrete” goals.

By formalizing the mission specification with a CGG, CROME also offers
the following capabilities:

— Requirement conflict identification. By checking the satisfiability of
the CGG contracts, we are able to identify the presence of conflicts in
the mission requirements and immediately inform the designer, before
attempting at synthesizing a controller.

— Realizability checking and controller generation. CROME checks the
realizability of each scenario in the CGG and informs the designer of
which sub-goals can be realized (i.e., a controller can be synthesized),
given a model of the environment. For each realizable goal of the CGG,
CROME synthesizes a controller in the form of a Mealy machine. The
controllers are produced together with the CGG.

Our case study shows that the modularity of the CGG allows efficiently
checking the feasibility of a mission. The identification of the scenarios allows
analyzing the impact of environment variability on the realizability of the robotic
mission. The automatic refinement from a goal library facilitates the reuse of
existing goals to implement complex specifications. Finally, mutually exclusive
scenarios can point to control architectures that may not have a centralized
implementation, while still being realizable in a decentralized fashion.

The rest of the paper is organized as follows. In Section [5.2] we provide
background notions and related work on contracts, linear temporal logic,
specification patterns, and contexts. We introduce CROME in Section
We detail how the robotic mission is specified and mutually exclusive contexts
are generated in Section [5.4] and Section [5.5] respectively. We present the CGG
in Section [5.6l and illustrate our approach on a case study motivated by a care
center in Section [5.7} Finally, in Section [5.8] we draw some conclusions.

5.2 Background and Related Work

We provide some background on the basic building blocks of CROME: contracts,
linear temporal logic, and specification patterns.

78 CHAPTER 5. PAPER D

5.2.1 Assume-Guarantee Contracts

Contract-based design [13}|14] has emerged over the years as a design paradigm
capable of providing formal support for building complex systems in a modular
way, by enabling compositional reasoning, stepwise refinement, and reuse of
pre-designed components.

A contract C is a triple (V, A,G) where V is a set of system wvariables
(including, e.g., input and output variables or ports), and A and G are sets
of behaviors over V. For simplicity, whenever possible, we drop V from the
definition and refer to contracts as pairs of assumptions and guarantees, i.e.,
C = (A,G). A expresses the behaviors that are expected from the environment,
while G expresses the behaviors that an implementation promises under the
environment assumptions. In this paper, we express assumptions and guarantees
as sets of behaviors satisfying a logic formula; we then use the formula itself to
denote them, with a slight abuse of notation, whenever there is no confusion. An
environment E satisfies a contract C whenever E and C are defined over the same
set of variables and all the behaviors of E are included in the assumptions of C,
i.e., when |E| C A, where |E| is the set of behaviors of E. An implementation
M satisfies a contract C whenever M and C are defined over the same set of
variables and all the behaviors of M are included in the guarantees of C when
considered in the context of the assumptions A, i.e., when |[M|N A C G.

A contract C = (A, G) can be placed in saturated form by re-defining its
guarantees as Ggq; = GU A, where A denotes the complement of A. A contract
and its saturated forms are semantically equivalent, i.e., they have the same
set of environments and implementations. Therefore, in the rest of the paper,
we assume that all the contracts are expressed in saturated form. A contract
C is compatible if there exists an environment for it, i.e., if and only if A # 0.
Similarly, a saturated contract C is consistent if and only if there exists an
implementation satisfying it, i.e., if and only if G # (). We say that a contract
is well-formed if and only if it is compatible and consistent. We detail below
the contract operations and relations used in this paper.

5.2.1.1 Contract Refinement

Refinement establishes a pre-order between contracts, which formalizes the
notion of replacement. Let C = (A,G) and C' = (A, G’) be two contracts.
C refines C’, denoted by C < C’, if and only if all the assumptions of C’ are
contained in the assumptions of C and all the guarantees of C are included in the
guarantees of C’, that is, if and only if A D A’ and G C G’. Refinement entails
relaxing the assumptions and strengthening the guarantees. When C < C’, we
also say that C’ is an abstraction of C and can be replaced by C in the design.

5.2.1.2 Contract Composition

Contracts associated with distinct implementations can be combined via the
composition operation (]|) to specify the composition between the corresponding
implementations. Let C; = (A1, G1) and C2 = (A2, G2) be two contracts. The

5.2. BACKGROUND AND RELATED WORK 79

composition C = (A4, G) = C; || C2 can be computed as follows:

A= (A NA) UGN Gy), (5.1)
G =GN Go. (5.2)

Intuitively, an implementation satisfying C must satisfy the guarantees of both
Cy and Cs, hence the operation of intersection in . An environment for C
should also satisfy all the assumptions, motivating the conjunction of A; and
Ay in . However, part of the assumptions in C; may be already supported
by Co and wvice versa. This allows relaxing A; N As with the complement of the
guarantees of C [13].

5.2.1.3 Contract Conjunction

Different contracts on a single implementation can be combined using the
conjunction operation (A). Let C; = (A1,G1) and Cy = (As, G2) be two
contracts. We can compute their conjunction by taking the greatest lower
bound of C; and Cy with respect to the renement relation. Intuitively, the
conjunction C = C; ACq is the weakest (most general) contract that refines both
Cy and Cs. C can be computed by taking the intersection of the guarantees and
the union of the assumptions, that is:

C = (Al U Ag,Gl N GQ)

Intuitively, an implementation satisfying C must satisfy the guarantees of both
Cy and Cy, while being able to operate in either of the environments of C; or Cs.

5.2.2 Linear Temporal Logic

Given a set of atomic propositions AP (i.e., Boolean statements over system
variables) and the state s of a system (i.e., a specific valuation of the system
variables), we say that s satisfies p, written s = p, with p € AP, if p is true
at state s. We can construct LTL formulas over AP according to the following
recursive grammar:

pi=p|P|le1Vea | Xyl Ups

where ¢, 1, and py are LTL formulas, % is the negation of ¢, V is the logic
disjunction, X is the temporal operator next and U is the temporal operator
until. Other temporal operators such as globally (G) and eventually (F) can
be derived as follows: F ¢ = true U ¢ and G ¢ = F p. We refer to the
literature [16] for the formal semantics of LTL.

5.2.3 Specification Patterns and Context
5.2.3.1 Robotic Patterns

Robotic patterns have been proposed as a solution to recurrent mission specifi-
cation problems based on the analysis of mission requirements in the robotic
literature [48]. CROME supports 22 patterns [48], capturing robot movements
and actions performed as a robot move in the environment, organized into
three groups: core movement patterns, triggers, and avoidance patterns.

80 CHAPTER 5. PAPER D

For example, let us assume that the mission requirement is: ‘A robot must
patrol a set of locations in a certain strict order.” The designer can formulate
this requirement by using the Strict Ordered Patroling pattern, instantiated
for the required set of locations. Let [q,[5, and I3 be the atomic propositions
of type location that the robot must visit in the given order. The mission
requirement can then be reformulated as ‘Given the locations l1,ls, and I3, the
robot should visit all the locations indefinitely and following a strict order,ﬂ
leading to the following LTL formulation:

G(F(L AF(la ANF(13) A (I U ll) (I3 U ly)
(;(ll —)((ZI U l3
(

(
)
)
Gl — X(I; U ly)

)
)
) AG(l2 = X(Iz U 13)).

As shown in this example, a robotic pattern can significantly facilitate the
difficult and error-prone task of mission specification.

5.2.3.2 Specification Patterns with Scopes

Our library of patterns is also inspired by the work of Dwyers et al. [49], who
developed a catalogue of generic property specification patterns for a broader
range of applications. In particular, we adopt the notion of scope, which
provides a way to define the extent to which a property must hold [49]. For
example, for the universality pattern, in which we require that a property e be
true, we can introduce the following scopes:

e global = G(e)
e before r = F(r) — (e
e after ¢ = G(¢ — G(
e between ¢ and r = G((g
(

AT
e after ¢ until r = (G(g A 77— ((e U r) | G p))),

where ¢, r are also properties or events. The patterns proposed by Dwyers
et al. |[49] were also extended to incorporate time [50] and probability [51].
Autili et al. [52] present a unified catalogue of property specification patterns
including, among others, the patterns mentioned above [49H51]. A description
of the patterns in this catalogue [52] is also available online [53].

5.2.3.3 Context

Many characterizations of the ‘context’ of an application have been provided,
often informally, in the literature. In context-aware ubiquitous computing [173|,
the context of an application may include information like location, identities
of nearby people and objects, time of the day, season, or temperature. More
generally, Dey and Abowd [174] define context as “any information that can
be used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an

Thttp://roboticpatterns.com/pattern/strictorderedpatrolling/

http://roboticpatterns.com/pattern/strictorderedpatrolling/

5.2. BACKGROUND AND RELATED WORK 81

application, including the user and application themselves.” In the robotic
domain, Bloisi et al. [175] define mission-related contexts as “choices that are
useful in robotic scenarios for adapting the robot behaviors to the different
situations.” CROME builds on these characterizations and adapts them to
robotic missions by formalizing a context as a property associated with a goal
and expressed by a logic formula.

%r@
Controller Generation
via Reactive Synthesis

unrealizable

- unrealizable

s

CGG Reﬁnement< B
from Library of goals

®

=
S
2
S
S
g Ei
V]
S F0
= = O
=y SO
S 28
I~ ©)
Q
%]
™ S
[S §
< 3
s 7 S
=
<3
0 < 3
Y S5 RS
53
[~ SIS
= 8~ Sig
) S ©)
I LI 5 2
S — = g s
So & =l a2 S
§4 & £9 § i 58
Sl 23 =g g%
2 = o~ = S 3
S o 8§) S
oy g ST S
S 5 <
5 ' ¢4 o

Figure 5.1: Mission specification process

82 CHAPTER 5. PAPER D

5.3 Overview of CROME

Figure shows the mission specification process with CROME, which can
be summarized as follows.

Phase @: A robotic mission can be decomposed into a set of requirements
prescribed to a system (the robot) acting in an environment. In the requirement
capture phase, the designer provides the inputs to CROME: specification goals,
domain properties, and a goal library. Each specification goal G;, modeling
a mission requirement, is specified using a pattern p; and instantiated in a
contexrt x;. The domain properties encapsulate constraints on the environment
and the system. They belong to three categories: (1) physical rules, denoted
by ¢, e.g., specifying the map of a building; (2) logical rules, denoted by I, e.g.,
specifying logical partitions (areas) of a building; and (3) system constraints,
denoted by s, e.g., specifying actions that can not be performed simultaneously
by the robotic system, such as going in two locations simultaneously. Finally,
the designer can provide a library of predefined goals that will be used in phase
@ to automatically refine the mission specification.

Phase @: In this phase, CROME analyzes the relationship between goals
and groups them in clusters based on their context. For example, two goals are
mutually exclusive if the conjunction of their contexts produces a contradiction
with respect to the domain properties. CROME produces clusters of goals and
associates to each cluster a new generated context x;-, which is guaranteed to
be mutually exclusive with any other cluster’s context. This phase is detailed
in Section

Phase @: CROME builds the Contract-based Goal Graph (CGG), a
formal model representing a graph of goals. CROME formulates assume-
guarantee (A/G) contracts for each goal and leverages the clusters created in
phase @ to determine the structure of the CGG, which in this phase takes
the form of a tree. Contracts belonging to the same cluster are combined
using composition; the resulting contracts of the clusters are combined using
conjunction. By building the CGG, CROME analyzes the consistency of the
mission and helps detect conflicting requirements.

Phase @: Given a library of goals L, for each leaf node of the CGG,
CROME checks whether it can be refined by a goal of the library. Checking
refinement between goals amounts to checking refinement between the contracts
formalizing the goals. If a library goal is found, it is connected to the CGG
and becomes a new leaf node to be scheduled for refinement. The refinement
procedure continues recursively until no more library goals can be used to
extend the CGG. A library goal can refine multiple goals of the CGG. In this
case, we introduce a new leaf for the library goal and connect it with all the
goals it refines, which makes the CGG no longer a tree.

Phase @: CROME checks the realizability of each node of the CGG. If
the root of the CGG M is realizable, then a controller can be generated for the
whole mission specified by the designer. If the root node is not realizable, then
it may still be possible to realize some of the mission scenarios, as identified in
the CGG. Moreover, for each scenario, different controllers can be generated at
different abstraction levels. We provide details for this phase in Section [5.6.2.3

5.4. CAPTURING MISSION REQUIREMENTS 83

5.4 Capturing Mission Requirements

Mission requirements are provided by the designer in terms of goals and domain
properties, expressed in a structured way using patterns and scopes, which will
be automatically translated into LTL formulas. Goals and domain properties
are defined over a set of atomic propositions AP, which can be true or false at
any point during the mission. In the following, we detail the building blocks of
the mission requirements, i.e., atomic propositions, contexts, goals, and domain
properties.

5.4.1 Atomic Propositions

Atomic propositions (APs) can be grouped into six categories based on the
semantics associated with them. Sensor APs, location APs, and action APs
are associated with the robot. Location-context APs, time-context APs, and
identity-context APs are associated with the context. APs can refer to controlled
or uncontrolled variables for the robot. For example, location APs and action
APs refer to controlled variables, since a robot can choose its next location and
action, while the other APs refer to uncontrolled variables, since they relate to
the context or the perception of the environment.

5.4.2 Context

We formalize contexts in terms of Boolean predicates encoding the situation
in which a goal must be active. For example, context propositions can encode
information related to the location, time, or identities associated with a goal.
In a robotic application, locations specify where a robot can be, time specifies
when a certain goal must be active (e.g., during the day or the night), and
identities specify the state of external entities (who) that may interact with
the robot.

5.4.3 Goals

In CROME each mission requirement is modeled by a goal, characterized by
the following elements:

— Name: goal identifier;
— Description: English description of the mission requirement;

— Context: Boolean predicates over the context APs that hold true for the
goal;

— Objective: formulas over all the AP expressing what the robot must
achieve under the context of the goal.

Goal objectives can be expressed, for example, by properties including
atomic propositions in combination with Boolean operators and the tempo-
ral operator G (globally), which suits a large number of natural-language
requirements [30]. However, CROME enables the expression of more complex
objectives. We address the generation of complex temporal logic formulas via
the robotic patterns [48] and the specification patterns with scopes [49] in
Section [5.2.3]

84 CHAPTER 5. PAPER D

5.4.4 Domain Properties

Domain properties are general constraints that must hold for the whole mission;
they can relate to the robotic agent or the environment and use any type of
AP. Domain properties can also be generated by using patterns or basic logic
predicates over the APs. CROME accepts three kinds of domain properties,
which are all compiled as logic predicates:

— Mutex properties relate predicates that cannot be true at the same
time. For example, warehouse and shop AP can be marked as mutex
propositions, since they represent separate physical environments where
the robot cannot be at the same time.

— Inclusion properties express constraints on pairs of propositions, predi-
cates, or patterns, such that, when the first term is true, then also the
second term must be true. For example, SequencedPatroling(cashier,
entrance, warehouse) and Patroling(shop) can be part of an inclusion
property since whenever the robot patrols the cashier, entrance, and
warehouse locations in sequence, then it patrols the shop.

— Adjacency properties express constraints over location APs that are
adjacent, i.e., such that one location can be reached within one step
from another location. For example, adjacency properties can be used to
describe the grid-map of the environment, eventually constraining the
movements of the robotic system.

Separating the domain properties from the goals is instrumental to mis-
sion specification reuse, as it allows instantiating the same goals in different
environments enjoying different domain properties.

5.5 Context-Based Specification Clustering

In this phase, CROME groups the goals into separate clusters based on their
contexts. If the contexts associated with two goals are jointly satisfiable, then
the goals are placed in the same cluster; otherwise they are placed in different
clusters, which are marked as mutually exclusive. A cluster is then a tuple

5.5. CONTEXT-BASED SPECIFICATION CLUSTERING 85

containing a mutex-context and a set of goals.

Algorithm 1: Extract mutually exclusive context clusters

Input: goals: list of goals, rules: domain properties

Output: clusters: set of tuples, where each tuple contains a mutex-context and a
set of goals

goals_cxts < extract_context(goals)

mtx_cxts < 0

/* Compute all the possible combinations for L goals_cxts */
for % in {0..L} do
/* Extract all combinations of i contexts x/
comb_i <— combinations(contexts, i)
/* For each combination */

for comb in comb_i do
for ctz in contezts do

/* Saturate the combination */
/* If the context is not part of the combination */
if ctz not in comb then

/* Get the negation of the context formula */

ctx_neg < Not(ctx)

/* Add the negation to the combination x/

comb_i < comb_i U ctx_neg

/* Add additional rules when needed */
for r in rules do

if r applies to comb then
L comb < comb U r

/* Simplify formulas in comb @ */
comb «— simplify(comb)
if comb is consistent then
/* Conjoin all the elements in comb and save the result in
new_contexts */
mtx_cxts < mtx_cxts U And(comb)

/* Group contexts in mtx_cxts @ */
mtx_cxts < group(mtx_cxts)

clusters «+ 0

for czt in mtz_czts do

/* Map goals to contexts in mtx_cxts @ */
c_to_g = map(ctx, goals)

clusters <— clusters U c_to_g

/* Select final clusters */
clusters < select(clusters)

return clusters

Algorithm [I| automates this phase. It takes as inputs the list of goals and
the domain properties, referred as rules. The result is a set of clusters, each
associated with a new mutez-context, which is inconsistent with any mutex-
context associated with another cluster. First, the algorithm extracts all the
contexts from the list of goals and computes all the possible combinations of
contexts. For each combination of contexts comb the algorithm performs the
following operations:

— Saturation: it adds to the combination the negation of all the contexts
that are not part of the combination.

— Adding rules: if any predicate in comb contains APs that are also in a
predicate of the rules, then it adds the predicate in the rules to the
combination.

86 CHAPTER 5. PAPER D

— Consistency check: if the conjunction of all the contexts in a combination,
after the addition of the rules predicate is consistent, meaning that the
resulting formula is satisfiable, then it produces a new mutex-context,
obtained from the conjunction of the contexts augmented with the rules.

Algorithm [1] then groups the mutex-contexts, maps each goal to a mutex-
context to form different clusters, and selects the final mutex-contexts among
those that are mapped to the same set of goals. Given L contexts, there are at
most M combinations, where

u= ¥ ()2

k=1,...,.L

Each combination contains at most N = L 4+ R elements in conjunction, where
L is the number of contexts and R is the number of additional rules, i.e., domain
properties related to the context. For example, Figure shows a list of context
combinations that are mapped to a list of goals. Each combination is formed by
propositions x;; representing contexts and rules, and their conjunction results
in a mutex-context z;. Every mutex-context x is then associated with a set
of goals G to form a cluster. We detail below some of the functions used in
Algorithm

A BTN AT N @Y 61|
@Cx% Loy | 29 TN
xg 31 Z32 | | T3N
? ® (9[9[]
2y Ty | Tue | L TMN

Figure 5.2: Example of mapping of 5 goals Gy, ..., G5 to M mutex-contexts z7,
..., zh;. Each combination of contexts contains at most N logic propositions
in conjunction. A circled number indicates refinement checking tasks among
formulas expressing the goal contexts or mutex-contexts.

In CROME, contexts and mutex-contexts are formulas. Therefore, to
manipulate contexts, we define a refinement relation between formulas. A
formula ¢ refines a formula v if and only if ¢ —) is valid. If ¢ refines 1, then
the behaviors satisfying ¢ are included in the set of behaviors satisfying). The
simplify, group, map, and select functions in Algorithm [1] perform refinement
checks among pairs of LTL formulas, as also marked by the circled numbers in

Figure 5.2}

— @ stmplify. Fach mutex-context is built as a conjunction of clauses.
Each clause x; represents a context, a negation of a context, or a context
rule. For each pair of clauses x;q, i in a mutex-context x;, Algorithm
checks whether xz;, refines x;;, and removes the most abstract clause, e.g.,
if T;q — T, then T4 A T = Tiq.

5.6. MISSION SPECIFICATION VIA CONTRACT-BASED GOAL GRAPHS 87

— @ group. This process is similar to the one in simplify, but operates
on pairs of mutex-contexts 7, xg, as shown in Figure rather than the
clauses of each mutex-context. For each pair of mutex-context formulas,
if a formula implies another one, the group function only retains the most

refined one.

— @ map. The mapping process connects each specification goal to a new
mutex-context z;, and finally forms a cluster. Let z; be the context of
the specification goal G;. Then, the map function checks whether all the
behaviors satisfying the mutex-context x} are contained in context x;,
that is, whether 2 is a refinement of ;. If this is the case, CROME
links G; to the new context x}. Because mutex-contexts are constructed
by refining contexts, there must exist a mutex-context x} that refines z;.

— @ select. It may happen that more than one mutex-context are linked
to the same goal. For example, in Figure both 5 and 2, are linked
to G; and Gs. In this case, CROME maps the goal to the cluster with
the most abstract context.

Controllers generated
from reactive synthesis

C] goal node
: O operator node

. —=-=> refinement link

connection link

........................

(C) (CJ(C] (G
7 N K
Library goals

connected via refinement

Figure 5.3: Example of CGG where some of the goal nodes are linked to a
Mealy machine representing the controller synthesized from the node.

5.6 Mission Specification via Contract-Based Goal
Graphs

In this step, domain properties and goals are formalized using A /G contracts
and organized using a CGG.

5.6.1 Contract Formalization and Analysis

Once the clusters and mutex-contexts are identified by Algorithm [1, CROME
produces one contract C; for each goal G; in the clusters, where:

88 CHAPTER 5. PAPER D

— the assumptions capture the domain properties related to the environment
in which the mission is deployed;

— the guarantees capture the properties associated with the goal objectives
and the corresponding context via formulas of the form

G(ctz — obj) (5.9)

for a context ctxr and an objective obj expressed, for example, as a
conjunction of robotic patterns.

Since contract assumptions and guarantees are expressed by logic formulas,
CROME checks for incompatibility and inconsistency (i.e., emptiness of as-
sumptions or guarantees) by checking whether the logic formulas are satisfiable.
Moreover, CROME performs a feasibility check to verify whether contracts
are well-formed, i.e., whether AN G # () holds. For example, the contract
C = (¢q,Py), where ¢, := G(env), ¢, := G(env) — (Fmove A Fmove),
and env and move are APs, is compatible and consistent. However, C is not
well-formed since ¢, A ¢4 is infeasible. LTL satisfiability checks can be reduced
to model checking problems [14,/176]. We check the satisfiability of a formula
¢ by querying a model checker for the validity of ¥ := —¢. If ¢ is valid, then ¢
is unsatisfiable. A counterexample invalidating v is a model, i.e., a satisfying
trace, for ¢.

5.6.2 Contract-Based Goal Graph

A CGG, shown in Figure is a graph T = (T, X), where each node v €
T = T'U A is either a goal node v € T or an operator node § € A, with
I'n A = {). Each goal node is the formalization of a goal via a contract. Each
operator node takes a value in {||, A} and represents an operation (composition
or conjunction) between contracts. Each edge 0 € ¥ can connect a goal node
in ' to an operator node in A or two goal nodes. In the former case, the edge
is a connection link. Otherwise, it is a refinement link.

Any goal node of the CGG can be realized to achieve a controller. A
realization of the root node covers the whole mission but the synthesis problem
could be infeasible or intractable in practice. The decomposition of the goals
via the modularity of the CGG allows pointing out portions of the mission that
may be independently realizable.

5.6.2.1 Building the CGG via Composition and Conjunction

CROME uses contract conjunction and composition to combine the different
goals and form the CGG. Composition and conjunction produce more complex
goals from simpler ones, which are then connected to the CGG. However,
composition demands that the resulting goal operate in environments satisfying
the assumptions of all the composing goals. On the other hand, conjunction
requires that the resulting goal operate with environments that satisfy either
(but not necessarily both) of the assumptions of the original goals. CROME
uses contract conjunction to blend different scenarios that must be both
satisfied by the mission, while the scenarios are built by composition of smaller
contracts. More specifically, the CGG is built by computing, for each cluster,

5.6. MISSION SPECIFICATION VIA CONTRACT-BASED GOAL GRAPHS 89

the composition of the goals associated with the cluster (e.g., C2 and C3 in
Figure . Goals can be interconnected to form complex structures, where
the guarantees of one (or more) goal are used to discharge the assumptions
of other goals. Such a composition produces a new goal node (e.g., S; in
Figure 7 which is the scenario supported by the goals in the cluster. Finally,
the overall mission specification M is compiled in terms of the conjunction of
all the mutually exclusive scenarios (e.g., S; and Sy in Figure .

5.6.2.2 Extending the CGG via Refinement from Library of Goals

A library of goals is a collection of goals, each formalized with a contract and
labeled with a cost. CROME can automatically extend a CGG by refining its
leaf nodes with goals chosen from a library of goals, while minimizing the overall
cost. Figure shows how contracts C1,Cs, and Cs are refined by the library
goals L1, Lo, and L5. A refinement link between a library goal £ = (a;,¢g;) and
a leaf node C = (ac, g.) is created if and only if £ < C. Lo is further refined by
library goal L1, while L5 refines two goal nodes of the CGG, which are both
corresponding to contract Cs.

5.6.2.3 Controller Synthesis

CROME checks the realizability of each goal node of the CGG and, if it is
realizable, it produces a controller using reactive synthesis. In Figure [5.3] goal
C3 is refined by L5 and they can both be realized with two controllers at different
abstraction levels. For example, let us assume that C3 requires as objective
Patroling(a, b, ¢), corresponding to the LTL formula ¢, = GF a A GF bAGF c.
On the other hand, the library goal objective is SequencedPatroling(a, x,y, z, ¢)
corresponding to ¢, = GF(a AF(z AF(y AF(z AF ¢)))). Further, there exists
a domain property of type inclusion between SequencedPatroling(zx,y, z) and
Patroling(b), that is, v = G(F(x AF(y AF 2))) = GF b. Given C3 = (¢, ¢q)
and L5 = (true, ¢,.), we have and L5 < Cs, since ¢ — true and ¢, — (Y — ¢q)
are valid formulas.

Nl WAITING ISOLATION CHARGING .
T LN A S :
day . o S :
¢ | 88| Gl |
night §

5]

| B C E F

8
urgent A D %\Y
AT
normal

entrance pharmacy medical-room

care-center

Figure 5.4: Care clinic map showing the time, location, and identity contexts
(written in italics).

90 CHAPTER 5. PAPER D

5.7 Case Study: Urgent Care

We consider a mission performed by a service robot working in an urgent care
clinic, and consisting of several tasks. Figure [5.4] shows the map of the clinic
together with the contexts. Time contexts (day, night) and identity contexts
(urgent, normal) capture the variability in the time of the day and type of
patient that needs attention. Location contexts (corridor, entrance, pharmacy,
medical-room, and care-center) denote one or more physical locations on the
map (A, B, C, D, E, F, G, WAITING, ISOLATION, and CHARGING). Both
during the day and during the night, the robot must patrol the clinic. By
patroling we mean that the robot should recurrently visit all the rooms (in any
order) without letting any room unvisited. To express this property we use the
patroling pattern [48].

GOAL 2 - Serve pharmacy
ctx: pharmacy & day
obj: Delayed-Reaction

GOAL 1 - Patrolling GOAL 3 - Patient Visit
- ctx: night, day ctx: day & mild, day & severe
obj: Prompt-Reaction

obj: Patrolling(care-center’

_ _—|Night Patrol Corridor
- ctx: night

obj: Patrolling(corridor)

ctx: day

!

1

1

1 __[pay Patrol Entrance and Pharmacy
obj:

Patrolling(entrance, pharmacy)

Patrol b-c-e-f
obj: Sequenced-Patrolling(b,c,e,f)

trigger = get-medicines
reaction = give-medicines

A
I
Il
1

trigger = patient-entered
reaction = welcome-patient

)

Search check and deliver medicines
obj: Prompt-Reaction
trigger = look-up-meds
reaction = search & check-label
Prompt-Reaction

trigger =

search & check-label

reaction = pick-up-medicine
Prompt-Reaction

trigger =

pick-up-medicine

Severe symptoms welcome
ctx: severe
obj: Instant-Reaction
trigger = patient-entered
reaction = welcome-patient &
check-temperature

12T Zo.

Wait

where = entrance

until = patient-is-following
Visit(isolation)

reaction = deliver-medicine

Mild symptoms welcome
ctx: mild
obj:

Patrol a-d
obj: Sequenced-Patrolling(a,d) Instant-Reaction
trigger = patient-entered
reaction = welcome-patient &
check-temperature

Legend

[] sttty s
I:l goals selected from the library

refinement link

GOAL 4 - Charge Battery
obj: Recurrence_P_between_Q_and_R
q = low-battery
p = charging
r = full-battery

Wait

where = entrance

until = patient-is-following
Visit(waiting)

Figure 5.5: Care clinic main goals specified by the designer connected via
refinement to the goals selected from the library.

During the day, and when inside the pharmacy, the robot must get the
medicine, whenever asked to do so, and give it to the client. It must also
welcome new patients at the entrance of the shop. Finally, it must always go
and charge the battery when the power level is low. CROME relies on the
model checker NuSMV [177] to perform all the checks in the CGG and on
StrixEI to generate controllers via reactive synthesis.

Figure[5.5]shows the mission requirements formalized as goals by the designer
and the goals that are selected from the library of goals by CROME to refine
the mission requirements. A goal is composed of (i) name, (ii) description,
(iii) context, and (iv) objective (Section [5.4]). For brevity, in Figure we
have omitted the goal descriptions. For example the name of the first goal
is Patrolling, the context is described by two atomic propositions, night
and day, and the objective is an instantiation of the patrolingﬁ pattern (i.e.,
instantiated on the AP care — center). We use multiple Boolean propositions
separated by comma to denote multiple goals, each instantiated in a single
context. Specifying Goal 1 with context night,day is then equivalent to
specifying two separate goals for night and day, respectively. When the context

%https://strix.model.in.tum.de/
3http://roboticpatterns.com/pattern/sequencedpatrolling/

https://strix.model.in.tum.de/
http://roboticpatterns.com/pattern/sequencedpatrolling/

5.8. CONCLUSIONS 91

is omitted from a goal, then we imply that the goal objectives must hold in
all contexts. We also note that Goal 4 instantiates a property specification
pattern, the recurrent patternﬂ which also uses the scope between Q and R.

We observe that Goal 1 and Goal 8 are refined differently according to the
contexts specified by the designer. In Goal 1, patroling is achieved by patroling
the corridor during the night, while patroling the entrance and the pharmacy
are required during the day. Similarly, for Goal 3, the task of welcoming a new
patient is refined differently according to the gravity of the symptoms where,
in the severe cases, the robot visits the isolation room while, in the normal
cases, it goes in the waiting room.

CROME produces a CGG with a total of 17 goals, 5 of which are the
identified scenarios and 11 are library goals that can be reused to refine the
leaves of the CGG. Figure [5.6] shows the name of the goals associated to each
of the five mutex-contexts. The full example is available onlineﬂ The root
node of the CGG can not be realized by the synthesizer, which runs out of
memory. However, every scenario of the CGG is realizable with a maximum
and minimum synthesis time of 962.98 s and 24.59 s, respectively. On the other
hand, individual nodes can take up to 0.72 s to be realized into a controller.
Overall, this example shows how CROME facilitates the formalization of
mission requirements, can identify mission scenarios that can be independently
realizable, and can refine leaf goals from a library of goals.

A
— Charge-battery || Patrolling(night)

— Charge-battery || Patrolling(day)
— Charge-battery || Patrolling(day) || Serve Pharmacy

— Charge-battery || Patrolling(day) || Welcome-patients(mild)

'— Charge-battery || Patrolling(day) || Welcome-patients(severe)

Figure 5.6: Goals belonging to each identified scenario of the case study.

5.8 Conclusions

In this paper we introduced CROME;, a design framework for capturing and
formalizing robotic mission requirements. CROME facilitates the translation
of informal requirements in terms of goals by leveraging a set of specification
patterns. It then formalizes the goals in terms of assume-guarantee contracts
and leverages a novel, modular representation, namely, a contract-based goal
graph (CGG), to analyze the mission specification and detect inconsistencies.
Given the CGG, CROME can automatically refine the leaf nodes with goals
from a predefined library. It can automatically check the realizability of the
overall mission and synthesize a controller, if the mission is realizable. Finally,

4http://ps-patterns.wikidot.com/recurrence-property-pattern
Shttps://rebrand.ly/cromeresults

http://ps-patterns.wikidot.com/recurrence-property-pattern
https://rebrand.ly/cromeresults

92 CHAPTER 5. PAPER D

if the mission is not realizable, CROME can help debug the specification by
identifying subsets of requirements in terms of mission scenarios that may be
realized. Future work includes devising heuristics to improve on the scalability
of the clustering algorithm and further experimentation, also in collaboration
with our industrial partners, to investigate the feasibility and usability of the
approach in practical and industrial contexts.

Acknowledgments

This work was supported in part by the Wallenberg Al Autonomous Systems
and Software Program (WASP), funded by the Knut and Alice Wallenberg
Foundation, and the EU H2020 Research and Innovation Program under GA
No. 731869 (Co4Robots). In addition, the authors gratefully acknowledge
the support by the US National Science Foundation (NSF) under Awards
1846524 and 1839842, the US Defense Advanced Projects Agency (DARPA)
under Award HR00112010003, the US Office of Naval Research (ONR) under
Award N00014-20-1-2258, Raytheon Technologies Corporation, and the Centre
of EXcellence on Connected, Geo-Localized and Cybersecure Vehicle (EX-
Emerge), funded by the Italian Government under CIPE resolution n. 70/2017
(Aug. 7, 2017). The views, opinions, or findings contained in this article should
not be interpreted as representing the official views or policies, either expressed
or implied, by the US Government. This content is approved for public release;
distribution is unlimited.

Chapter 6

Paper E

Incremental Refinement of Goal Models with Contracts
P. Mallozzi, P. Nuzzo, P. Pelliccione

International Conference on Fundamentals of Software Engineering.
2021.

6.1. INTRODUCTION 93

Abstract

Goal models and contracts offer complementary approaches to requirement
analysis. Goal modeling has been effectively used to capture designer’s intents
and their hierarchical structure. Contracts emphasize modularity and formal
representations of the interactions between system components. In this pa-
per, we present COGOMoO (Contract-based Goal Modeling), a framework for
systematic requirement analysis, which leverages a new formal model, termed
contract-based goal tree, to represent goal models in terms of hierarchies of
contracts. Based on this model, we propose algorithms that use contract oper-
ations and relations to check goal consistency and completeness, and support
incremental and hierarchical refinement of goals from a library of goals. Model
and algorithms are implemented in a tool which enables incremental formaliza-
tion and refinement of goals from a web interface. We show the effectiveness of
our approach on an illustrative example motivated by vehicle platooning.

6.1 Introduction

Missing or erroneously formulated requirements can have a negative impact
on the quality of a design. Designers are often faced with the challenge of
ensuring the correctness of an implementation despite the growing complexity
of the requirement corpora [30]. Existing requirement-management tools are
mostly based on natural-language constructs that leave space for ambiguities,
redundancies, and conflicts [178}[179]. Furthermore, the requirement elicitation
process is itself challenging, as it revolves around human-related considerations
that are intrinsically difficult to capture.

Goal modeling (e.g., as in KAOS [28,[180]) has been used over the years
as an intuitive and effective means to capture the designer’s intents and their
hierarchical structure. The refinement process, however, mostly follows informal
procedures, e.g., by posing how questions about existing high-level goals (top-
down process) or why questions about low-level goals for the system under
consideration (bottom-up process) [291[30]. The main modeling challenges are
framed in terms of ensuring completeness and consistency of a specification.
A set of hierarchically organised goals is incomplete when the high-level goal
remains unsatisfied even if the low-level goals, which are expected to capture
its decomposition, are satisfied, meaning that the designer could not anticipate
all the possible operating scenarios for the design. There is, instead, a conflict
when the satisfaction of a goal prevents the satisfaction of another goal [86]. The
process of completely refining a goal into sub-goals is not straightforward [181].
On the other hand, independently-developed goals can include overlapping
and conflicting behaviours [182]. Systematic methods to detect conflicts and
incomplete requirements remains an active research area [183H185].

This paper presents a framework, COGOMO (Contract-based Goal Model-
ing), which addresses these challenges by representing goals via contract models.
Contract-based modeling has shown to enable formal requirement analysis in a
modular way, rooted in sound representations of the system semantics and de-
composition architecture [13}|14L{169L{171L{179L[186L[187]. A contract specifies the
behavior of a component by distinguishing the responsibilities of the component
(guarantees) from those of its environment (assumptions). Contract operations

94 CHAPTER 6. PAPER E

and relations provide formal support for notions such as stepwise refinement of
high-level contracts into lower-level contracts, compositional reasoning about
contract aggregations, and reuse of pre-designed components satisfying a con-
tract. COGOMO addresses correctness and completeness of goal models by
formulating and solving contract consistency and refinement checking problems.
Specifically, the contributions of the paper can be summarised as follows:

— A novel formal model, namely, contract-based goal tree (CGT), which rep-
resents a goal model as a hierarchy of assume-guarantee (A/G) contracts.

— Algorithms that exploit the CGT as well as contract-based operations to
detect conflicts and perform complete hierarchical refinements of goals.
Specifically, we introduce mechanisms that help resolve inconsistencies
between goals during refinement and a goal extension algorithm to auto-
matically refine the CGT using new goals from a library.

— A tool, which implements the proposed model and algorithms to incre-
mentally formalize and refine goals via an easy-to-use web-interface.

We illustrate the applicability of COGOMO on a case study motivated by
vehicle platooning.

6.2 Background

Goals. A goal is a prescriptive statement of intent that the system should
satisfy, formulated in a declarative way. Goals can be decomposed, progressing
from high-level objectives to fine-grained system prescriptions [28]. For example,
an AND-refinement link relates a goal to a set of sub-goals. The parent can be
satisfied if all the sub-goals in the refinement are also satisfied. Establishing
correctness of the refinement amounts to ensuring that the sub-goals are
consistent, i.e., there are no conflicts among them, and complete, i.e., there
are no behaviours left unspecified that could result in a violation of the high-
level goal even if the lower-level goals are satisfied. We only refer to internal
completeness, i.e., we are not concerned with investigating whether all the
information required to define a design problem is in the specification [31].
Formally, we say that the refinement of goal G into sub-goals G1,Go, ..., G, is
correct if and only if

{g17g27~-~7gn}b&false A {g1,g25"'7gn}':g7

consistency completeness

where we denote by |= the entailment operator between goals and say that
{G1,...,G,} entails G to mean that, if all G,...,G, are satisfied then G is
satisfied. Similarly, we write {G1,Ga,...,G,} [~ false to indicate that the
logical conjunction of {Gy,Ga,...,G,} does not lead to false.

Contracts. A contract C is a triple (V, A,G) where V is a set of variables,
and A and G are sets of behaviors over V. For simplicity, whenever possible,
we drop V from the definition and refer to contracts as pairs of assumptions
and guarantees, i.e., C = (A4,G). A expresses the behaviors that a system
expects from its environment, while G expresses the behaviors that a system
implementation promises under the environment assumptions. An environment

6.3. RUNNING EXAMPLE: VEHICLE PLATOONING 95

FE satisfies a contract C whenever E and C are defined over the same set of
variables and all the behaviors of E are included in the assumptions of C, i.e.,
when |E| C A, where |E| is the set of behaviors of E. An implementation
M satisfies a contract C whenever M and C are defined over the same set
of variables and all the behaviors of M are included in the guarantees of C
when considered in the context of the assumptions A, i.e., when |[M|N A C G.
A contract C = (A, G) can be placed in saturated form by re-defining its
guarantees as Gyq; = G U A, where A denotes the complement of A. A contract
and its saturated forms are semantically equivalent, i.e., they have the same
set of environments and implementations. Therefore, in the rest of the paper,
we assume that all the contracts are expressed in saturated form [13].

We say that a contract is well-formed if and only if it is compatible, i.e.,
A # 0 and consistent, i.e., G # (), that is, if and only if there exists at least
an environment and an implementation that satisfy the contract. Contract
refinement formalizes a notion of substitutability among contracts. Let C =
(A,G) and €' = (A’,G’) be two contracts. C refines C’ if and only if all the
assumptions of C’ are contained in the assumptions of C and all the guarantees
of C are included in the guarantees of C’, that is, C < C’ if and only if A D A’
and G C G’. Refinement entails relaxing the assumptions and strengthening
the guarantees. If C < C’, we also say that C’ is an abstraction of C and can be
replaced by C.

Contracts can be combined through the operations of composition and
conjunction. Let C; = (A1,G;1) and Co = (A3, G2) be two contracts. The
composition Cj = (A,G) = C; || C2 can be computed using the following
expressions: A = (41 N A3) U (G1 N G3) and G = G1 N Ga. The conjunction
Cn = C1 A Cy can instead be computed by taking the intersection of the
guarantees and the union of the assumptions, that is, Cn = (41 U A3, G1 N Gy).
Intuitively, an implementation satisfying C; or Cx must satisfy the guarantees
of both C; and Cs, hence the operation of intersection. The situation is different
for the environments. Composition requires that an environment satisfy the
assumptions of both contracts, motivating the conjunction of A; and As. On
the other hand, contract conjunction requires that an implementation operate
under all the environments of C; and Ca, motivating the disjunction of A; and
As.

In the following, we denote by C; = (1;, ¢;) the contract formalizing a goal
G;, where v; and ¢; are logic formulae used to represent the assumptions and
the guarantees, respectively. Finally, we perform operations among goals by
translating them into operations on the corresponding contracts.

6.3 Running Example: Vehicle Platooning

We consider a case study inspired by vehicle platooning as an illustrative
example throughout the paper. We define goals for a vehicle participating
in a platoon in the following mode, which adjusts speed and steering angle
based on what is communicated by the leading vehicle. We assume that all the
vehicles in the platoon communicate via Vehicle Ad hoc Networks (VANETS),
established with the IEEE 802.11p standard, a specially designed protocol for
intelligent transportation systems (ITS) [188], offering at most 27 Mbps of

96 CHAPTER 6. PAPER E

Following
Mode
b

Communicate
with Platoon
G. Leader

Regulate
Speed

Regulate
Steering
a Angle

Keep
Platooning
g2 Distance

Communicate &
Retrieve info
c1][c2

Increase Decrease Keep
/G, Speed Speed Speed

Library of

Communicate // Retrieve Info
Ge1 Ge2
Goals
/lncrease //Decrease // Keep L
Speed //d:.Speed Speed Library o Library
Goal | ° Goal N

Figure 6.1: Portion of the CGT for the vehicle platooning example.

data transmission rate. The propagation delay is the difference between the
time-stamps for message reception, tg,, and message transmission, tp,, i.e.,
d = try — trz. The necessary time interval d; ;) for a successful end-to-end
transmission of a message of L bits between a pair of vehicles (3, j) is:

L

din=——, 6.1

() = F (6.1)
where f; ;) is the transmission rate between the i-th and the j-th vehicle. We
consider a platoon consisting of N vehicles, where the first one is the leader
and the remaining N — 1 are the followers. To reach all followers, a message
generated by the leader propagates through for at most N — 1 hops. We assume
the same transmission rate f = 3 Mbps between adjacent vehicles and a fixed
message length size L = 400 bytes.

6.4 The CoGoMo Approach

CoGOMOo revolves around a new formal model, termed contract-based goal tree
(CGT), and a set of operations on it. A CGT is a tree T = (T, ¥), where each
node v € T = T'UA is either a goal node v € T or an operator node 6 € A,
with TN A = (. Each goal node contains the formalization of a goal in terms of
a contract. Each operator node assumes a value in the set {||, A,A} of available
operators, namely, composition, conjunction, and refinement, respectively. Each
edge o € ¥ connects a goal node in I' to an operator node in A or wvice versa.
Figure[6.1] shows a portion of a CGT for the vehicle platooning example, where
each goal node includes a textual description of a goal. A library L of goals, at
the bottom of the figure, is used to automatically extend the CGT. A library
of goals is a set of pre-defined goals, e.g., specification patterns, that can be
labelled by a cost, capturing the overhead incurred when employing a certain
goal to extend the CGT, as further illustrated below.

A CGT can be built interactively using a web-interface and with the
support of a proof-of-concept tool, which is released open-source [189]. A
designer can insert (new) goals by typing or uploading a structured text file.

6.4. THE COGOMO APPROACH 97

The specification formalization process then iterates between two activities:
(i) goal identification and formalization with A/G contracts, and (ii) goal
manipulation, incrementally linking goals via composition, conjunction, and
refinement. The outcome is a formal specification in terms of a CGT.

6.4.1 Goal Formalization

CoGOMO enables requirement formalization by representing goals in terms
of contracts. It then solves contract verification problems to detect conflicts
and incompleteness among goals. Specifically, completeness and consistency
checking problems translate into checking the satisfiability and validity of
logic formulas via an SMT solver [190]. In this paper, we express contract
assumptions and guarantees as formulas in propositional logic, where atomic
propositions include Boolean variables or arithmetic predicates on real variables.

6.4.1.1 Detecting Conflicts.

CoGOMO detects conflicts by checking the compatibility, consistency, and
feasibility of each contract formalizing a goal in the CGT. Feasibility checking
aims to verify that there exists at least an implementation which does not
violate the assumptions, that is, for contract C = (4,G), AN G #) holds.
CoGoMo verifies compatibility, consistency, and feasibility of a contract (v, ¢)
by checking whether 1, ¢, and ¥ A ¢ are satisfiable, respectively. In case of
conflict, the SMT solver provides an explanation of infeasibility in terms of
an unsat core, i.e., a subset of clauses that are mutually unsatisfiable [190].
CoGOMOo then links the conflicting clauses to the goals that generated them
and presents these goals to the designer.

6.4.1.2 Checking Completeness.

CoGOMO checks completeness by verifying that all the refinement links of
the CGT are correct. Given two contracts, C = (¢, ¢) and C' = (¢, ¢'),
C <X C' holds if and only if ¢’ — ¢ and ¢ — ¢ are valid formulas, i.e., they
are tautologies for the language, where — denotes the implication. Validity
checking can be translated into checking the satisfiability of ¥/ — ¢ or ¢ — ¢’.
If no solution is found, then the refinement is correct; otherwise, the returned
solution serves as a certificate of incompleteness, and is exhibited to the designer.

6.4.2 Goal Manipulation via Composition and Refinement

CoGOMO uses composition to capture with a single goal the composite be-
haviors resulting from the composition of modules (implementations) that are
separately specified by different goals. For example, goal G, in Figure [6.1] can
be refined by the composition of G.; with G.o. Figure [6.2] proposes an initial
formalization of G. as a contract C. and its further decomposition into two
goals, G.1 and G, establishing requirements on the network connection and the
follower’s speed and angle ranges, respectively. G, specifies the propagation
delay d according to the transmission rate f (in Mbps), the message length L,
and the position n of the follower participating in the platoon. Assuming a
working network connection, G.o guarantees that the speed of the follower is at

98 CHAPTER 6. PAPER E

"""""" Legend -~~~
“If the leader transmits the correct data, the follower L .
. R, d : real propagation delay
¢ vehicles will follow within a given speed and steering ;
angle and with a maximum propagation delay of 0.01s”’ ; Sf it follower speed
-- Sy :int follower steering angle
c . = data ; J & angle
c “data : bool correct data
b = sf >0 N —1< ag <1 A d<0.01 : has been transmitted
i E : comm : bool working
Incomplete Refinement for n =10 : network connection
“If a transmission rate between “If the communication with the leader is

vehicles is in the A ange from 3 to 27 established and the leader transmits the correct
c1 Mbps, then the " follower is able gc2 data, then the followers implement speed and

to communicate with the leader steering angle within given bounds”
with a certain maximum delay”
c Y= 3<f<27 c e = comm A data
1 2
“ = comm A d=Lx “Voea= 0<sp<150A—0.52<ay<0.52

Figure 6.2: Examples of three goals formalized by contracts. After linking the
goals via composition and refinement, COGOMO detects that the refinement is
incomplete.

most 150 km/h and its steering angle at most 30° (0.52 rad). We would like to
show that Gey || Gea = Ge1jje2 can be connected to the top goal G.. via refinement,
ie., QdHCQ =< G.. To do so, CoOGOMO first checks for conflicts between G.{
and Geo by verifying that the contract associated with G.i|.2 is compatible,
consistent, and feasible, which is the case in our example. However, COGOMO
detects that Gy .2 is not a refinement of G. and provides a certificate showing
that, for the 10" follower in the platoon, the propagation delay is slightly
larger than d = 0.01, which violates the guarantees of C.. It is, however, still
possible to circumvent the incompleteness of the refinement by strengthening
the assumptions of G.; 2 to limit the size of the platoon to less than 10 vehicles,
and by “propagating” this restriction to G. via a mechanism of assumption
propagation, as detailed below.

6.4.2.1 Assumptions Propagation.

When eliciting the top-level goals of a specification in a hierarchical way, we may
discover additional assumptions, associated with lower-level goals in the hierar-
chy, which were not known a priori. This inconsistency between assumptions
at different levels of the hierarchy may be a reason for incompleteness in the
refinement. Let G, and G, be two goals, and C, = (g4, ¢o) and C, = (¢, Py)
their respective contracts. Assumption propagation ensures that 1, — .. is
valid, by propagating the assumption formula from the lower-level contract
to the upper-level contract and conjoining it with the assumptions of the
higher-level contract so that behaviors that are not in 1, are removed from 1,
and 1), is redefined as (1, A t,.). After assumption propagation, the top-level
guarantees will also be updated by bringing C, again in saturated form, i.e., by
setting the guarantees to ¢, V (¢4 A 1-). In our example, the new assumptions
for C. after propagation become

Ye= 3< f<27T N data N n <10,

6.4. THE COGOMO APPROACH 99

which makes refinement complete and allows creating a refinement node in the

CGT as in Figure

6.4.3 Goal Manipulation via Conjunction

CoGOMO uses conjunction to generate a goal that refines multiple goals
or scenarios, which are active under different assumptions, and may not be
simultaneously satisfiable. In our example, the goal G, ‘Regulate Speed,” in
Figure can be decomposed into two sub-goals, G; and G, specifying how
the speed of a vehicle s should be regulated according to the leader’s speed s;
or according to the distance dgon to the front vehicle, respectively. Because
G1 and G5 should both be satisfied, albeit in different situations, we can define
a single goal G; = G; A Gs for the system.

If the assumptions of G; and G, are not mutually exclusive, the conjunction
may require that potentially conflicting guarantees be satisfied simultaneously.
For example, one of the contracts contributing to G; may prescribe an increase
of the follower’s speed when there is an increase in the leader’s speed, i.e.,
Ci1 = (st < 81, St41 > s¢) where s;, s; and s;41 represent the current speed of
the leader and the speed of follower vehicle at times ¢ and ¢+ 1, respectively. On
the other hand, one of the contracts contributing to Go may prescribe a decrease
in the follower’s speed when the distance to the vehicle in front is detected and
it is less than a certain threshold, i.e., Cjy = (dist A dgont < Dp, Si41 < St),
where dist evaluates to true if and only if the distance from the vehicle in
front was detected correctly and dgont < D, indicates that the distance should
be less than a constant (i.e., “the platooning distance”). The assumptions of
C11 and C}, can be satisfied simultaneously, possibly causing conflicts in the
guarantees of the joint contract (11 — (S¢41 > 5¢)) A (Vg = (5141 < 5¢)).
CoGoOMOo prevents such conflicts via a goal priority mechanism.

6.4.3.1 Goal Priority.

A goal priority mechanism P(Gy, G2) avoids such potential conflicts by making
the assumptions mutually exclusive so that only one goal is effective under any
environment. For instance, a priority mechanism may set Co = (¥2 A 11, ¢2),
assuming that 15 A 11 is satisfiable, so that C; is granted higher priority and
dominates whenever both 1, and ¥, hold. Because the assumptions of Cs
become stronger, an assumption propagation step may also be needed to keep
the refinement relations correct across the CGT. In our example, prioritizing
G1 versus G solves the potential conflict. G5 can then be satisfied if the vehicle
adjusts its speed according to the information provided by the distance sensor.
When dg.ont is not available, as denoted by dist, the vehicle regulates its speed
according to the speed of the leader of the platoon.

When composing a goal that was previously obtained by conjunction, e.g.,
when composing G, with G, in Figure[6.1] it may be useful to separately reason
about the different scenarios involved in the composition. To do so, we use
the fact that, given three contracts Ci1, Co, and C., [(C1 A C2) || Cc] = [(C1 |
Cc) A (Cq || C.)] holds, and we can separately identify the scenarios associated
with (C; || Cc) and (Cz || C¢) in the composition. In words, while composition
is not distributive over conjunction in general [13], the distributive property

100 CHAPTER 6. PAPER E

holds in the special case of three contracts as above. A proof of this result is
in the appendix.

6.5 CGT Extension

Given a leaf node G’ in a CGT and a library of goals £, the extension problem
consists in finding a set of goals Gy, Gs, ..., G, in L, that, once composed,
refine G’. The CGT is then extended by linking G’ to a node G, via refinement,
and G, to G1, Go,...,G, via composition. Formally, we require:

Co=CullColl oo [Cn = (¢, 0s),
where s A1)’ is satisfiable and ¢, — ¢’ is valid.

When connecting G, to G via a refinement edge, COGOMO also uses assumption
propagation, as described in Section to ensure that ¢’ — 15 is valid.

Algorithm [2] proposes a procedure to automatically extend a CGT leaf node.
The algorithm takes as inputs a goal node G’ and a library of goals £, and
returns the set of goals to be composed as output. We assume that each goal
in the library is labeled by a cost that is proportional to the number of clauses
in the assumptions. The cost of a solution is the sum of the costs of all the
selected goals. We first choose the lowest-cost selection of goals from £ whose
guarantees, once composed, imply the guarantees of C’. Then, we choose the
lowest-cost selection of goals from £ whose guarantees, once composed, imply
the assumptions of the goals selected in the previous iteration, and repeat this
step until there are no more goals in the library or there are no assumptions
that can be relaxed, i.e., discharged by the guarantees of another contract from
the library. Concretely, given a input-goal G’, where C' = (¢, ¢'), we look for
all the combinations of goals in £ such that their composition C; = (¢, ¢y),
has guarantees ¢; that imply either the guarantees of the input goal ¢’ (line
2) or its assumptions ¢’ (line 7.1). We evaluate the cost of all the candidate
compositions and select the candidate with the lowest cost (lines 3, 7.2). If
multiple candidates have the same cost, we compose all the goals in each
candidate set and select the composition that has the weakest assumptions.

Our cost metric favors the selection of goals with weaker assumptions
(shorter assumption formulas), as they pose less constraints to the environment
and support a larger number of contexts. On the other hand, a goal with a
longer assumption formula tends to accept a smaller set of environments and
require a more complex aggregation of goals from the library to discharge the
assumptions. However, other cost functions are also possible. Searching for
a composition of goals in the library that minimizes a cost function can be
exponential in the size of the library. We circumvent the worst-case complexity
by adopting a greedy strategy, which select the lowest-cost goal at each iteration,
even if this does not necessarily lead to a globally optimal solution. As new
goals are selected, they are aggregated via composition. Therefore, at each
iteration, Algorithm [2] searches for the weakest-assumption contract whose
guarantees discharge the assumptions of the composite contract obtained in
the previous iteration.

As an example, we extend G’ in Figure which specifies the precision
with which the distance from the vehicle in front is retrieved, when this

6.5. CGT EXTENSION 101

Algorithm 2: Goals Selection

Input: Library of goals £ = {G1,Ga, ..., G, } with contracts
{C1,Ca, ..., Cy, } respectively, input-goal G’ with contract
= (W4
Output: Set of goals L. C L that composed would result in a goal G;
and contract C; = (¢;, ¢;) such that ¥; A ¢’ is satisfiable and
¢ — @' is valid.
1 L. =0 is the set of goals to be returned
2 R=1{(G1,G2,04),(G1,G5),(G2,G3), ...} is a set of candidate compositions,
where each element R; C £ and the composition of the goals contained
in R; results in a goal with a contract C, = (¢, ¢,), such that

— ¢, AN is a satisfiable formula

— ¢p — ¢’ is a valid formula

3 K ={G,G,,..,Gn} = optimal_selection(R)
L.+ K adds the selected goals to L.
5 S+ K where S is the set of goals whose assumptions need to be

searched in the library
6 while S # () do
7| for goal Gs in S where Cs = (¢s, ¢5) do
71 Q=1{(G1,G2,G3),(G2,G5),(G1,G3),...} is a set of candidate

compositions, where each element (); C £ and the composition of
the goals in @; has a contract C, = (14, ¢4) such that:

~

— g NP’ A is a satisfiable formula
— ¢q =+ s is a valid formula

7.2 H=1{G;,Gj,..,Gmn} = optimal_selection(Q)
73 L.+~ L. UH, S+ SUH
74 S+ S—-{G:} removes the G, from S

8 return L.

information is available. The associated contract ' = (——, dist A dgont >
0 A |dtront — dreal] < 9) guarantees that the information on the distance dist
is available and that the perceived distance with the vehicle in front dgong 18
positive and has a precision ¢ in all contexts, where § is a constant. We then
use a library of goals specifying GPS modules, accelerometers, several kinds
of radars with different levels of accuracy, and communication components.
The extension algorithm returns 6 goals whose composition G is linked via
refinement to G’ in Figure

The left-hand side of Figure [6.3] shows the contracts formalizing the new
goal G; and their interconnection structure. Each edge between contracts
is labeled with a proposition that represents the logic predicate forming the
assumptions or the guarantees of a contract (or both in case the guarantees
of one contract imply some of the propositions in the assumptions of another
contract). For example, the contract C3 in Figure[6.3] which specifies a Kalman
Filter component, has assumptions a A cego and guarantees p. The composition

102 CHAPTER 6. PAPER E

77

composition of the contracts that

‘
. ‘
‘
! formalize each goal found in the g PP .. ,,1,,,1,,[’,,;(,/
‘ ! .
} library . (leaf node
‘
‘ ‘
‘
‘

of the CGT)

Figure 6.3: Example of CGT extension via a library of goals. The left-hand
side shows the composition of contracts used to formalize G; and extend the
CGT on the right-hand side.

of C3 with C1 = (v,a) and Ca = (Sgps, Cego) Tresults in a contract, where a
and c.go are no longer present in the assumptions, since they are already
supported by the guarantees. The net result is a simpler assumption formula.
By composing all the goals retrieved from the library we obtain a new goal G,
and associated contract Cy = (s, ¢5), where

1/15 =vA Sgps A Sradar N Snetwork N\ @ /A Cego A p A drad A Cfront

\ (a A Cego ApA drad A Cfront A dfront)
d)s =aAl Cego ApA draa N Cfront A dfront~

As in the previous example, the assumption formula reduces to s = (v A
Sgps N Sradar N Snetwork V dfront). We observe that ¢, refines the guarantees
of C' because dfront = dist A dirony > 0 A |diront — dreat] < € where € is a
constant and € < §. Finally, to preserve the completeness of the refinement,
CoGoMo propagates the assumptions 1); to C’ and then to the parent nodes
of G’ recursively, by following the edges of the CGT up to the root.

6.5.0.1 Numerical Validation.

Algorithm [2| is sound and complete. The soundness is provided by the SMT
solver, which checks the validity and satisfiability of the formulas. The com-
pleteness is given by the fact that the algorithm searches over the entire goal
library. Because of the greedy procedure, the computation time scales linearly
with the number of goals in the library. We performed numerical evaluation
of synthetically generated libraries of different sizes populated by randomly
generated goals. Goals are captured by simple propositional logic contracts,
whose assumptions and guarantees are conjunctions of Boolean propositions.
We use the length of these formulas, i.e., to quantify the complexity of each
contract. A configuration is defined by the number of goals in the library and
the complexity of the contracts. We evaluated the algorithm on up to 1000
library goals and up to 24 logical propositions in each contract for a total of
50 different configurations. For each configuration, we ran Algorithm [2| with
100 different input goals. Table shows the average execution time for each
configuration normalized by the number of goals returned by the algorithm.
Figure shows the execution times for 3 configurations, which scale linearly

6.6. RELATED WORK 103

100 200 300 400 500 600 700 800 900 1000
4 049 094 1.32 1.78 214 253 299 345 3.82 4.09

1.42 2.71 3.89 5.20 6.49 7.73 9.09 10.41 11.82 13.10
16 4.84 10.74 16.04 18.97 23.27 29.05 35.16 36.85 41.30 46.61
20 6.33 12.62 18.40 24.58 32.70 39.83 45.45 56.09 63.83 70.33
24 8.79 17.14 25.59 34.07 49.45 54.98 64.34 71.91 84.10 94.13

Table 6.1: Average execution times (sec) of 100 runs for different configurations
of library size (number of goals in the columns) and contract complexity (rows).

150

—¥— 1000 elements

—— 800 elements

100 —&— 600 elements

time (sec)

0 LINLINLINL I L L I L B B B |

20 40
number of goals returned

Figure 6.4: Execution times as a function of the number of returned goals
for 3 simulation configurations, with libraries of 600, 800, and 1000 elements,
respectively, and contract complexity equal to 4.

with the number of returned goals and the size of the libraryE|

6.6 Related Work

In the context of contract-based verification, tools like OCRA [191] and
AGREE [192] use contracts to model system components and their aggre-
gations and formally prove the correctness of contract refinements |193] by
using model checkers [177]. Related to system engineering, CONDEnSe [194]
propose a methodology and a tool that leverages the algebra of contracts to
integrate artifacts developed in mechatronic systems. More oriented toward
requirement engineering, the CHASE [179] framework combines a front-end
formal specification language based on patterns with rigorous, contract-based
verification and synthesis. It uses a declarative style to define the top-level re-
quirements that are then translated into temporal logic, verified for consistency
and, when possible, synthesized into a reactive model. COGOMO’s hierarchical
and incremental approach to refinement of goal models is complementary and
can be naturally incorporated into CHASE.

In the context of goal-oriented requirement engineering, significant work
has addressed completeness and conflict detection using formal methods for
goal models based on KAOS [181},/182,/195]. While these approaches mostly

LComplete results: http://bit.1ly/3s5XDOL.

http://bit.ly/3s5XD0L

104 CHAPTER 6. PAPER E

focus on algorithms that operate on a fixed set of requirements and environ-
ment expectations, COGOMO proposes a step-wise approach where refinement
checking and conflict analysis are performed contextually in an incremental
way as the goal tree is built. Frameworks like COVER [196] use TROPOS as
a goal modeling framework, Modal Transition Systems (MTS) to model the
system design, and Fluent Linear Temporal Logic (FLTL) as a specification
language for functional requirements. COVER checks the satisfaction of all the
requirements by verifying the properties on the system model. Requirement
verification using formal methods is common to the goal-oriented approaches
above; however, to the best of our knowledge, COGOMO is the first effort
toward formalizing goal models using contracts, thus enhancing modularity
and reuse in goal models.

Compositional synthesis of reactive systems, i.e., finding generic aggregations
of reactive components such that their composition realizes a given specification,
is an undecidable problem [197,|198]. The problem becomes decidable by
imposing a bound on the total number of component instances that can be
used, but remains difficult due to its combinatorial nature [199]. Our approach
relates to the one by Iannopollo et al. [176/199], proposing scalable algorithms for
compositional synthesis and refinement checking of temporal logic specifications
out of contract libraries. Our goal selection algorithm is, however, different, as
it uses a cost function based on the complexity of a specification, and a greedy
procedure that favors more compact and generic specifications (i.e., contracts
with weakest assumptions) to refine the goal tree, while keeping the problem
tractable.

6.7 Conclusions

We presented CoOGoMoO, a framework that guides the designer in building
goal models by leveraging a contract-based formalism. COGOMO leverages
contract operations and relations to check goal consistency, completeness, and
support the incremental and hierarchical refinement of goals from a library
of goals. An example motivated by vehicle platooning shows its effectiveness
for incrementally constructing contract-based goal trees in a modular way,
with formal guarantees of correctness. Numerical results also illustrate the
scalability of the proposed greedy heuristic to further extend a goal tree out
of a library of goals. As future work, we plan to extend the expressiveness
of CoGoMo by i) supporting contracts expressed in temporal logic and ii)
supporting OR-refinements between goals by allowing optional refinement
relations between multiple candidate contracts. Furthermore, we plan to
improve the tool and incorporate its features into CROME [200], our recent
framework for formalizing, analyzing, and synthesizing robotic missions.

Acknowledgments

The authors wish to acknowledge Alberto Sangiovanni-Vincentelli, Antonio
Tannopollo, and igo ncer Romeo for helpful discussions. This work was sup-
ported in part by the Wallenberg Al Autonomous Systems and Software
Program (WASP), funded by the Knut and Alice Wallenberg Foundation. In

6.7. CONCLUSIONS 105

addition, the authors gratefully acknowledge the support by the US National
Science Foundation (NSF) under Awards 1846524 and 1839842, the US Defense
Advanced Projects Agency (DARPA) under Award HR00112010003, the US
Office of Naval Research (ONR) under Award N00014-20-1-2258, and Raytheon
Technologies Corporation. The views, opinions, or findings contained in this
article should not be interpreted as representing the official views or policies,
either expressed or implied, by the US Government. This content is approved
for public release; distribution is unlimited.

Appendix

Distribution of Composition over Conjunction Given contracts C; =
(1/’17(251)7 CQ = (1/}27(252)7 and C3 = (1/}379253)’ we show that

(C1AC2) || C5=(C1 || C3) A (C2 || C5)- (6.2)

Proof. Let (La,Lg) and (Ra, Rg) be the contracts on the left and right
side of , respectively. We prove that Ly = R4 and Lg = Rg. Both
the composition and conjunction operations requires the conjunction of the
guarantees, hence we obtain Lg = Rg = ¢1 A ¢2 A ¢3. The assumptions of the
contract on the left side can be computed as

La= (1 Vo) ApsV (¢1 Ao A gps) = (1 A3) V (2 Ah3) V §y V by V .

On the right side, we obtain

Ci] Cs= ((%/11 AY3) V(91 A @3), d1 A 4153) and
Ca | Cs= ((% ANY3) V (P2 A @3), 2 A ¢3) ,

which leads to

Ry = (1 ANp3) V (o1 A d3) V (P2 Ah3) V (g2 A ¢3)
= (Y1 Ah3) V (P2 A ths) V &1 V § V .

Finally, we also obtain L4 = R4, which concludes our proof (6.2)). O

106 CHAPTER 6. PAPER E

Chapter 7

Paper F

A Framework for Specifying and Realizing Cor-
rect—by—Construction Contextual Robotic Missions
using Contracts

P. Mallozzi, G. Schneider, N. Piterman, P. Nuzzo, and P. Pelliccione

in submaission.

7.1. INTRODUCTION 107

Abstract

Automatically synthesizing robotic mission controllers that are proven to be
correct from a formal specification is a hard problem that can be intractable
if the mission specification is too complicated. Decomposing a mission speci-
fication in various sub-missions can make the synthesis of independent parts
of the mission easy to achieve; however, we lose the guarantees on the overall
mission correctness.

In this paper, we address the problem of dynamic switching of controllers
of a distributed robotic mission while providing guarantees of correctness on
the overall mission specification under certain conditions. Our framework
allows us to model the overall mission in terms of mission scenarios that are
enabled under certain mission contexts. We represent the mission in terms
of a hierarchy of reusable goals, where each goal is rooted in formal contract-
based representations. Overall our framework, named CROME, allows us
to: i) decompose the mission in several independent clusters, each containing
mission scenarios acting under a certain context, i) automatically refine the
mission using pre-defined and reusable goals, iii) synthesize controllers for each
cluster and at different abstraction levels, and iv) dynamically switch from one
controller to another at run-time while formally proving the correctness of the
overall mission.

7.1 Introduction

Service robots are robots that perform useful tasks for humans or equipment
excluding industrial automation applications [164]. They are increasingly used
in various domains, such as healthcare, logistics, telepresence, infrastructure
maintenance, education, domestic tasks, and entertainment. The development
of service robots leads to increasing software engineering challenges since they
require sound software development practices with high levels of robustness
and autonomy to operate in highly heterogeneous environments, often shared
with humans [168]. Solving these challenges will promote a “shift towards
well-defined engineering approaches able to stimulate component supply-chains
and significantly impact the robotics marketplace” [163].

One of the software-engineering challenges concerns the mission specifi-
cation [168], which describes the high-level tasks the robotic software must
accomplish [201]. By following the terminology in [48|, we distinguish between
mission requirements, which describe the robotic mission in natural language,
and mission specifications, which formulate mission requirements unambigu-
ously and precisely. Writing a mission specification taking into account the
variability of conditions of application scenarios in real operational environ-
ments is a complex and tedious task [168}[202]. In fact, robots are required to
operate in the real world, where (i) the variability of the environment is high,
(ii) there can be various error cases, and (iii) robots might even change the
environment itself via actions. Covering all these cases might be intractable
in certain scenarios. Moreover, automatically synthesizing robotic mission
controllers that are proven to be correct from a formal specification is a hard
problem that can be intractable if the mission specification is too complicated.
Decomposing a mission requirement in various sub-missions can solve both

108 CHAPTER 7. PAPER F

problems, by making the specification easier and also computationally more
tractable. The downside of the mission decomposition is that we might lose
the guarantees on the overall mission correctness.

Various approaches have been proposed in recent years to specify missions,
spanning from approaches making use of logics [324|33,35H43], to approaches
making use of state charts |[203-205], Petri Nets [206}207] or domain specific
languages [63},|208-213]. Moreover, the work in [48] presents a catalog of
22 mission specification patterns for mobile robots. A pattern provides a
solution to recurrent specification problems, enabling the description of a
mission requirement in natural language (English) and offering a translation to
a mission specification in temporal logic. However, to the best of our knowledge,
the problem of specifying a mission in terms of sub-missions and at the same
time guaranteeing the correctness of the overall mission specification under
certain conditions is still an open problem.

In CROME [200] we have addressed the problem of capturing robotic
mission requirements, analyze them and ultimately synthesize them in multiple
controllers implementing different parts of the mission. We have introduced
the concept of contexts, i.e. different environmental conditions that can occur
during the mission, and mission scenarios, i.e. sub-missions that are active only
under a certain context. The designer has to provide all the domain properties
for each goal, that is rules of the mission domain such as mutually exclusive
locations. The framework leverages a formal model, termed Contract-based
Goal Graph (CGG), which enables organizing the requirements in a modular
way with rigorous compositional semantics.

However, in our previous work, we did not allow any context-switch to
happen during a mission, i.e. the robot can not switch from one controller
realizing a mission scenario to another controller which is supported under
another context. Furthermore writing explicitly all the domain rules for each
goal can be greatly automatized. Finally, the CGG did not capture all possible
meaningful connections among goals that we could have.

In this paper we extend CROME to overcome these limitations. The result
is a framework that enables the specification of robust missions in heterogeneous
environments characterized by high variability. In the context of this paper we
consider that a robotic mission is formed by several tasks, where each task is
defined as a robotic specification that has to hold in a specific context.

7.1.1 Main contributions

The main contributions of this paper to the specification of robotic missions
are:

— Automatic inference of domain rules. We introduce all the elements
forming CROME and present how we can automatically infer the do-
main rules of the mission. Our new infrastructure allows CROME to
automatically derive the mission constraints related to the different goals
of the mission without having the designer manually explicit them for
every goal.

— FEnhanced Formal Representation of the Mission Specification. We have
enhanced the CGG, i.e. the formal model presented in [200] representing

7.1. INTRODUCTION 109

a graph of goals. Each node of the graph can now be linked to other
nodes via different types of connection (e.g. a node can be linked both by
refinement and by compositions), enhancing the modularity of the CGG.

— Orchestrating mission controllers to support context switching throughout
the mission. The most significant contribution is the possibility for the
robot controller to perform a mission while the context is being changed.
Each context is related to one specification controller. We have introduced
a new formal methodology to automatically switch from one specification
controller to another while providing guarantees on the satisfaction of
the overall missions.

CROME leverages on i) assume-guarantee contracts |13}|14] to formalize
mission goals, i) robotic patters to generate mission specifications, i) reactive
synthesis to produce mission controllers and iv) the concept of context to
characterize different parts of the mission.

7.1.2 Running Example and Mission Requirements

Consider the topology depicted in Figure We have five locations/regions,
ie. Qr = {ri,re,r3,74,75}, two contexts {day,night} € Qx, one sensor
indicating the presence of a person, i.e. g = {person} and two actions, i.e.
Q4 = {greet, register}. The mission consists in a robot that has to patrol
different locations according to the context. During the day it has to patrol
locations r; and ro in order, starting from ry. During the night it has to
patrol locations r3 and r4 in order, starting from rs3. Whenever there is a
context change, the robot has to resume the patrolling task from the last visited
location. Furthermore, whenever the robot senses a person in any location
it activates the greeting action immediately. Finally, only during the day,
whenever a person is detected, the robot must register them promptly.

Tt

=
—
ﬁ
N
App 1X9U00

context night

Figure 7.1: Running example consisting of five regions and two contexts.

7.1.3 Roadmap of the paper

In Section we present the necessary background on assume-guarantee con-
tracts, robotic patterns, reactive synthesis and context and we introduce related

110 CHAPTER 7. PAPER F

works in mission specification. In Section we present the infrastructure
offered by CROME to model mission specifications from mission requirements.
In Section[7.4] we present the problems of generating contextual controllers from
the mission specification, and, in Section [7.5] we show how CROME addresses
the problems and generates specification controllers which realize the mission.
Section shows the orchestration in the running example. Section [7.7] shows
the relationship between mission satisfaction and CGG satisfaction. Section[7-§]
presents the proof of concept tool and describes the evaluation we performed.
Finally, Section [7.9] concludes with final remarks and future research directions.

7.2 Background and Related works

In this section, we provide some background on the basic building blocks
of CROME, namely, contracts, linear temporal logic, reactive synthesis and
specification patterns, and we provide an overview of related works in robotic
mission specification.

7.2.1 Assume-Guarantee Contracts

Contract-based design [13}|14] has emerged over the years as a design paradigm
capable of providing formal support for building complex systems in a modular
way, by enabling compositional reasoning, stepwise refinement, and reuse of
pre-designed components.

A contract C is a triple (V, A,G) where V is a set of system variables
(including, e.g., input and output variables or ports), and A and G — the
assumptions and guarantees — are sets of behaviors over V. For simplicity,
whenever possible, we drop V' from the definition and refer to contracts as pairs
of assumptions and guarantees, i.e., C = (4, G). A expresses the behaviors that
are expected from the environment, while G expresses the behaviors that an
implementation promises under the environment assumptions. In this paper,
we express assumptions and guarantees as sets of behaviors satisfying a logic
formula; we then use the formula itself to denote them, with a slight abuse of
notation, whenever there is no confusion. An environment FE satisfies a contract
C whenever F and C are defined over the same set of variables and all the
behaviors of E are included in the assumptions of C, i.e., when |E| C A, where
|E| is the set of behaviors of E. An implementation M satisfies a contract
C whenever M and C are defined over the same set of variables and all the
behaviors of M are included in the guarantees of C when considered in the
context of the assumptions A4, i.e., when |M|N A C G.

A contract C = (A, G) can be placed in saturated form by re-defining its
guarantees as Gyq; = G U A, where A denotes the complement of A. A contract
and its saturated form are semantically equivalent, i.e., they have the same set
of environments and implementations. Therefore, in the rest of the paper, we
assume that all the contracts are expressed in saturated form. A contract C
is compatible if there exists an environment for it, i.e., if and only if A # 0.
Similarly, a saturated contract C is consistent if and only if there exists an
implementation satisfying it, i.e., if and only if G # (). We say that a contract
is well-formed if and only if it is compatible and consistent. We detail below
the contract operations and relations used in this paper.

7.2. BACKGROUND AND RELATED WORKS 111

7.2.1.1 Contract Refinement

Refinement establishes a pre-order between contracts, which formalizes the
notion of replacement. Let C = (A,G) and C' = (A’,G’) be two contracts.
C refines C’, denoted by C < C’, if and only if all the assumptions of C’ are
contained in the assumptions of C and all the guarantees of C are included in the
guarantees of C’, that is, if and only if A D A’ and G C G’. Refinement entails
relaxing the assumptions and strengthening the guarantees. When C < C’, we
also say that C’ is an abstraction of C and can be replaced by C in the design.

7.2.1.2 Contract Composition

Contracts associated with distinct implementations can be combined via the
composition operation (]|) to specify the composition between the corresponding
implementations. Let C; = (A1, G1) and Cs = (Aa, G2) be two contracts. The
composition C = (A4, G) = C; || C2 can be computed as follows:

A= (Al n AQ) @] (Gl N GQ), (71)
G=G1NGs.

Intuitively, an implementation satisfying C must satisfy the guarantees of both
C; and Cs, hence the operation of intersection in . An environment for C
should also satisfy all the assumptions, motivating the conjunction of A; and
As in . However, part of the assumptions in C; may be already supported
by Co and wvice versa. This allows relaxing A; N Ay with the complement of the
guarantees of C [13].

7.2.1.3 Contract Conjunction

Different contracts on a single implementation can be combined using the
conjunction operation (A). Let C; = (A1,G1) and Cy = (Ag,G2) be two
contracts. We can compute their conjunction by taking the greatest lower
bound of C; and Cy with respect to the renement relation. Intuitively, the
conjunction C = C; ACq is the weakest (most general) contract that refines both
Cy and Cs. C can be computed by taking the intersection of the guarantees and
the union of the assumptions, that is:

C = (A1 U Az,Gl n GQ)

Intuitively, an implementation satisfying C must satisfy the guarantees of both
Cy and Co, while being able to operate in either of the environments of C; or Cs.

7.2.2 Linear Temporal Logic

Given a set of atomic propositions AP (i.e., Boolean statements over system
variables) and the state s of a system (i.e., a specific valuation of the system
variables), we say that s satisfies p, written s |= p, with p € AP, if p is true at
state s. We can construct LTL formulas over AP according to the following
recursive grammar:

p=p|lpleiVes | X |p1Ups

112 CHAPTER 7. PAPER F

where @, ¢1, and 9 are LTL formulas. From the negation (—) and disjunction
(V) of the formula we can define the conjunction (A), implication (—) and
equivalence («+). Boolean constants true and false are defined as true = ¢V -y
and false = —true. The temporal operator X stands for next and U for until.
Other temporal operators such as globally (G) and eventually (F) can be
derived as follows: F ¢ = true U ¢ and G ¢ = ~(F(—y)). We refer to the
literature [16] for the formal semantics of LTL.

7.2.3 Reactive Synthesis

Given an LTL specification ¢ over a set of atomic proposition partitioned into
inputs and outputs, i.e. AP = ZUQ, the synthesis problem determines whether
there exists a finite-state machine M = (S,Z, O, s,) that satisfies . If such
machine exists it computes it and we say that M realizes the formula .

A finite state machine is a tuple M = (S,Z, O, sg,) where S is the set of
states, sop € S is the initial state, and § : S x 2Z — S x 29 is the transition
function. We say that some word w = (w,ws)(wf,w?)(wd, w)... € (2 x
29)« is a trace of M if there exists a run 7 = 7971 7... € S¥ such that 79 = s
and for every i € N we have that (7,41, w?) = §(7;, w}). A machine M satisfies
a formula ¢ if all its runs satisfy .

Reactive synthesis has been applied in robotics for synthesizing controllers.
One example is the language Spectra [214], which offers high-level constructs
such as patterns and monitors to specify assumptions and guarantees for a re-
active system. The work in [215] presents a compositional approach to perform
reactive synthesis for finite-horizon tasks represented using formulas of linear
temporal logic on finite traces (LTLf). The work in |216] presents algorithms to
synthesize controllers for a swarm robotic system. The work in [217] identifies
some software engineering challenges in applying reactive synthesis to robotics.
The challenges include the synthesis algorithms themselves, adequate develop-
ment processes and tools, declarative specifications writing, and abstraction
of data and time. In this work, we present CROME, which synthesizes a set
of controllers, one for each context and satisfying the contextual mission, and
orchestrates the controllers so to satisfy the overall contextual mission.

7.2.4 Mission specification and Robotic Patterns

When dealing with mission specification it is important to distinguish between
specifications that require the involvement of end-users and those that, instead,
do not require the user involvement [168]. If the end-user is directly involved,
usability and simplicity of mission specification become important requirements.

Various approaches have been proposed in the last years to specify missions.
Some of them make use of logics [3335-H40], and indeed they can be not the best
solution in the case of end-users directly involved in the mission specification.
Other approaches make use of state charts [203205] or Petri Nets [2061207], and
also in this case they require special knowledge and skills in their end-user. To
make the mission specification more accessible, various researchers investigated
and proposed domain specific languages for mission specification [63}208-213].
The work in [218] surveys domain-specific languages (DSLs) for robot mission
specification, classify them in internal or external DSLs and gives an overview

7.2. BACKGROUND AND RELATED WORKS 113

of their tooling support.

Moreover, many commercial service robots are equipped with environments
and domain-specific languages tailored for end-users. The work in [219] surveys
30 of these mission specification environments for mobile robots. The work
explores the design space of these environments and underlying languages and
classifies them by the kinds of syntax they offer: block-,flowchart-, graph-, text-
or map-based syntaxes.

However, mission specification is still considered to be a challenge and often
the most difficult aspect concerns not much specifying what the robot should
do, but, instead, the specification of “exceptional behaviors to specify how robots
ought to cope with the variability of conditions of application scenarios in real
environments in which robots are required to operate” [168].

A way to deal with this challenge is to decompose the mission specification
is sub-mission specification, each activated in special contexts and conditions.
The work in [220] proposes the automatic computation of a controller to handle
the transition from one specification to another, so from one controller to
another. The synthesis of controllers is done at runtime; this brings flexibility
but might creates problems if there is the need to instantaneously switch
from one controller to another. The approach guarantees the preservation of
“transition properties” when switching from one controller to another. The work
in [221] proposes a hierarchy of discrete event controllers that support graceful
degradation when the assumptions of a higher level are broken, and progressive
enhancement when those assumptions are satisfied or restored. The approach
allows the instantaneous switch and offers guarantees regarding the behaviors
across controller switches. The main drawback of this approach concerns the
fact that layers are predefined and must be organized into a strict logical
implication order. Despite these precious contributions to the state-of-the-art
in the field, to the best of our knowledge the problem of specifying a mission in
terms of sub-missions and at the same time guaranteeing the correctness of the
overall mission specification under certain conditions is still an open problem.

Robotic patterns have been proposed as a solution to recurrent mission
specification problems based on the analysis of mission requirements in the
robotic literature [48]. The PsALM tool [172] enables the specification of
robotic missions using mission specification patterns.

CROME supports 22 patterns [48], capturing robot movements and actions
performed as a robot move in the environment, organized into three groups:
core movement patterns, triggers, and avoidance patterns.

For example, let us assume that the mission requirement is: ‘A robot must
patrol a set of locations in a certain strict order.” The designer can formulate
this requirement by using the Strict Ordered Patroling patterrﬂ instantiated
for the required set of locations. Let 1,2, and I3 be the atomic propositions
of type location that the robot must visit in the given order. The mission
requirement can then be reformulated as ‘Given the locations I, 12, and I3, the
robot should visit all the locations indefinitely and following a strict order,’

Thttp://roboticpatterns.com/pattern/strictorderedpatrolling/

http://roboticpatterns.com/pattern/strictorderedpatrolling/

114 CHAPTER 7. PAPER F

arents
Link E CGG 1, Goal 1, Contract

REFINEMENT " parents name assumptions
COMPOSITION “» children description guarantees
CONJUNCTION . * context 1
children controller
Typeset ! ‘ !
refinement_rel L is_satisfiable()
mutex_rel <+ World is_valid()

adjactency_rel f‘r'\ is_realizable()
l* Gridworld V\
TypeKind U Type

1
SENSOR mutex_group Formula . Atom
LOCATION adjacency_set cnf

ACTION dnf
CONTEXT
Pattern
Boolean Boundedinteger /V v\

Specification Robotic
BooleanLocation IntegerSensor Pattern Pattern

T f

Figure 7.2: Main classes composing the CROME framework

leading to the following LTL formulation:

GEU AF(I AFI)) Az Ul A5 U l)

A G(ly = X(I3 U 1)) AG(l3 — X(I5 U 1)) (7.3)
A Gl — X(I; U 13))

A Gl — X(I; U 1)) AG(ls — X(I5 U I3)).

As shown in this example, a robotic pattern can significantly facilitate the
difficult and error-prone task of mission specification.

7.2.5 Contexts and mission-related contexts

Many characterizations of the ‘context’ of an application have been provided,
often informally, in the literature. In context-aware ubiquitous computing ,
the context of an application may include information like location, identities
of nearby people and objects, time of the day, season, or temperature. More
generally, Dey and Abowd define context as “any information that can
be used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an
application, including the user and application themselves.” In the robotic
domain, Bloisi et al. define mission-related contexts as “choices that are
useful in robotic scenarios for adapting the robot behaviors to the different
situations.” CROME builds on these characterizations and adapts them to
robotic missions by formalizing a context as a property associated with a goal
and expressed by a logic formula.

7.3. FROM MISSION REQUIREMENTS TO MISSION SPECIFICATIONS 115

7.3 From Mission Requirements to Mission
Specifications

The CROME framework allows designers to express mission requirements in
a structured way using robotic patterns to specific mission requirements. In
this section we describe the major elements characterizing the infrastructure of
CROME and how they are related to each other. We show how the designer
can use these elements to model mission requirements and produce mission
specifications using the running example. Figure [7.2] shows the main classes
composing the CROME framework. These main classes are described in the
following.

Type A Type represents a variable in a domain. The basic types supported
are Boolean and BoundedInteger. By extending the basic types, CROME builds
more refined ones such as BooleanLocation and IntegerSensor representing
variables indicating a physical location and variables indicating the value of a
sensor withing a certain range, respectively. Each type has a TypeKind that
can one of the following: sensor, location, action or context.

Depending on the kind of the type, we might have two additional properties
for types extending the basic Boolean type: mutex_group and adjacency_set.
For example, a type representing a physical location (e.g. BooleanLocation)
might have a mutex_group indicating a group such that all the types belonging
to the same group are considered mutually exclusive, i.e. its value cannot be
assigned to true to more that one type in the group in the same time-step.
The adjacency_set contains a set of types which are adjacent, i.e. that can
become true in the next time-step. For example, in case of types representing
locations the adjacency_set indicates all the regions adjacent to the location
under consideration.

Typeset A Typeset is a set of Type elements and the relationships among
them. The attributes refinement_rel,

mutex_rel, and adjacency_rel in each Typeset keeps track of the refinement,
mutually exclusion, and adjacency relationship among the elements in the
typeset, respectively. The refinement relationships are derived directly from
the hierarchical structure of the types, i.e. the designer can define types which
extend other types, creating a refinement relationship. Adjacency and mutually
exclusion relationships are derived from the corresponding properties expressed
in the types of the typeset.

World The World is a Typeset that exists independently from a certain
specification. For example, the environment in our running example depicted
in Figure [7.1] can be formulated as a World containing

— 2 BooleanLocation regions r; and 1y, which are mutually exclusive in
groups.

— 5 BooleanLocation r1,7r2,73,74, and r5, which are mutually exclusive in
groups, where r1 and ro refine (i.e. extend) r; and r3 and r4 refine ry.

116 CHAPTER 7. PAPER F

We also have that r1 is adjacent to ro and 75, ro is adjacent to 1 and 75,
and so on.

— 2 ContextBooleanTime types day and night, which extend the Boolean
type and represent two contexts, e.g. mutually exclusive in groups.

Specification A specification represents an LTL formula, which in CROME
can be constructed with a pattern, i.e. a specification pattern or a robotic
pattern. A pattern can either be an Atom, i.e. a single LTL expression
that cannot be broken down in smaller chunks, or a Formula, i.e. a set of
atoms connected via conjunction or disjunction. Each specification is defined
over a Typeset. For example, let us have a Typeset containing two elements:
BooleanSensor type s and the BooleanAction type a, both extending the basic
Boolean Type. The robotic pattern instant reaction applied to the atomic
propositions s and a is an Atom representing the LTL formula:

G(s—a) (7.4)

Instead, the robotic pattern wisit applied to the atomic propositions r; and ro
(defined over BooleanLocation types) is a Formula containing the conjunction
of two Atom elements and represented by the LTL formula:

F(Tl) /\F(’I‘Q) (75)

We will use the same symbol to indicate both the variable and the atomic
proposition associated to the variable. For example, in (7.5) r; and ry are
atomic propositions that represent the truth value of corresponding variables.

Rules Additional formulas can be inferred from each specification by checking
its Typeset. CROME automatically infers the following formulas:

mtx

— Mutually Exclusion Rules ¢™"* for any mutually exclusive relationship

in the Typeset.
— Refinement Rules ¢ for any refinement relationship in the Typeset.
— Adjacency Rules 0*3 for any adjacency relationship in the Typeset.

For example, let us consider the world W described in the previous para-
graph and shown in Figure Let W = {ry,rp, 71,72, 73, 74,75, day, night} be
its set of types; then, the rules that can be inferred are:

o= N\ G \-r)) (7.6)

i={t,b} i#j

8= N\ Glrie \-r) (7.7)
i=1..5 i#j

O™ = G(day < —night) (7.8)

oot = G((riVry) =2 r) AG((r3sVry) = 1)

o = /\ G(r; — \/ X (")) (7.10)

i=1..5 r'€Adj(r;)

7.3. FROM MISSION REQUIREMENTS TO MISSION SPECIFICATIONS 117

Where , and model the mutually exclusion conditions. The
refinement relationships are modeled in (7.9). Finally, topology is modeled
with where Adj(r) denotes the locations adjacent to r (including r itself).

To represent the requirements of the robot patrolling the locations in order
we could use the robotic specification pattern StrictOrderedPatrolling, while to
perform the actions we could use the reaction patterns [48]. Let OP, BR and
BD be the StrictOrderedPatrolling, BoundRection and BoundDelay robotic
patterns, respectively. We can define the set of specifications I' = {yq, Yn, Vg ¥ }
where:

= OP(r1,72) (7.11)
Y = OP(r3,r4) (7.12)
= BD(person, greet) (7.13)
= BR(person, register) (7.14)

Checks Any specification in CROME must be satisfiable. To check for
satisfiability, CROME takes into consideration the mutually exclusion rules of
the specification. Validity checks take into consideration any possible refinement
rules. Finally, realizability checks take into consideration all kinds of rules:
mutually exclusion, refinement, and adjacency.

Operations A new specification can be created from simpler ones via con-
Junction (A), disjunction (V) and negation (—) of Formula and Atom elements.
In each formula, we keep both the conjunctive (‘enf’) and disjunctive (“dnf’)
normal forms (treating any Atom elements as a literals). For example, a
disjunction between the Atom in and the Formula in would result
in the following Formula where both the ’dnf’ and ’cnf’ representations are
formed by two other Formula elements (separated by a comma) as follows:

cnf: F(r1) vV G(s = a), F(ls) VG(s — a) (7.15)
dof: F(r1) AF(rq), G(s —a) (7.16)

A Formula can always be represented as the conjunction or disjunction of all
the elements in the c¢nf or dnf representations, respectively.

Comparisons Specifications can be compared among each other with the
operators <, <, ==, #, >, >, where < and > represent the refinement and
abstraction relationships, respectively. Let 7 and ¢y be two specifications,
we have that:

01 == 2 <= (p1 = Y2 Apa — 1) is valid (7.17)
P1# 2 = ~(p1 == p2) (7.18)
01 <o <= (p1 = p2) is valid (7.19)
01 > 2 <= (p2 = 1) is valid (7.20)
P1 <2 = (p1 < @2) Ap1 # p2) (7.21)
Q1> 2 = (P12 p2) A(p1 7 ©2) (7.22)

118 CHAPTER 7. PAPER F

Every time a check, a comparison, or an operation among specifications is
performed, new constraints are extracted from the Typeset of each specification
involved. Specifically, CROME creates a new Typeset containing the union of
all the types in all the typeset and extracts a new set of refinement, mutually
exclusion, and adjacency relationships.

Contract A contract C = (¢, ¢) is a tuple of specifications, where 1) represents
the assumptions and ¢ represents the guarantees. The guarantees in a contract
are always considered in their saturated form, i.e. having guarantees 1 — ¢. If
a contract gets its assumptions changed or updated, its guarantees will change
as well due to saturation.

For our running example, we can formalize three contracts:

= (true, OP(r1,72)) (7.23)
C = (true, OP(r1,72)) (7.24)
C. = (o™ BR(person, register)) (7.25)
Cy = (¢ BD(person, greet)) (7.26)

Where ¢ represents a fairness assumption on the sensor variables, i.e.
G (F(person)), since we expect to see a person infinitely often.

Checks Contracts in CROME are always compatible, consistent, and feasible.
Given a contract C = (v, ¢), we have that:

C is compatible <= 1 is satisfiable (7.27)
C is consistent <= ¢ is satisfiable (7.28)
C is feasible <= (¢ A @) is satisfiable (7.29)

Operations CROME supports the operations of composition and conjunc-
tion among contracts. Let C; = (11, ¢1) and Co = (t2, ¢2) be two contracts.
The composition Cy || Co results in a contract C!l = (I, ¢ll) such that:

Pl =1 Aha V (61 A 62) (7.30)
¢l = ¢1 A (7.31)

The congunction C; A Ca results in a contract C* = (¢, ¢") such that:

PP =1 Vo (7.32)
¢" = 1 Ao (7.33)

Comparisons As with the specification, we can compare contracts. Let us
consider the contracts C; = (¢1, ¢1) and Ca = ()2, ¢2); we have that:

7.3. FROM MISSION REQUIREMENTS TO MISSION SPECIFICATIONS 119

C1==Cy <= (Y1 ==12) A (p1 == ¢2) (7.34)
C1 #Cy = (Y1 # b2) N (D1 # $2) (7.35)
C1 <Cy = (Y1 2 12) N (d1 < 2) (7.36)
C1>Co <= (1 <Y2) A(P1 > ¢2) (7.37)
C1 <Cy <= (C1 <Co) A(C1 #Ca) (7.38)
C1>Cy <= (C1>C2) N(C1 #Co) (7.39)

Goal In CROME, each mission requirement is modeled by a goal, which is
characterized by the following elements:

— Name: goal identifier;
— Description: English description of the mission requirement;

— Clontext: Specification containing a Boolean predicate on type variables
of kind ’context’;

— Contract: a Contract object formalizing the objective of the goal.
— Clontroller: Mealy machine realizing the contract associated to the goal.
— World: World object where the goal will be deployed.

Contezts are formalized in terms of Boolean predicates encoding the situ-
ation in which a goal must be active. For example, context propositions can
encode information related to the location, time, or identities associated with
a goal. In a robotic application, locations specify where a robot can be, time
specifies when a certain goal must be active (e.g., during the day or the night),
and identities specify the state of external entities (who) that may interact
with the robot.

Contracts can be build up from specification using, for example, robotic
patterns to indicate what is the objective of the robot in the goal being modeled.
There is always only one contract associated with each goal. We will refer the
contract belonging to the goal G; with the contract C;.

Controllers are generated by realizing the specification associated with
the Contract. Specifically, if the guarantees of the contract ¢ — ¢ is a
specification realizable in a controller, then a finite state machine that satisfies
the specification is produced, i.e. the controller.

The world object is needed to extract all the refinement, adjacency, and
mutually exclusion rules that the robot is subject to in the mission. Such
rules will add constraints on the robot behavior and, according to the world
configuration, could jeopardize the satisfiability or realizability of the missions.

Checks, Comparisons, and Operations We reduce all the formal opera-
tions, checks, and comparisons among goals to their corresponding contracts.
Goal conflicts are detected by checking the compatibility, consistency, and
feasibility of the contract formalizing the goals. CROME links the conflicting
clauses in the specifications of the contract to the goals that generated them
and presents these goals to the designer.

120 CHAPTER 7. PAPER F

[U [ERERREEE CGG Legend -------- .

. C) goal node
g g . —> refinement link
|

composition link :

conjunction link -

G1o

Figure 7.3: Example of a CGG.

CGG Each goal is linked to one node of the CGG (Contract-based Goal
Graph), which is a formal model that represents the goals in a hierarchical way.
A CGG, shown in Figure is a graph T'= (T, =Z), where each node v € T
is a goal and each directional edge £ € = is a link that connects two goals
together. A Link among goals can be of three kinds: refinement, composition
and conjunction. A refinement link connects a goal to a more abstract one.
The semantic associated with the other kinds of links is the following: all the
incoming edges of the same kind of link in a node n represent the goal nodes
contributing to generating n and the operation involved according to the kind
of link, i.e. composition or conjunction.

For example, Figure shows an example of the CGG where the top level
node, i.e. goal G, is the result of the conjunction between G; and Go. Where
G is the composition of goals Gs and G, while G; is the composition of goals
Gs and Gg. A goal node can have multiple outgoing edges, like goal G1¢, which
refines both G4 and Gg. Finally, we have that G;, which refined Gs, is composed
of Gg and Gg. Notice that Gg besides participating in the composition of G7
also refines Gs.

Refinements links can be produced manually or automatically. Automatic
refinements can be produced by searching in a library of goals if any composition
refines the specification of any leaf-node of the CGG, as in the case of goal
Gg and Gg in Figure We show how refinements from the library can be
performed in [200}222]. Whenever a refinement link is created, the assumptions
resulting from the more refined goal will be automatically propagated in the
more abstract goal and, by following the edges of the CGG, up to the root as
detailed in [222]. Assumption propagation makes sure that the refinements are
always consistent, i.e., the set of assumptions of the refined goal must always
be greater than or equal to those of the abstract goal.

Figure [74] shows the CGG that CROME automatically created according
to our context-based specification clustering algorithm presented in [200] given

three goals as input G,,, G4 and G, which are the goal related to the contracts
formalized in (7.24), (7.23) and (7.26). The composition of G4 with G, and G,

7.4. FROM MISSION SPECIFICATION TO MISSION CONTROLLER 121

(i.e. Gagr) and G,, with G, (i.e. Gpg) produce the following contracts:

Cdgr = (¢dgra ¢dgr) (7.40)

Cng = (wnga Qj)ng) (741)

(7.42)

Where:

wdg'r‘ = Spiair \ _‘¢dgr (743)

Gagr = OP(r1,1m2) A (gpiair — BR(p, 1)) (7.44)

A (@ — BD(p, g))
wng = (pgair \ _‘¢ng (745)
$ng = OP(r3,74) A (9" — IR(p, 9)) (7.46)

The goals G,y and G4, represent the two scenarios of the mission. Specifi-
cally, they represent what the robot should do when the context is night or day,
respectively. The controllers A\; and Ay are generated via reactive synthesis
from the contracts C,q4 and Cqgqr, respectively. Specifically, we define the set of
specification T' = [y1, 2] where:

T = Ydgr = Pdgr (7.47)
Y2 = wng — (bng (748)

We have that A1 and Ay are finite state machines that satisfy v; and s,
respectively. By synthesizing automatically a controller also for the root node
of the CGG, we would obtain a controller that satisfies the specification but
does not satisfy the mission. In fact, there is no notion of context inside the
specification and our contertual mission cannot be satisfied. In the following,
we formally define what does it mean to satisfy a contextual mission. Then, we
show the problems of defining the contextual mission only using our previous
version of CROME, which used only LTL. Finally, we show how we tackle
these problems and ultimately generate a controller that both satisfies the
CGG specification and the contextual mission.

7.4 From Mission Specification to Mission Con-
troller

Controller synthesis is the problem of generating a correct controller for the
robotic-system that acts according to what it is prescribed by the specification,
guaranteeing that the controller has a strategy to achieve its goal whatever the
environment does. A controller dictates a policy to the system, i.e. for every
environment configuration, it restricts what action the system should perform
such that it would not violate its requirements.

In [200] we generate a system controllers using reactive synthesis. As the
mission specification becomes larger, the controller can become infeasible to

122 CHAPTER 7. PAPER F

Input goals

g 0 9J

(context: day) (context: night) (context: —) (context: day)
Synthesised CGG Synthesised
controller controller

e
X, ?; o4

composition %
@) (9 JL

Figure 7.4: CGG created for our running example.

realize. That is one of the reasons why, in [200], we have separated the overall-
mission in mutually-exclusive scenarios, which can be more manageable to
realize with reactive synthesis. Scenarios are partial missions that should be
achieved under a certain context. The effect of this is to reduce each mission
to one and only one of such mutually exclusive scenarios, i.e. there is no
possibility to switch from one scenario to another as the context changes. In
other words, we can produce a controller for each of the scenarios assuming that
the mission will happen in either one of them, i.e. there is not context-change
throughout the whole mission. However, this assumption is too restrictive. In
fact, often, during the mission execution the contexts can change, and so the
robotic controller must adapt to the new scenario [175].

A context change is an uncontrollable event and it can happen at any
point in time during the execution of the mission. At all times we have a
scenario that is active and so a controller that is executing some action. When
a change of context happens, e.g. context z; to context xs, we would like the
robot controller to switch from A; to Ay, where A; and A, are the controllers
synthesized from the scenarios of context x; and x5, respectively. We would
also like that when x; becomes the current context again, the control switches
back to A; by completing or resuming the task from where it was halted before.

In [200] we have produced the specification for the mission scenarios only
using LTL. Our formalization was an oversimplification of the problem since the
LTL formula did not capture the possibility for the context to change during
the mission. In the following:

— we formally define what is the problem of realizing a contextual mission.
Having a formal definition allows us to prove if our controllers achieve
the contextual mission under our assumptions.

— we present why it is hard to express contextual missions only using LTL

7.4. FROM MISSION SPECIFICATION TO MISSION CONTROLLER 123

and argue for a different approach.

— we present our solution to formally realize contextual missions.

7.4.1 Problem Definition

Let n be the number of contexts in a mission.

A world is a tuple & = (Qg,Qr,Q4,7.), where:
— Qg is a set of Boolean variables representing the robot sensors.

— Qg is a set of Boolean variables representing the regions in a certain
environment.

— 4 is a set of Boolean variables representing the actions that a robot
can perform.

— 7, is an LTL formula expressed on AP, U AP, U AP,, where we have
defined the following atomic propositions:

— s for each sensor s € g(e.g. human is true if and only if a human
is detected by the sensor).

— r for each region r € Qg (e.g. rp is true if and only if the robot is in
location 7).

— a for each action a € Q4 (e.g. greet is true if and only if a the robot
is greeting).

AP, AP, and AP, are the sets of all atomic propositions s, r, and a,
respectively.

Intuitively, v, represents a set of constraints imposed by the world where the
robot is operating.

A mission (or contextual mission) is a tuple
M= (X,T,AC, CT). Where:

— X ={x1,x9,...,x,} is the set of contexts where any z; € X is a boolean
proposition.

— T'={71,72, ..., 7} is the set of specifications where any ~; € T is an LTL
formula defined over a set of atomic propositions AP; = Z; U O; and

where Z; C AP, and O; C {AP, U AP,}.

— AC:N — X is a function that given a time t€N as input returns which
context x; € X is active at that time.

— CT : X — T is a function that, for any context z; € X, returns a
specification ~y; € T'.

A robot is a finite-state machine R = (5,Z, O, sg, d) where:

— S is the set of states.

124 CHAPTER 7. PAPER F

— Sp € S is the initial state.

— T = AP,UZx is the set of input propositions, where ZTx = {x1, 22, ..., T, }
is a set of atomic propositions, where each x; represents the context
z; € X.

— O = AP, UAP, U Active is the set of output propositions, where Active
is a Boolean signal that determines whether the robot is active.

— §:5 x 2T - S x 29 is the transition function.
We define:

— A context switch: If x; € X is active at time ¢t —1 and z; € X is active
at time ¢, with ¢ # j, we say that a context switch happened at time ¢
between context x; and context x;.

— A robot trace Trace™: we say that some word
w = (wk, wd)(wF, w?)(wk, w?)... € (2T x 29)¥ is a trace of R if there
exists a run 7 = 79T 72... € S such that 7y = sg and for every i € N we
have that (1i11,w?) = §(m,w?). We indicate with w; = (wZ,wy) the
trace (i.e. the input and output value) at the instant of time ¢.

— A trace projection TPE given a robot R on a specification ~;, is
the words in Trace™ at the time-steps t € N where the specification
related to the active context in ¢ is 7; and Active is true. That is,
given a word w = ag,ay,... € Trace™, we have pr., (w) = a;,,a;,,. ..
where g, i1,... are all the times ¢ such that CT(AC(t)) = ~;. Then,
TP?Y%, = {pr,,(w) | w € Trace™}.

We assume that:
— Any specification v; € I is realizable.

— Contexts are mutually exclusive, i.e. any x; A z; is not satisfiable, with
z; € X,x;€ X and i # j.

— Any context x; € X is active infinitely often, i.e. G(F(x;))Vz; € X.

— Any context is active for at least tcontext COnsecutive time units.

Definition 7.4.1 (Contextual Mission Satisfaction). A robot R satisfies a
mission M in the world &, i.e. R,E E M, if and only if:

— Each trace projection satisfies the corresponding specification, i.e. Vy; € T,

R

— Active becomes false at any context-switch and stays false for at most
ttrans time unlts) Where ttrans S tcontext .

Figure [7.5] shows an example of active contexts and tasks between ¢ = 0 and
t = 10, with the overall trace of the robot Trace(R) and its trace projections
over the specifications ; and 3. For some world £, we have that R, = M
if:

— TP,Z?:'M)E,,’IU(;... = 1 and

R _
— TPS = wo, w1, ws, s, Wy, Wig - - - = V3.

7.4. FROM MISSION SPECIFICATION TO MISSION CONTROLLER 125

t | [I I I I
[/ 2 3 4 5 6 78 9 10
| i

| | |
T | 1
AC(t) T3 i T | X3
| | | eee
| | | ;
CT(AC(t) 73 2 L3
| | | |
R T T 1 T 1T T T 1 T 1
Trace W wWip W2 W3 W4 W5 We W7 Wg W9 Wio
PRI T T T T T T T T T 1™
YW Wi W ! ! ¢ Ws W9 Wio
o
TPR 1 1 T 1 1T T T T 1

Figure 7.5: Example of two contextual tasks active at different points in time.

7.4.2 Difficulties by using only LTL Contracts to define
the mission

We could formulate a mission as a single contract C = (¢, ¢), where 1 and
¢ are LTL formulae and automatically synthesize a robot that satisfies) —
¢. However, formulating the mission as a pair of LTL formulae is not easy.
Specifically, given £, M, can we produce a contract C that describes the set of
traces to be satisfied by the robot as we have defined them in ?

For example, we could think of defining a mission as the conjunction of
contextual tasks, where each contextual task must be satisfied under a specific
context i.e. M = {(z1,m), (2,72), ..., (Tn, V) } where each M; = (z;,v;) € M
is a contextual task, z; € X and ; € I'. In the following, we see some of the
problems that we can encounter while trying to formalizing contextual tasks
and the overall mission specification as described in Section [7.4.1] using our
previous version of CROME, which used only LTL contracts.

Problem 1: ‘Expressing contextual tasks with a simple implication’
For some ~; we can think of expressing contextual tasks using a simple instant
reaction robotic pattern [48] that ‘applies when the occurrence of a stimulus
instantaneously triggers a counteraction’. Given a context x1 and a specification
~1 we can express the behavior of a contextual task with the following contract:

C = (true, G(xz1 — 71)) (7.49)

For 7; = a, where a is an atomic proposition, we have that for every step
in which the context x; is true, y; must be true, hence the semantics of the
contextual task is preserved. Also, in case of 1 = Xa or v = Fa, we have
that the context x; enforces some behaviors to happen in ;. That is, ¢ must
be true the next step every time x; is true and a must be true eventually
whenever x; has been observed to be true, respectively.

However, if 7 is an LTL formula that must hold always (e.g. 1 = G(a)
or 11 = GF(a)), then the semantics of contextual task, as it is informally
described above, becomes meaningless, i.e. vy is satisfied regardless of the value

126 CHAPTER 7. PAPER F

of the context x1, or x1 is never true, which violates one of our assumption of
a context being true infinitely often.

Problem 2: ‘Modeling the task switch and context duration intervals’
Let us consider two simple contextual tasks expressed by the contracts C; and
C, over contexts x7; and x5 and locations r; and r3:

C1 = (true, G(z1 — Xr1)) (7.50)
Co = (true, G(x2 — Xr3)) (7.51)

Their joint behavior can be modeled with the contract C:

C = ("™, ¢1 Ada A ™) (7.52)

Assuming that all locations are mutually exclusive with each other (i.e.

@) “and the contexts z; and o are also mutually exclusive (i.e. ™*), then

C
a controller for the specification exists. However, without any assumption
on the minimum duration of a context, we might easily have unrealizable

specifications such as:

C) = (true, G(z1 — (Xr1 A XXry)) (7.53)
Cy = (true, Gy — (Xrz A XXry)) (7.54)

In fact, a context might change at each step forcing the specification to be
violated.

Modeling a minimum contezrt-switch interval in LTL, i.e. the minimum
number of time steps where one context has to hold, is not straightforward.
For example, by simply adding the assumption G(z; — Xx) will make the
context x1 true forever after the first time it becomes true, thus violating
the assumption that contexts become true infinitely often and preventing the
specification to become realizable.

Problem 3: ‘Topologies might add delays’ According to the topology
of the world in which the robot is operating, it is might be impossible to switch
from one task to another in one step. Let us consider the two contextual
tasks formalized as in and . Let us instantiate these tasks in the
world depicted in Figure We have that in order to go from, for example,
location 7 to r3 the robot would need to pass by another location (i.e. 75).
The specification in the contracts C] or Cj prescribes the robot to reach the
locations r or r3 one step after the context has become true. However, if
the robot has to pass by rs, it would require an extra time step making the
specification unrealizable.

Problem 4: ‘Context Switch and Memory’ Whenever there is a context
switch, the robot should start satisfying the specification active under the
context from the last visited state. Let us look at Figure we have that the

7.5. CONTROLLERS ORCHESTRATION 127

sequence wy, w1, Wz, W3, Wy, We, Wig must satisfy the specification 3. We can
note that there is a jump between w3z and wg since the two words happen at
timestep 3 and 8, respectively. However, the time gap between the timesteps 3
and 8 is not relevant for the satisfaction of v3. That means that whenever the
robot is satisfying a task ~;, it is able to halt its execution at timestep 4 and
resume later at timestep 8.

Let us consider the example described in Section and depicted in
Figure Both contextual tasks (i.e. the specifications be performed during
the context day and night respectively) indicate to the robot to start patrolling
from location ry or r3. During the day it goes back and forward between 1
and ro and during the night between r3 and r4. If in the transition from the
context day and the context night the robot was visiting 1, when the context
day becomes active again, the next visit location should be 5 and not ;. In
order to encode the memory of the current and the last visited location in
each task, we would need to add extra output variables and modifying all the
specifications to write and read from such variables. This is not practical to do.

7.5 Controllers Orchestration

We present our approach to tackle the problem defined in Section [7.4.1] consid-
ering the example in Section In [200] we have incorporated the context
inside the LTL mission specification and automatically synthesized a controller
out of the full specification. However, with this approach, we are not able to
generate a controller that satisfies the contextual mission . In this paper,
we do not include the contexts inside the LTL mission specification. Instead, by
using external machinery we are able to orchestrate the different specification
controllers in a way that also the overall contextual mission is satisfied.

By synthesizing automatically a controller also for the root node of the
CGG, we would obtain a controller that satisfies the specification but does not
satisfy the mission. In fact, there is no notion of contezt inside the specification
and our contextual mission cannot be satisfied according to our definition. In
the following, we show how we tackle this problem and ultimately generate a
controller that both satisfies the CGG specification and the contextual mission.

7.5.1 Specification and Transition Controllers

Definition 7.5.1 (Specification Controllers). Let A = {1, A2, ..., A} be the
set of specification controllers, where for all 1 < i < n, controller \; € A realizes
the corresponding specification ~; € T.

Every specification 7; € T' can either indicate the robot to move among
regions or activate some action. While actions can be activated at any point
in time regardless of the robot’s current location, moving from one region
to another can add additional constraints according to the topology of the
environment as we have seen in problem 3 of Section Besides controllers
realizing the specifications, we need additional controllers that are responsible
for guiding the robot so that it can reach the locations where it can satisfy the
specification.

128 CHAPTER 7. PAPER F

ay, p ‘ T1, 72,9 N
ay,p|r,-re,g

|
$ |
k/ A a,p } T2, 9 N
7 ap, p | 7ri, T2, g 4
T17T3 o
| -
/N
1 N
-1
‘J Qpyry, P | T2, T4, T5, g Apyry, TP | T2, T4, 75, TG
I Ay, P | 211, 13,75, 9 Aryry, D | T2, T4, 75,9
- 0 1 2
-1
N ~~ U P
Qo 7 S< e
£ ~ -
\ 4 S~ N
C’SS - S~ao TQryry ‘ 5Ty _,"’

Figure 7.6: A specification and transition controllers that have been modified
with the activation inputs.

For example, considering the illustrative example, when the contexts switch
from day to night, the robot must switch patrolling locations r; and ro to
patrolling locations r3 and r4. However, immediately after the context switch
happens, there is a transition phase in which the robot needs to be guided by
a controller that brings it from any locations in {ry,79} to any locations in
{rs,r4}. Since a context switch can happen while the robot is operating in
any location, we need a controller for any pair of locations: that is from any
location to any other location.

Definition 7.5.2 (Transition controllers). We define a transition controller
km,r]. to be a controller that starting from r; reaches r; in the least number of
steps, where 7; and r; € Qg and @ # j. We define K to be the set of all possible
transition controllers, i.e. a controller for each pair of locations r;,r; € Qg.

That is K = {ky,,,Vri,r; € Qp i # j}.

Definition 7.5.3 (Transition time). We define the transition time, ttrans, t0
be the maximum amount of time units needed for any controller k,, .. € K to
start from location r; and reaching location r;.

Active controllers CROME modifies the specification and transition con-
troller in order to define when a controller is active and when it is inactive.
Controllers are finite state machines (more specifically, Mealy machines) defined
over a set of input and output propositions. We define two new sets of atomic
propositions:

I8 = {aj,as,..,a,}
% ={ar,Vri,r; € Qr i # j}

CROME modifies the controllers in A and K by adding an atomic proposition
in Z§ and K as additional controllers inputs and we refer to them as activation

7.5. CONTROLLERS ORCHESTRATION 129

inputs. Specifically, we add an atomic proposition a; € Z} for any specifica-
tion controller \; € A and a,,,, for any transition controller k;,., € K. By
controlling the activation inputs CROME is able to orchestrate the reactions
happening in the controllers as we show later in Section [7.6

For any specification controller A; € A we add a self-loop transition for any
state of \;. This added transition accepts as input the negation of its activation
input (i.e. —a;) and leaves the outputs to be undetermined (-).

For any transition controller \; € A we add a self-loop transition to its
initial state and another transition that goes from its terminal state to its start
state. The rationale behind this choice is that while a specification controller
can be deactivated and activated in any state, a transition controller once
activated terminates its execution reaching its final state. As before, these
transitions accept as input the negation of its activation input (i.e. —|amr_7.)
for any input of k., and leaving the output to be undetermined (~). We
define A" = {\|, Ay, .., AL} and K’ = {kj . Vri,r; € Qp : i # j} to be the
specification and transition controller after the modification described above.

If any controller A; € A" or k., € K’ has its activation input set to true we
say that A\ or k7, is active, otherwise, we say that the controller is inactive.
Figure [7.6] shows two controllers that have been modified by CROME. The
specification controller A; has inputs aj, p, outputs r1,ra, g, start state 0 and
no terminal state. The transition controller k,.,,, has inputs a,,,,, p, outputs rq,
r3, I's, g, start state 0 and terminal state 3. CROME has added the activation
wnputs a; and a,, , and the transitions that are represented with dashed lines in
Figure[7.6] These two controllers are generated from the specification resulting
in the composition of the goals G4 and G, i.e. patrol during the day and greet
immediately when a person is detected.

Remark. The traces produced by any A, € Lambda’ are equivalent to the traces
produced by A\; € Lambda when X, is active. Similarly, for the traces produced
by any k;,irj € K’ are equivalent to the traces produced by k., € K when
Ky, is active.

Composition Given a set of controllers A* = A’ U K’ where each element
A" € A* is a finite state machine * = (S, 7, 0%, s}, %), N = |A*| and where
int and out! are respectively the inputs and outputs of A’ at time ¢. We indicate
with subscripts s}, st and 5%}1 the state of A\ at time 0, ¢ and ¢+ 1, respectively.
We define the composition of all the elements in A* as a finite-state machine

Al = (S",I”,O“,sg,é“) where:

Slh=8" x 62 x...x 8N
Th=7'x72x ... xIN

Ol=0'x 02 x ... x ON

sy = (s(l,, 8(2), ey sév)

S sl 7l 5 gl « ol

Where we have that the transition function 8!l consists of the transition

130 CHAPTER 7. PAPER F

functions of all the component machines side-by-side, that is:

((Sta1s STty oo sﬁrl), (outy, out?, ..., outl))
= 0ll((st, 7, s 8), (img, in ey im)Y)
where (si,, outl) = 6'(si, ,in;) for i = {1.N}.

Each state machine in the composition reacts simultaneously and instanta-
neously. A reaction in their composition consists of a set of reactions of each
state machine. Each machine * € Ax will set some outputs O° € Oll according
to some inputs Z* € O!l. This kind of composition is referred in the literature
as side-by-side composition [223]. Note that we do not include stuttering input
and output, hence a machine in the composition can not proceed while another
machine stutters. All machines proceed together. In order for the composition
to be well-defined we assume that:

— There are no conflicting-outputs. That for any two machines A;, \; € Ax
where i # j and where O' N O/, then Vt € N we have that their output
assignments are not conflicting, i.e. out! A out] is satisfiable.

7.5.2 The orchestration system

The orchestration system monitors which context x; € X is active and orches-
trates the behavior of the finite state machine All such that it satisfies the
mission. The orchestration system controls the activation inputs of O!l and
determines all its output. If at any ¢ € N any output symbol o; € O!! is not
determined (—) by any machine A; € Ax then it assigns o, = false. We have
modeled the orchestration system as a network of timed automata.

Timed automata are fined state machines extended with clock variables.
However, we will not make explicit use of clocks that use real-time, but
rather use a standard simulation of discrete-time, i.e. ticks. A template is an
automaton model that can be instantiated in several automata. Figure
shows the templates for the different systems engaging in the orchestration.
Transitions can be labeled with synchronization channels, guards, or updates.
Predicates indicated in Figure next to states are state invariants (i.e.
conditions that must be respected while the automaton is in the state). Updates
can be simple assignments or entire functions. We use name := wvalue to
indicate assignment, to distinguish it from a predicate (name = value).

Template instances There are n instances of Context template, each mod-
eling one context. We have (n? — n) instances of the T-Controller template,
each modeling a transition controller from context x; to a context x; where
i # j. For each specification controller we have associated an instance of
the S-Controller template. There is always a specification controller for any
context. Finally the Orchestrator automaton coordinates the states of all the
instances of Context, S-Controller and T-Controller templates. In the following
we will refer to contexts, specification controllers and transition controllers to
indicate the instances of the corresponding templates. In particular we will
use the abbreviated notation C[é], S[i] and T'[{][j] to indicate specific instances
contexts, specification and transition controllers. Finally we will use O to
indicate the orchestrator automaton.

7.5. CONTROLLERS ORCHESTRATION 131

@ Context|x]

cs! active[x]!

— T ._
velx? cs_enabled = trug cs_enabled = false, t* := 0
active[x]?
17 > teontexs
C) cs_enabled := true

cs?

golx]! T-Controller|x;] [x;1

cur—x Orchestrator

transit[x;] [xi]?

x 1= cur t" < terans

X =cur active[x]? s
i spec =
active[x]? next :=x
!
stop[eur]! trans_end()
go[next]!

S-Controller|x]

cur = next

O

Figure 7.7: Timed automata that modeling the interactions among the orches-
trator, contexts and controllers. Gray states represents committed locations.

transit[cur][next]!

go[x]?
@ activate() @
stop[x]?

deactivate()

done[cur][next]?

Synchronization channels The coordination among automata happens
via the synchronization of the transitions of different automata on binary
synchronization channels. An edge labeled with channel! synchronizes with
another labeled channel?. Given n contexts, we have defined the following
synchronization channels:

— n active channels, one channel per each context, each channel gets fired
when a context becomes active.

— n go and n stop channels, to activate and deactivate respectively the
specification controllers.

— (n? —n) transit and (n? —n) done channels, respectively to activate each

transition controller and get notified with it has terminated its execution.

— c¢s is one broadcast channel where one sender (cs!) can synchronize with
an arbitrary number of receivers (cs?). It is used to notify all contexts of
a context switch.

States Committed locations (represented in gray in Figure are states
where time delay is not allowed and the only possible transition is the one
outgoing the committed location. Thus, all actions from/to a committed state
are considered atomic.

Initially we have that all the automata are in the idle state. At any other
given moment, context, transition and specification controllers can either be in

132 CHAPTER 7. PAPER F

the active or the idle states while the orchestrator can be in the spec or transit
states.

Local clock variables Contexts and transition controllers have a local clock
variable, i.e. t* and t* respectively. The context use t* to measure the minimum
time to be active. The transition controller use ¢! to bound the mazimum time
that they can be active. Both clock variables are reset every time the automata
move to their active states.

Synchronization with the Mealy machines The trans_start(),
trans_end(), activate() and deactivate() functions are executed every time
a transition is taken from idle to active in a transition or specification con-
troller. These functions are responsible for managing the activation inputs in Z!!
and consequently affecting the behavior of All. Specifically for any specification
controller S[i] and transition controller T'[i][5]:

— activate() sets to true the activation input of the Mealy machine AL,
which is the only machine related to the specification controller S[i]. It
also sets the output Active € O to true.

— activate() sets to false the activation input of the Mealy machine A,. It
also sets Active to false.

— trans_start() sets to true the activation input of a Mealy machine k;ﬂj €
K’. Which Mealy machine to activate depends on the current location of
the robot r; and its destination r;.

— trans_end() sets to true the activation input of k., € K’ to false.

Remark. Active € O is true if and only if any specification controller is active

We want to prove that our orchestration system satisfies the following
properties:

— Initially all automata wait for a context to become active.

— After the first context became active there is exactly one context active
at all time.

— Any context stays active for at least tconexs time units.
— No context can become active two times consecutively.
— No context can become active two times consecutively.

— After the first context has become active, there is always one specification
controller or one transition controller active but they are never active
together.

— Transition controllers can be active at most tirans time units.

— Every time a context becomes active after at most tyrans time units the
specification controller related to the active context also becomes active.

7.5. CONTROLLERS ORCHESTRATION 133

. To do so, we show in what follows a series of Lemmas used in the final
proof.

In the following we assume that all automaton before the execution are in
the idle state.

Lemma 7.5.1. Under the initial condition no automaton can take a transition
except for a context, and exactly one context can transition to the active state.

Proof. We will prove this by induction on the number of contexts. Given n
context, we have that:

n =1 In this case we only have one context C[0], one orchestrator O and
one specification controller S[0]. We have that O and S[0] are waiting on the
synchronization channels active and go respectively. cs_enabled is initially set
to true, so C[0] is free to move from idle to active. The atomic transition from
idle to active is synchronized on the cs and active channels. It first sends on
the broadcast channel ¢s! which is non-blocking and it has no effects since
there is no other context enabled to receive on c¢s?. In the same transition, it
synchronizes with the orchestrator via the active[0] channel and the orchestrator
can now synchronize with S[0] via the go[z] channel. We conclude that initially,
no other automaton could have moved from the idle state but the context
automaton C[0].

n =2 In this case we have two contexts C[0] and C[1], one orchestrator O,
two specification controllers S[0] and S[1] and two transition controllers T[0][1]
and T'[1][0]. Similar to the case of n = 1, the orchestrator, the specification
controllers and the transition controllers are all waiting on the synchronization
channels active, go and transit respectively. The only automata that can
transition are C[0] and C[1]. Both are enabled with a transition from idle
to active. The first context takes the transition set cs_enabled to false which
forces the other context to stay in the idle state. We conclude that also for
n = 2 we have that only one context can take the first transition.

Induction hypothesis n = k Let us assume that our lemma holds for a
number of context n = k.

Induction step n = k+1 We will prove that the lemma holds for n = k+ 1.
By adding an additional context we have that all contexts C[0], C[1], ..., C[k] are
enabled to transition from the idle to the active. By our induction hypothesis
we have that only one context, let’s say context C[i] (0 < i < k), can effectively
take the transition from idle to active, and by the base case (with n = 2), as
soon as C[i] takes such transition then we know that C[k + 1] cannot do it.
We conclude that for any number of contexts n, one context is always the
first automaton to move from idle to active state while the others remain in
the idle state. O

Lemma 7.5.2. For any number n of contexts, there is exactly one context
in the active state at any moment in time after the first context has become
active. Any context stays in the active state for at least tcontexs time units.

134 CHAPTER 7. PAPER F

Proof. According to Lemma contexts are the first automata to move.
Initially, any instance can take the outgoing transition from the idle state.
Non-deterministically, one of the instances will set cs_enabled to false, and
due to the atomicity guaranteed by committed states, all the other context
instances will remain in the idle state. The first context instance to take the
transition sets cs_enabled to false before reaching the active state so that no
other context can become active. After t.ontext time units the active context
sets cs_enabled to true so that another context is enabled to become active.
As soon as another context exits from the idle state it synchronizes with the
currently active context on the cs channel so that the active context transitions
to the idle state. O

Lemma 7.5.3. No context can be activated twice in a row.

Proof. The only way for an active context C[i] to move to the idle state is
to synchronize via ¢s? channel, which can only be done when a context C[j]
where i # j takes the transition from idle to active; thus we have that context
C[é] must wait for at least one turn before proceeding. O

The orchestrator keeps track of the current active context cur and as soon
as another context instance x becomes active:

1. it stops the execution of the specification controller currently active, i.e.

Sleur].

2. it activates transition controller from context cur to context z, i.e.
T[cur][x].

3. it waits for transition controller to terminate its execution waiting for
the done[cur][z] synchronization channel to fire.

4. it activates the specification controller of context z, i.e. S[x].

Lemma 7.5.4. After the first context becomes active, there is always a
specification controller or a transition controller in the active state, but never
both active together.

Proof. Operations 1), 2) and 4) are atomic operations and they are modeled as
committed locations in Figure[7.7} The first time a context becomes active the
orchestrator activates a specification controller in the same time step. During
any context switch, at the same time instance, the orchestrator stops the
current specification controller which transitions to the idle state and activates
a transition controller which transits to the active state. When the transition
controller terminates its execution and transits to the idle state, it synchronizes
with the orchestrator that activates the next specification controller in the
same atomic operation. O

Lemma 7.5.5. A transition controller can be active at most tirans time units.

Proof. Because of the invariant in the active state of the transition controller,
the automata have to take the transition to the idle state when #' < tiyans. O

7.5. CONTROLLERS ORCHESTRATION 135

Theorem 7.5.6. Given n contexts, n specification controllers, n2 —n transition
controllers and assuming that tirans < teontext, We have that:

1. Every time a context C[i] is active, then S[i] becomes active after at most
terans Steps and no transition or specification controller beside S[i] can
become active.

Proof. Initial phase If the orchestrator and controllers are all in the idle state,
according to Lemma and Lemma the system is in the initial step
waiting for one (and only one) context to become active. If C[i] becomes active,
then the orchestrator immediately activates S[i] by synchronizing on the go
channel.
Context Switch. Assume that we are in a condition where a context C[j] is
currently active (where j # i), then according to Lemma C'[¢] cannot
become active before tcoptext time units. Assume that C[i] becomes active
teontext UMits after C[i] became active, then according to Lemma and
Lemma and our assumption firans < tcontext, we have that S[j] must
be active when C[i] becomes active. The orchestrator will then stop S[j]
and activate T'[j][¢]. After at most tirans time units S[i] will become active.
Because we assumed that tyrans < feontext and we proved that 1) another context
Cj] # C[i] cannot become active before tcoptext time units (Lemma and
that 2) C[i] cannot become active twice in the row (Lemma [7.5.3)), we conclude
that S[i] must become active.

O

Starvation Our orchestration system only assumes that the context are
mutually exclusive and that they stay active for at least teontext time units. We
have no assumptions on how the contexts are scheduled. It can happen that
some contexts are never becoming active and consequently the corresponding
specification controller will never be activated by the orchestrator.

Remark. Assuming a fair scheduler that will activates all the context infinitely
often and that tirans < feontext then according to Theorem we can also
claim that all the specification controllers will be active infinitely often, and no
context (specification controlloer) would starve.

Model checking We modeled the automata in UPPAAIE| [224] and success-
fully verified our model against the following properties.

‘There is never more than one T-controller active at any given time’
A[] forall (i: N) forall (j: N) forall (1: N) forall (m: N)
T_controller(i,l).Active & T_controller(j,m).Active imply (i==j &
1==m)

‘There is always at most one context active at any given time’
A[] forall (i: N) forall (j: N) Context(i).Active &
Context(j) .Active imply (i==j)

2UPPAAL model available:
rebrand.ly/cromeuppaalmodel

rebrand.ly/cromeuppaalmodel

136 CHAPTER 7. PAPER F

‘There is always at most one S-controller active at any given time’
A[] forall (i: N) forall (j: N) S-controller(i).Active &
S-controller(j).Active imply (i==j)

‘If any context becomes active its S-controller will eventually become active’
Context (i) .Active --> S_controller(i).Active

‘There are no deadlocks’
A[] not deadlock

7.5.3 Time Synchronization

The timed-automata model the dynamic behavior of the system and have a
precise notion of time [224], the Mealy machine determines what the robot
should do when it reacts, however, there are no constraints on when the reaction
should happen. Let us define when the Mealy machine reactions happen and
how they synchronize them with the timed automata. The timed automata
modeled in Uppaal uses a continuous time model. We have local clocks to every
state machine that determines when a transition should fire and synchronize
with another transition if a synchronization channel is present. We discretize
the time in fixed time-units ¢. At each ¢, a transition can be taken by any
timed automata (e.g. if the transition guards allow it). In parallel with the
timed automata, at each ¢ a transition must happen in every Mealy machine
participating in the composition All, that is at every ¢ each Mealy machine
evaluates its inputs and set its outputs.

Theorem 7.5.7. [Mission Satisfaction] Given a contextual mission M =
(X,T,AC,CT), and assuming that:

1. for every specification in «y there is a specification controller A that realize
it.

2. there is a transition controller k for every possible context switch and
Where ttra_ns < tcontext-

Then the behaviors produced by All together with the orchestration system
of CROME will always satisfy the contextual mission as defined in ([7.4.1)).

Proof. Theorem guarantees that for any context becoming active the
orchestration system guarantees that a specification controller will become
active after at most firans time units. The behavior of the specification and
transition controllers automata is linked to the actual (i.e., the Mealy machines)
specification and transition controllers via the execution of the activate(),
deactivate(), trans_start() and trans_end() functions.

We have that for any context z; € X becoming active at any time t € N
where CT(ACT (t)) = v; and \; = i, A, will be active in at most tyrans time
units. According to the remark in Section the behavior produced by A} is
equivalent to A\; when \; is active and according to the remark in Section m
Active is true if an only if a specification controller is active. Because \; satisfies
~; by construction, we have that the mission M is always satisfied by the robot
R according to the definition of satisfaction defined in .

O

7.6. ORCHESTRATION IN THE RUNNING EXAMPLE 137

Timed Automata | Mealy Machines
source

ay,p | r,re,

=)\/ N ¢ ; ‘;},‘Ljr? (g N
3 golday]? 1 -7y Rl GRL:
N 1 V2
3 RN 0 -
- /A N & I
3 [] I
Q deactivate() r L ap,p| 72,9 N
“]{j/ ay,—p | -y, r2, g

i To.T i deactivate()

2 4}, trans_start()

transit[day][night]?

sras P | =2y 24, 5

| .
tmr;sfstart(: p | o1, s, T,
idie)t =0 (active \ - -
done[day][night]! \
NP
trans_end() h T

Aryry, D | T2, T, g
Ay, p | ST s g
3
’

i trans_end()

T-Controller[day][night]

activate()

-)\/ ay, 7 [73,774, 79

= < .

3 golnight]? 2 N a,p | rs, T4, g Y
= 1 S
3 N\~ activate() v/ -l \w
s L | e)k
£ S\ |

S deactivate() [I I
S Fas az,p | —r3, T4, 9 N
&4 az, p \ T3, T4, g

destination

Figure 7.8: Synchronization between Timed Automata and Mealy Machines.
The red arrows indicate the state of the machines at time ¢, when we have a
context switch from context day to night. The red boxes connected indicate
transitions that happen in parallel.

7.6 Orchestration in the running example

Let us consider the two contexts in our example: day and night. We have
two instances of S-Controllers, i.e. S[day] and S[night] and two specification
controllers A} and A} realized from the specifications CT(AC(day)) = 1 and
CT(AC (night)) = 2 respectively. In order to show simple controllers we will
only consider the specification of the three goals G4, G,, and G, leaving out
G, i.e. where the robot has to register a person in the next step. We will
consider the full running example in Section [7.6.1] Figure [7.§ shows the two
Mealy machines (A} and \}) realizing v, and y2 which have been
modified so that they accept the activation inputs a; and a,. For presentation
purposes in Figure |7.8| we use the letters p,ry,72,73,74,75 and g to represent
the atomic propositions person,ri,re, 73,74, 75 and greet, respectively.

At any point in time only one of the activation inputs of All is set to true,
hence only one of the Mealy machines composing All is active. The functions
that are executing on the transitions of the S-Controllers and T-Controllers
are managed by the activation inputs. Specifically:

— activate() is a function executed by any S-Controller template instance,
e.g. Slday] and S[night] in our example. Its execution is triggered by
an S-Controller transitioning from idle to active state and produces the
activation of a specification controller \'. Specifically, any S-Controller
instantiated for a context x; that transition at time ¢ (i.e. AC(t) = ;)
from idle to active will activate the specification controller A}, which
realizes the specification 7; = CT(x;). In Figure[7.8] activate() of S/day/
will set the activation input of A (i.e. aj) to true, while activate() of

138 CHAPTER 7. PAPER F

S[night] will set the activation input of A (i.e. as) to true.

— deactivate() is the opposite of the activate() function. It sets the
activation inputs of the corresponding specification controllers to false.
The function gets triggered after a context-switch when the Orchestrator
synchronizes with the active S-Controller that transition from the active
to idle state.

— trans_start() for any contexts switch, e.g. from day to night, it activates
one transition controller. However, unlike the specification controller,
there could be more than one transition controller for each instance of
the T-Controller template. Each transition controller is responsible for
guiding the robot from one location to another. The transition controller
that needs to be activated after a context-switch depends on where is the
robot when the context-switch happens and where it needs to be under
the new context. In the example in Figure the control has to pass
from A} to AL, the transition controller that needs to be activated depends
on the current state of A} to A when the context-switch happens.

— trans_end() gets executed when the transition controller has reached
its final state and it sets its activation input to false.

In the example in Figure let us assume that we have a context-switch
at time ¢ where we have that \] is active and is in the state 0 and)} is inactive
and is in the state 0. Each state corresponds to the last region that has been
reached by the robot, that is region ro for \; and region r4 for 5.

At time t S[day] transitions from active to idle and T[day/[night] transitions
from idle to active. deactivate() set a; to false. trans_start() chooses the
transition controller that can connect the state 0 of A] to the state 0 of A}
indicated as source and destination in Figure In our example it sets a,,y,
to true.

At time t + 1 S[day] and S[night] are in the idle state, and T[/day/[night] is in
the active state. The transition controller ;. , moves from state 2 to state 3.

At time t + 2 The transition controller ;. , has reached its final state and
T[day/[night] transition from active to idle causing trans_end() to execute
which sets a,,,, to false. In the same instance, S/night] transitions from idle
to active while activate() sets as to true.

7.6.1 Timeline of the full running example

Let us now consider the full running example where we have all four goals G4,
Gn, G4 and G,., composed in the CGG under the two scenarios: 1) Ggqr where
the robot greets and registers peoples during the day while patrolling locations
r1 and ro and 2) G4 where the robot only greets people during the night while
patrolling locations r3 and ry4.

7.6. ORCHESTRATION IN THE RUNNING EXAMPLE 139

~
- 2 s
5 o -
£ 0
%]
S
— -~ =~
=
=)
= & o
= 2l — < ke
= ~ & =~
s ~
= 0
= = e
w
— &=
= =
g =z 1 2 Fo
) R
ol ~ =
il
> — € 2
<
=
w
=T g =
g o
=, .
= o) — - L
= ~ £ s r=
= 0
~ =)
- &
Lrery] [Foo
=
) <~
2
12 ~
— B Lo
=
g oe)
I = = [
=
o 5 <
g = = <
¢ = N —/ I~ =
g | |8 \
B [
| =
0
! - s
=
B ek b B S B SR re—t-l S~ & b
I &
I
I =
> <~
b g 3 — B Lo
! < = ~< =
o
£
o a]
0 — = r~
Rl
I
I =
Tr Il iy r-———"—gq Lo
S 5
= = A
- g2 s2 =
= RS S 3 I R
g §3 3| 28 5 8
g o S~ | £58] s
S A & <O < 9
s @ o
s g
i~ =
E— i —> =i
S S
£ § -y
3
< = 5 —1)
3) 3
= S c(g
S = <

Figure 7.9: Timeline of the running example.

Figure [7.9] shows the timeline of events where the contexts switches from
day to night after a minimum context time of fcontext time units. The timed
automaton synchronizes after every context-switch and the T-Controllers are
active for at most tyans time units. At the bottom of the figure we can see the

140 CHAPTER 7. PAPER F

trace of the robot R defined by its input-output relationship where s represents
the controllable atomic proposition register.

The output traces highlighted in blue are the trace projections for the
specification v, (i.e. related to the goal Gg44) while the outputs highlighted in
pink are those for the specification 7, (i.e. related to the goal G,,). Note that
at time-step 3 the robot perceives a person (p) and while it greets immediately
(g), the registration (s) will be executed at step 11. That is the next time the
context day is active and the robot has finished the transition period.

7.7 Mission satisfaction and CGG satisfaction
Relationship

In Theorem we proved that the robot behavior produced by CROME
satisfies the contextual mission. However, such behavior could not satisfy
the mission as specified in the root of the CGG. This is not a problem as we
never required that, however, we could still be interested in having in the root
node of the CGG a specification that represents an abstraction of the behavior
generated by the orchestration system.

Let C = (v, ¢) be the contract formalizing the root goal of the CGG G
which is produced by the conjunction of all the mission scenarios. Each mission
scenarios is built from specifications that do not contain the notion of context
while the final robot behavior is produced by the orchestration of different
controllers according to) the context and 2) the transition of the robot from
one context to another. It can happen that, according to the robotic pattern
chosen by the designer to model the different goals, the robot behavior while
satisfying the mission does not satisfy the specification in the CGG.

For example, in our running example we have the goal G, formalized by
the trigger pattern BoundedReaction which performs the counteraction (i.e.
register) in the next time instant, every time and only when the pre-condition
(i.e. person) is true. This goal is expressed in LTL as

G(person <> Xregister) (7.55)

However, if we consider the example in Figure since a person is detected
at t = 3 in order to satisfy R would need to set register to true when
t = 4, but since the context changes at t = 4 it will satisfy the postcondition
only the nezt time when the day context is true and R is not transitioning, i.e.
t=11.

Such problems only happen with the ‘avoindance’ and ‘trigger’ patterns
of the robotic catalog [225]. The ‘core movement’ patterns (e.g. patrolling a
set of locations G(F(ry,ra,...r,)) or ‘visit’ patterns (e.g. F(ry,ra,...1,)) are
not affected by the context-switch since they only indicate the order in which
location specified must be visited; they do not forbid to visit other locations.
However we have to assume that the set of regions refer by each mission scenario
is disjoint.
Definition 7.7.1 (Disjoint scenarios). Let AP’ C AP, be the subset of atomic
propositions referring to region variables in the specification ~; € I'. Then for
any v;,7; € I' where ¢ # j if AP! N API =) then we say that we have disjoint
scenartos.

7.7. MISSION SATISFACTION AND CGG SATISFACTION RELATIONSHIP 141

Remark. The orchestration system of CROME will take care of ordering the
location to be visited according to the context while satisfying the original
pattern formulation. Since each context is mutually exclusive assuming that
we have disjoint scenarios as long as the visit or patrolling order is kept
within the scenarios then any trace of R also satisfies the conjunction of the
mission scenarios, i.e. the root node of the CGG.

To have a specification that always satisfies the traces produced by CROME
and assuming disjoint scenarios, we have modified the following robotic patterns
as follows. We define a boolean variable ¢; = x; A Active for any context x; € X
and where Active € O is the active Boolean signal of R determining when the
robot is not transitioning from one specification to another. In the following,
we show the modified patterns together with their original version:

Instant Reaction G(p1 — p2)
modified with G((p1 A ¢;) = (p2 A ci))

Delayed Reaction G(p1 — F(p2))
modified with G((p1 A¢;) = F(pa A ¢;))

Prompt Reaction G(p1 — X(p2))
modified with G((p1 A ¢;) = X(=e¢;W(p2 A ¢;)))

Bound Reaction G(p1 < p2)
modified with G((p1 A ¢;) <> (P2 A ¢;))

Bound Delay G(p1 <> F(p2))
modified with G((p1 A ¢;) > X(—¢;W(p2 A ¢;)))

Wait r1Ups
modified with ((r1 A ¢;) V —¢;))U(p1 A ¢;)

Where py € {QSUQRUQA},pQ S {QRUQA},])Q € {QsUQA} and 1 € Qg.

Remark. Realizing the specification directly with the modified patterns does
not produce a controller that satisfies the mission, since the modifications were
only applied to some of the patterns and the behavior of Active variable is not
always specified.

142 CHAPTER 7. PAPER F

7.8 Evaluation

CROME is implemented as a tool and it is available open source ﬂ The tool
allows the designer to:

1. model the mission environment

2. model the goals of the mission using robotic patterns

3. build the CGG and analyze consistency and completeness

4. automatically realize all specification and transition controllers
5. run the system orchestration of CROME

6. generate random simulations of the robotic mission

The tool uses NuXMV [177] and STRIX [226] as back-end engines to check
respectively the satisfiability and realizability of the specifications.

By using CROME the designer produces specifications in an incremental
and modular way. Goals are specified in terms of contexts and patterns and
CROME automatically builds the CGG and, thanks to the orchestration
system, it can produce controllers that satisfy a contextual mission. In the
evaluation, using the tool, we want to compare the performance of CROME
in the synthesis and orchestration of modular controllers with respect to the
synthesis of a monolithic LTL specification which can be realized in a controller
that produces the same traces produced by CROME (where it is relatively
easy to express one).

Due to the difficulties of using LTL to express contextual missions presented
in Section[7.4.2] we could only produce a monolithic LTL specification for reason-
ably small examples. Specifically, we have approximated the running example
presented in this paper as a monolithic LTL formula. In the approximation,
we have fixed a minimal duration of the contexts day and night. This minimal
duration is set long enough to allow the synthesis of the transition between
the different controllers that are active in the different contexts. Furthermore,
as the example includes only two locations for each context the global safety
conditions on the different locations (i.e. the condition specifying the adjacent
locations that the robot can visit) is enough to ensure that local safety con-
ditions are maintained under each context separately. This is not generally
the case as we would have to include specialized per context location safety
conditions that would ensure continuity of the controller within each context.
That is, we have would have to explicitly model that the robot has to come
back to the same location after it has left due to a context switch, as explained
in the Problem J of Section [7.4.2

To express the contextual mission in LTL we have to embed the notion
context and active signal also in all the specifications. The resulting controllers
for the transitions between contexts are not as tight as the optimal controllers
included in CROME. However as our running example is relatively simple, we
can give further specifications that narrow down the behavior of the transition
controllers to emulate the behavior produced by CROME. Namely, we force

3CROME tool: [rebrand.ly/crometool

rebrand.ly/crometool

7.8. EVALUATION 143

the transition controller to immediately go from wherever it is to r5 and move
on from r5 immediately as we want the transition to take an as short time as
possible (please check the map in Figure . Note that, without access to the
transition controllers and the traces produced CROME we would not be able
to give such a tight specification leaving the synthesizer much more freedom
on how to synthesize the transition controllers.

We have ultimately produced two specifications. The first one only embeds
the notion of context and active signal in the specification. The traces produced
by CROME always satisfy such a specification, however, the opposite is not true.
That is, is not always the case that the controller produce but such specification
satisfy the mission due to our stringent transition controllers requirements. In
the second specification, after looking at the transition controller produced by
CROME, we have forced the removal of some behaviors that would violate the
mission, i.e. refining the specification. The full monolithic LTL specifications
and the test conducted can be found onlineﬂ In the rest of the paper, we will
only consider the LTL specification that always satisfies the contextual mission,
the results are very similar for the other, more relaxed, specification.

Monolithic LTL CROME
Synthesis Time (sec) 35.6 0.14
Number of States 119 5 and 3
Number of Transitions 357 10 and 6

Table 7.1: Comparison of CROME with the synthesis from a single LTL
formula in order to realize the running example.

Table [7.1] shows the synthesis time and the size of the controller produced
by the two approaches, monolithic LTL vs CROME. For the synthesis time, in
the monolithic LTL, we had to add extra variables to keep track of the context,
active signal, and transition conditions from one context to another remarkably
increasing the size of the LTL formula that took 35.6 seconds to synthesize,
producing a controller having 119 and 357 transitions. On the other hand
CROME, thanks to the lean and modular approach only had to synthesize the
controllers for the two mutually exclusive contexts: day and night. Specifically,
it had to synthesize the specification v, related to the goal G,, and
the specification 7o related to the goal G44.. These specifications are
much smaller and it took only 0.14 seconds to synthesize both of them, 254
timesfaster than the monolithic synthesis. The controller produced for the two
scenarios consists of only 5 and 3 states and 10 and 6 , respectively.

However, in our evaluation so far we did not take into consideration the
transition controllers. Each transition controller has the objective to guide the
robot from one location to another. There are two principal factors to take into
consideration when realizing the transition controller so that the contextual
mission can always be satisfied:

1. Number of pairs of locations. According to the mission specification,
there could be several contexts switches some of which may or may not

4CROME evaluation: [rebrand.1ly/cromeevaluation

rebrand.ly/cromeevaluation

144 CHAPTER 7. PAPER F

require the robot to change location. Let us assume the worst possible
case where all context switches require the robot to move to a different
set of locations. Let Qr = {Qr1 U Qgo U,...,U Qg,} be the set of
regions where Qg1, QRr2, ..., Qr, are disjoint sets of regions, where each
set is related to a scenario activated in a mutually exclusive context
r1,T3,...,L,. Then, we have that the number of pairs of locations for
which we need a transition controller is:

(1Qr1] % [Qg2| X ... X [QRn|) x 2 (7.56)

since we need to consider all possible pairs of locations and their permu-
tation.

2. Transition controller generation. Given the map of the environment,
generating a transition controller is essentially solving a ‘shortest path
problem’. We do not have to use reactive synthesis to produce the
transition controller, we can use any algorithm that solves the shortest
path problem (e.g. Dijkstra).

For example, in our running example, there could be at most 8 transition
controllers needed if we consider the formula in . If we want to include
also adjacent locations (i.e. r5 in our example) then we could have at most 16
transition controllers. The time took by CROME to try to realize all 16 of
them via reactive synthesis is 0.92 seconds. This was performed by realizing
a specification that starting from the source location guarantees reaching the
destination location in N steps, where N < tirans- Our algorithm tries all
1 < N < tyrans until it realizes a controller (if exists). The algorithm generating
transition controllers can be improved by, for example, taking into consideration
the adjacencies information of the environment and not synthesizing most of the
controllers. Let us consider the environment of our running example depicted in
Figure[7.1} an improved algorithm for transition controller would only produce
1 controller (i.e. the controller going to location rj5) for any context switch in
any location since for any context switch is enough for the robot to go to 75 to
be able to reach any location.

Furthermore, we have to consider that the final specifications v; and v, are
not given as is by the designer, instead, they are produced by CROME. To
produce v; and 72 from a set of the four input goals inserted by the designer,
CROME has performed 11 satisfiability checks and 10 validity checks and has
ultimately produced the CGG which took a total of 0.54 seconds.

Finally, if we take into consideration the time needed to produce the
CGG and all 16 transition controllers we would have a total synthesis time of
1.60 seconds, which is still a 22 timesimprovement compared to synthesizing
the monolithic LTL specification.

7.9 Conclusions
In this paper, we introduced CROME, a design framework for capturing and

formalizing robotic mission requirements. CROME facilitates the translation of
informal requirements in terms of goals by leveraging on specification patterns

7.9. CONCLUSIONS 145

and the notion of contexrt. It then formalizes the goals in terms of assume-
guarantee contracts and uses an improved version of the contract-based goal
graph (CGG) introduced in our previous work [200] to analyze the mission
specification and detect inconsistencies.

We have tackled the problem of dynamically switching controllers for
different missions scenarios, where each scenario is activated in one mutually
exclusive context. We have first formally defined what does it mean to satisfy a
contextual mission and we have then presented an approach that orchestrates
the different controllers in a way that the mission is always satisfied. We have
then proved that our approach works for any number of mutually exclusive
contexts. Finally, we have shown how our approach works on a running example
and evaluate it against a monolithic specification written in LTL. Our results
show that using CROME to synthesize contextual mission controller produces a
much more lean and modular specification which greatly improves the synthesis
time. In the future, we plan to extend our approach by formally defining a new
logic that can express the class of problems described in this paper. Finally,
we plan to validate our approach on a larger industrial case study.

Acknowledgments

This work was supported by the Wallenberg Al Autonomous Systems and Soft-
ware Program (WASP), funded by the Knut and Alice Wallenberg Foundation

146 CHAPTER 7. PAPER F

Bibliography

[1]

2]

M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 4, no. 2, p. 14, 20009.

B. H. Cheng, H. Giese, P. Inverardi, J. Magee, R. de Lemos, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic et al., “Software engineering
for self-adaptive systems: A research road map,” in Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2008.

R. de Lemos et al., “Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap,” in Software Engineering for Self-Adaptive
Systems II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
1-32.

Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. M. Kienle, M. Litoiu,
H. A. Miiller, M. Pezze, and M. Shaw, “Engineering self-adaptive systems
through feedback loops.” Software engineering for self-adaptive systems,
vol. 5525, pp. 48-70, 2009.

J. R. Boyd, “The essence of winning and losing,” Unpublished lecture
notes, 1996.

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41-50, 2003.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr,
and T. M. Mitchell, “Toward an architecture for never-ending language
learning.” in AAAI vol. 5, 2010, p. 3.

E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-
physical systems approach. Mit Press, 2017.

D. Schneider and M. Trapp, “Conditional safety certification of open
adaptive systems,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 8 no. 2, pp. 1-20, 2013.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

B. H. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. A. Miiller,
P. Pelliccione, A. Perini, N. A. Qureshi, B. Rumpe et al., “Using models
at runtime to address assurance for self-adaptive systems,” in Models@
run. time. Springer, 2014, pp. 101-136.

147

148

BIBLIOGRAPHY

[12]

[13]

[15]

[16]

[17]

R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, and
T. Kelly, “Engineering trustworthy self-adaptive software with dynamic
assurance cases,” IEEE Transactions on Software Engineering, 2017.

A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone et al., “Contracts for
system design,” Foundations and Trends in Electronic Design Automation,
vol. 12, no. 2-3, pp. 124-400, 2018.

P. Nuzzo, A. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and T. Villa,
“A platform-based design methodology with contracts and related tools
for the design of cyber-physical systems,” Proc. IEEE, vol. 103, no. 11,
Nov. 2015.

E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

A. Church, “Logic, arithmetic, and automata,” Journal of Symbolic Logic,
vol. 29, no. 4, 1964.

M. O. Rabin, Automata on infinite objects and Church’s problem. Amer-
ican Mathematical Soc., 1972, vol. 13.

)

N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive (1) designs,’
in International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, 2006, pp. 364—380.

K. Havelund and G. Rosu, “Runtime verification,” in Computer Aided
Verification (CAV’01) satellite workshop, ser. ENTCS, vol. 55, 2001.

M. Leucker and C. Schallhart, “A Brief Account of Runtime Verification,”
J. Log. Algebr. Program., vol. 78, no. 5, pp. 293-303, 2009.

B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna, “Lola: Runtime
monitoring of synchronous systems,” in TIME’05. IEEE Computer
Society Press, June 2005, pp. 166-174.

M. Jackson, “The world and the machine,” in 1995 17th International
Conference on Software Engineering. TEEE, 1995, pp. 283-283.

A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed require-
ments acquisition,” Science of computer programming, vol. 20, no. 1-2,
pp- 3-50, 1993.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An agent-oriented software development methodology,” Au-
tonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203-236,
2004.

BIBLIOGRAPHY 149

[26]

[30]

[31]

E. S. Yu, “Towards modelling and reasoning support for early-phase
requirements engineering,” in Proceedings of ISRE’97: 3rd IEEE Inter-
national Symposium on Requirements Engineering. IEEE, 1997, pp.
226-235.

J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja, M. Salnitri,
L. Piras, J. Mylopoulos, and P. Giorgini, “Goal-oriented requirements
engineering: an extended systematic mapping study,” Requirements
engineering, vol. 24, no. 2, pp. 133-160, 2019.

A. Van Lamsweerde, Requirements engineering: From system goals to
UML models to software. Chichester, UK: John Wiley & Sons, 2009,
vol. 10.

A. Van Lamsweerde, R. Darimont, and P. Massonet, “Goal-directed
elaboration of requirements for a meeting scheduler: Problems and
lessons learnt,” in Proceedings of 1995 IEEE International Symposium
on Requirements Engineering (RE’95). TEEE, 1995, pp. 194-203.

A. Van Lamsweerde, “Requirements engineering in the year 00: a research
perspective,” in Proceedings of the 22nd international conference on
Software engineering, 2000, pp. 5-19.

D. Zowghi and V. Gervasi, “On the interplay between consistency, com-
pleteness, and correctness in requirements evolution,” Information and
Software Technology, vol. 45, no. 14, pp. 993-1009, 2003.

S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Foundations of Software Engineering (FSE). ACM, 2015.

M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration under
local LTL specifications,” The International Journal of Robotics Research,
2015.

C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting with
language, temporal logic and robot control,” in International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2010, pp. 1988-1993.

C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot LTL
Planning Under Uncertainty,” in Formal Methods, K. Havelund, J. Pe-
leska, B. Roscoe, and E. de Vink, Eds. Cham: Springer International
Publishing, 2018, pp. 399-417.

A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimal
multi-robot path planning with Temporal Logic constraints,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2011. 1EEE, 2011.

G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343-352, 2009.

150

BIBLIOGRAPHY

[38]

[45]

M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion
planning under linear temporal logic specifications in partially known
workspaces,” in International Conference on Robotics and Automation

(ICRA). 1EEE, 2013.

E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-Guided Controller
Synthesis for Nonlinear Systems with Temporal Logic,” in International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2013.

H. Kress-Gazit, “Robot challenges: Toward development of verication and
synthesis techniques [errata],” IEEE Robotics € Automation Magazine,
vol. 18, no. 4, pp. 108-109, 2011.

S. Maoz and J. O. Ringert, “Synthesizing a Lego Forklift Controller in
GR(1): A Case Study,” in Proceedings Fourth Workshop on Synthesis
(SYNT), 2015.

S. Maoz and Y. Sa’ar, “AspectLTL: an aspect language for LTL specifi-
cations,” in International conference on Aspect-oriented software devel-
opment. ACM, 2011.

i

S. Maoz and J. O. Ringert, “On well-separation of GR(1) specifications,’
in Foundations of Software Engineering (FSE). ACM, 2016.

Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli,
S. A. Seshia, G. J. Pappas, and P. Tabuada, “Linear temporal logic
motion planning for teams of underactuated robots using satisfiability

modulo convex programming,” in Proc. Int. Conf. Decision and Control,
Dec. 2017.

X. Sun, R. Nambiar, M. Melhorn, Y. Shoukry, and P. Nuzzo, “DoS-
resilient multi-robot temporal logic motion planning,” in Proc. Inter-
national Conference on Robotics and Automation (ICRA), 2019, pp.
6051-6057.

G. J. Holzmann, “The logic of bugs,” in Foundations of Software Engi-
neering (FSE). ACM, 2002.

M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenarios for
specifying temporal properties: An automated approach,” Automated
Software Engg., vol. 14, no. 3, 2007.

C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger,
“Specification Patterns for Robotic Missions,” IEEFE Transactions on
Software Engineering, pp. 1-1, 2019.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st
international conference on Software engineering, 1999, pp. 411-420.

S. Konrad and B. H. C. Cheng, “Real-time specification patterns,” in
Proc. of ICSE’05. ACM, 2005, pp. 372-381.

BIBLIOGRAPHY 151

[51]

[52]

L. Grunske, “Specification patterns for probabilistic quality properties,”
in 30th International Conference on Software Engineering (ICSE0S8),
W. Schifer, M. B. Dwyer, and V. Gruhn, Eds. ACM Press, 2008, pp.
31-40.

M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” IEEE Transactions on Software
Engineering, vol. 41, no. 7, pp. 620-638, 2015.

“Property Specification Patterns,” |http://ps-patterns.wikidot.com /.

W. Wei, K. Kim, and G. Fainekos, “Extended LTLvis motion planning
interface,” in International Conference on Systems, Man, and Cybernetics.
IEEE, 2016.

C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-Gazit,
“Provably correct reactive control from natural language,” Autonomous
Robots, vol. 38, no. 1, pp. 89-105, 2015.

V. Raman, C. Lignos, C. Finucane, K. C. Lee, M. Marcus, and H. Kress-
Gazit, “Sorry Dave, I'm Afraid I Can’t Do That: Explaining Unachiev-
able Robot Tasks Using Natural Language,” University of Pennsylvania
Philadelphia United States, Tech. Rep., 2013.

S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos, “A
graphical language for ltl motion and mission planning,” in International
Conference on Robotics and Biomimetics (ROBIO). IEEE, 2013.

U. S. Shah and D. C. Jinwala, “Resolving ambiguities in natural lan-
guage software requirements: a comprehensive survey,” ACM SIGSOFT
Software Engineering Notes, 2015.

N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements for
tools for ambiguity identification and measurement in natural language
requirements specifications,” Requirements engineering, 2008.

J. O. Ringert, B. Rumpe, and A. Wortmann, “A requirements modeling
language for the component behavior of cyber physical robotics systems,”
arXw preprint arXiv:1409.0394, 2014.

S. Garcia, P. Pelliccione, C. Menghi, T. Berger, and T. Bures, “High-
level mission specification for multiple robots,” in Proceedings of the
12th ACM SIGPLAN International Conference on Software Language
Engineering, ser. SLE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 127140.

A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on domain-
specific languages in robotics,” in Simulation, Modeling, and Programming
for Autonomous Robots. Springer, 2014.

D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli,
“FLYAQ: enabling non-expert users to specify and generate missions of

autonomous multicopters,” in Automated Software Engineering (ASE).
IEEE, 2015.

http://ps-patterns.wikidot.com/

152

BIBLIOGRAPHY

[64]

[71]

[72]

D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating CoBlox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, ser. CHI 18.
New York, NY, USA: ACM, 2018, pp. 366:1-366:12.

G. Biggs and B. Macdonald, “A survey of robot programming systems,”
in in Proceedings of the Australasian Conference on Robotics and Au-
tomation, CSIRO, 2003, p. 27.

R. W. Button, J. Kamp, T. B. Curtin, and J. Dryden, A Survey of
Missions for Unmanned Undersea Vehicles. Santa Monica, CA: RAND
Corporation, 2009.

A. Nordmann, N. Hochgeschwender, D. Wigand, and S. Wrede, “A Survey
on Domain-Specific Modeling and Languages in Robotics,” Journal of
Software Engineering for Robotics, vol. 7, no. 1, pp. 75-99, 2016.

N. Esfahani and S. Malek, “Uncertainty in self-adaptive software systems,”
in Software Engineering for Self-Adaptive Systems II. Springer, 2013,
pp. 214-238.

C. Urmson, C. Baker, J. Dolan, P. Rybski, B. Salesky, W. Whittaker,
D. Ferguson, and M. Darms, “Autonomous driving in traffic: Boss and
the urban challenge,” Al magazine, vol. 30, no. 2, pp. 17-17, 2009.

S. Ghosh, D. Sadigh, P. Nuzzo, V. Raman, A. Donzé, A. L. Sangiovanni-
Vincentelli, S. S. Sastry, and S. A. Seshia, “Diagnosis and repair for
synthesis from signal temporal logic specifications,” in Proceedings of
the 19th International Conference on Hybrid Systems: Computation and
Control, 2016, pp. 31-40.

S. Ghosh, S. Bansal, A. Sangiovanni-Vincentelli, S. A. Seshia, and C. Tom-
lin, “A new simulation metric to determine safe environments and con-
trollers for systems with unknown dynamics,” in Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and
Control, 2019, pp. 185-196.

W. Li, D. Sadigh, S. S. Sastry, and S. A. Seshia, “Synthesis for human-
in-the-loop control systems,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2014, pp. 470-484.

K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Environment as-
sumptions for synthesis,” in International Conference on Concurrency
Theory. Springer, 2008, pp. 147-161.

i

W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for synthesis,’
in Ninth ACM/IEEE International Conference on Formal Methods and
Models for Codesign (MEMPCODE2011). 1EEE, 2011, pp. 43-50.

V. Raman and H. Kress-Gazit, “Explaining impossible high-level robot
behaviors,” IEEE Transactions on Robotics, vol. 29, no. 1, pp. 94-104,
2013.

BIBLIOGRAPHY 153

[76] ——, “Explaining impossible high-level robot behaviors,” IEEE Transac-
tions on Robotics, vol. 29, no. 1, pp. 94-104, 2013.

[77] R. Alur, S. Moarref, and U. Topcu, “Counter-strategy guided refinement
of gr (1) temporal logic specifications,” in 2013 Formal Methods in
Computer-Aided Design. TEEE, 2013, pp. 26-33.

[78] A. Sangiovanni-Vincentelli, “Quo vadis, SLD? Reasoning about the trends
and challenges of system level design,” Proceedings of the IEEFE, vol. 95,
no. 3, pp. 467-506, 2007.

[79] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis, “Multiple viewpoint contract-based specification and design,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5382
LNCS, pp. 200225, 2008.

[80] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[81] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279-292, 1992.

[82] R. J. Wieringa, Design science methodology for information systems and
software engineering. Springer, 2014.

[83] K.-J. Stol and B. Fitzgerald, “The abc of software engineering research,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 27, no. 3, p. 11, 2018.

[84] P. Mallozzi, P. Pelliccione, A. Knauss, C. Berger, and N. Mohammadiha,
“Autonomous vehicles: State of the art, future trends, and challenges,” in
Automotive Systems and Software Engineering. Springer, Cham, 2019,
pp. 347-367.

[85] X. Li, Y. Ma, and C. Belta, “A policy search method for temporal logic
specified reinforcement learning tasks,” arXiv preprint arXiv:1709.09611,
2017.

[86] A. Van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Proceedings fifth ieee international symposium on requirements

engineering. IEEE, 2001, pp. 249-262.

[87) C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and
J. Peleska, “Systems of systems engineering: Basic concepts,
model-based techniques, and research directions,” ACM Comput.
Surv., vol. 48, no. 2, pp. 18:1-18:41, Sep. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2794381

38

“Intelligent transport systems - Innovating for the transport of the future,”
http://ec.europa.eu/transport/themes/its/index_en.htm.

http://doi.acm.org/10.1145/2794381
http://ec.europa.eu/transport/themes/its/index_en.htm

154

BIBLIOGRAPHY

[89]

[90]

[91]

[100]

[101]

“Current State of EU Legislation - Cooperative Dynamic For-
mation of Platoons for Safe and Energy-optimized Goods Trans-

portation,” http://www.companion-project.eu/wp-content /uploads/
COMPANION-D2.2-Current-state-of-the-EU-legislation.pdf].

R. De Lemos, H. Giese, H. A. Miiller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel et al., Software engi-

neering for self-adaptive systems: A second research roadmap. Springer,
2013.

H. H. Yin Hang, Jan Carlson, “Towards mode switch handling in
component-based multi-mode systems.” in Proceedings of 15th Inter-
national ACM SIGSOFT Symposium on Component Based Software
Engineering (CBSE12), Bertinoro, Italy, June 2012., pp. 183-188.

G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal 4.0,”
November 28, 2006.

R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time
systems,” in Logic in Computer Science, 1990. LICS’90, Proceedings.,
Fifth Annual IEEE Symposium on e. 1EEE, 1990, pp. 414-425.

T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model
checking for real-time systems,” Information and computation, vol. 111,
no. 2, pp. 193-244, 1994.

M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres, “Formal
verication of autonomous vehicle platooning,” February 5, 2016.

J. Rushby, “Just-in-time certification,” in Engineering Complex Computer
Systems, 2007. 12th IEEE International Conference on. IEEE, 2007,
pp. 15-24.

——, “Runtime certification,” in Runtime Verification. Springer, 2008,
pp. 21-35.

D. Schneider and M. Trapp, “Conditional Safety Certification of Open
Adaptive Systems,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 8, no. 2, pp. 1-20, Jul. 2013.

P. Inverardi, P. Pelliccione, and M. Tivoli, “Towards an assume-
guarantee theory for adaptable systems,” in Proceedings of the
2009 ICSE Workshop on Software FEngineering for Adaptive and
Self-Managing Systems, ser. SEAMS ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 106-115. [Online]. Available:
http://dx.doi.org/10.1109/SEAMS.2009.5069079

K. Ostberg and M. Bengtsson, “Run time safety analysis for automotive
systems in an open and adaptive environment,” SAFECOMP 2015-
Workshop ..., p. NA, Sep. 2013.

S. Furst, J. Mossinger, S. Bunzel, T. Weber, F. Kirschke-Biller,
P. Heitkdmper, G. Kinkelin, K. Nishikawa, and K. Lange, “Autosar—a
worldwide standard is on the road,” in 14th International VDI Congress
Electronic Systems for Vehicles, Baden-Baden, vol. 62, 2009.

http://www.companion-project.eu/wp-content/uploads/COMPANION-D2.2-Current-state-of-the-EU-legislation.pdf
http://www.companion-project.eu/wp-content/uploads/COMPANION-D2.2-Current-state-of-the-EU-legislation.pdf
http://dx.doi.org/10.1109/SEAMS.2009.5069079

BIBLIOGRAPHY 155

[102]

[103]

[104]

[105]

[106]

[107]

108]

[109]

[110]

[111]

[112]

[113]

C. Priesterjahn, C. Heinzemann, W. Schfer, and M. Tichy, “Runtime
safety analysis for safe reconfiguration,” in IEEE 10th International
Conference on Industrial Informatics, 2012, pp. 1092-1097.

S. Jha and V. Raman, “Automated synthesis of safe autonomous ve-
hicle control under perception uncertainty,” in NASA Formal Methods
Symposium. Springer, 2016, pp. 117-132.

K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Reactive syn-
thesis for finite tasks under resource constraints,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017,
pp. 5326-5332.

N. Esfahani and S. Malek, Uncertainty in Self-Adaptive Software Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 214-238.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-35813-5_9

M. Autili, V. Cortellessa, D. Di Ruscio, P. Inverardi, P. Pelliccione,
and M. Tivoli, “Eagle: Engineering software in the ubiquitous
globe by leveraging uncertainty,” in Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th Furopean Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New
York, NY, USA: ACM, 2011, pp. 488-491. [Online]. Available:
http://doi.acm.org/10.1145,/2025113.2025199

D. Garlan, “Software engineering in an uncertain world,” in Proceedings
of the FSE/SDP Workshop on Future of Software Engineering Research,
ser. FoSER ’10. New York, NY, USA: ACM, 2010, pp. 125-128.
[Online]. Available: http://doi.acm.org/10.1145/1882362.1882389

T. Everitt, V. Krakovna, L. Orseau, M. Hutter, and S. Legg, “Rein-
forcement learning with a corrupted reward channel,” arXiv preprint
arXw:1705.08417, 2017.

B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner, “Torcs, the open racing car simulator,” Software available at
http://torcs. sourceforge. net, 2000.

“Movemo docker image,” |https://hub.docker.com/r/pmallozzi/rl_
monitor/.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” IEEE Transactions on Software
Engineering, vol. 41, no. 7, pp. 620-638, July 2015.

M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenarios for
specifying temporal properties: an automated approach,” Automated
Software Engg., vol. 14, no. 3, pp. 293-340, Sep. 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10515-007-0012-6

http://dx.doi.org/10.1007/978-3-642-35813-5_9
http://doi.acm.org/10.1145/2025113.2025199
http://doi.acm.org/10.1145/1882362.1882389
https://hub.docker.com/r/pmallozzi/rl_monitor/
https://hub.docker.com/r/pmallozzi/rl_monitor/
http://dx.doi.org/10.1007/s10515-007-0012-6

156

BIBLIOGRAPHY

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL
— a Tool Suite for Automatic Verification of Real-Time Systems,” in
Proc. of Workshop on Verification and Control of Hybrid Systems 111,
ser. LNCS, no. 1066. Springer—Verlag, October 1995, pp. 232-243.

R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer
Science, vol. 126, pp. 183235, 1994.

R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking in dense
real-time,” Inf. Comput., vol. 104, no. 1, pp. 2-34, 1993. [Online].
Available: https://doi.org/10.1006/inco.1993.1024

C. Colombo, G. J. Pace, and G. Schneider, “LARVA — Safer Monitoring
of Real-Time Java Programs (Tool Paper),” in 7th IEEE International
Conference on Software Engineering and Formal Methods (SEFM’09),
2009, pp. 33-37.

——, “Dynamic event-based runtime monitoring of real-time and con-
textual properties,” in International Workshop on Formal Methods for
Industrial Critical Systems. Springer, 2008, pp. 135-149.

D. Dewey, “Reinforcement learning and the reward engineering principle,”
in 2014 AAAI Spring Symposium Series, 2014.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv preprint arXiv: ..., pp. 1-9, 2013. [Online]. Available:
http://arxiv.org/abs/1312.5602

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proceedings of the twenty-first international conference
on Machine learning. ACM, 2004, p. 1.

E. Wiewiora, “Potential-based shaping and g-value initialization are
equivalent,” Journal of Artificial Intelligence Research, vol. 19, pp. 205—
208, 2003.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané, “Concrete Problems in Al Safety,” arXiv, pp. 1-29, 2016.
[Online]. Available: http://arxiv.org/abs/1606.06565

A. Nowe, K. Van Moffaert, and M. Drugan, “Multi-objective reinforce-
ment learning,” in Furopean Workshop on Reinforcement Learning, 2013.

C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning: A
comprehensive overview,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 45, no. 3, pp. 385-398, 2015.

E. Letier and A. Van Lamsweerde, “Deriving operational software
specifications from system goals,” ACM SIGSOFT Software Engineering
Notes, vol. 27, no. 6, p. 119, 2002. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=605466.605485

https://doi.org/10.1006/inco.1993.1024
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1606.06565
http://portal.acm.org/citation.cfm?doid=605466.605485
http://portal.acm.org/citation.cfm?doid=605466.605485

BIBLIOGRAPHY 157

[127]

[128]

[129]

[130]

[131]

[132]

(133

[134]

135

[136]

137

[138]

J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunc-
tional requirements: A process-oriented approach,” IEEE Transactions
on software engineering, vol. 18, no. 6, pp. 483-497, 1992.

“Using Keras and Deep Deterministic Policy Gradient to play TORCS,”
https://github.com/yanpanlau/DDPG-Keras-Torcs.

J. Garcia and F. Fernandez, “A comprehensive survey on safe reinforce-
ment learning,” Journal of Machine Learning Research, vol. 16, no. 1, pp.
1437-1480, 2015.

P. Mallozzi, R. Pardo, V. Duplessis, P. Pelliccione, and G. Schneider,
“Movemo: a structured approach for engineering reward functions,” in
2018 Second IEEFE International Conference on Robotic Computing (IRC).
IEEE, 2018, pp. 250-257.

P. Mallozzi, P. Pelliccione, and C. Menghi, “Combining machine-learning
with invariants assurance techniques for autonomous systems,” in Inter-
national Conference on Software Engineering - SE4{COG. IEEE Press,
2018.

M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” IEEE Transactions on Software
Engineering, vol. 41, no. 7, pp. 620-638, 2015.

A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, ser. SFCS
77. USA: IEEE Computer Society, 1977, p. 4657. [Online]. Available:
https://doi.org/10.1109/SFCS.1977.32

L. W. Maxime Chevalier-Boisvert, “Minimalistic gridworld environment
for openai gym,” https://github.com/maximecb/gym-minigrid, 2018.

M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenarios for
specifying temporal properties: An automated approach,” Automated
Software Engg., vol. 14, no. 3, pp. 293-340, Sep. 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10515-007-0012-6

V. Braberman, N. Kicillof, and A. Olivero, “A scenario-matching
approach to the description and model checking of real-time properties,”
IEEFE Trans. on Software Engineering, vol. 31, no. 12, pp. 1028-1041,
2005. [Online]. Available: |http://publicaciones.dc.uba.ar/Publications/
2005/BKO05

D. Harel and A. Kantor, “Multi-modal scenarios revisited: A net-based
representation,” Theor. Comput. Sci., vol. 429, pp. 118-127, Apr. 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.tcs.2011.12.030

S. Konrad and B. H. C. Cheng, “Real-time specification patterns,” in
Proceedings of ICSE °05. New York, NY, USA: ACM, 2005, pp. 372—-381.
[Online]. Available: http://doi.acm.org/10.1145/1062455.1062526

https://github.com/yanpanlau/DDPG-Keras-Torcs
https://doi.org/10.1109/SFCS.1977.32
https://github.com/maximecb/gym-minigrid
http://dx.doi.org/10.1007/s10515-007-0012-6
http://publicaciones.dc.uba.ar/Publications/2005/BKO05
http://publicaciones.dc.uba.ar/Publications/2005/BKO05
http://dx.doi.org/10.1016/j.tcs.2011.12.030
http://doi.acm.org/10.1145/1062455.1062526

158

BIBLIOGRAPHY

[139]

[140]

[141]

[142]

[143]

[144]

[145)

[146]

[147]

[148]

[149]

[150]

[151]

[152]

)

L. Grunske, “Specification patterns for probabilistic quality properties,’
in Proceedings of ICSE ’08. New York, NY, USA: ACM, 2008, pp.
31-40. [Online]. Available: http://doi.acm.org/10.1145/1368088.1368094

M. L. Puterman, “Markov decision processes,” Handbooks in operations
research and management science, vol. 2, pp. 331-434, 1990.

G. T. Leavens, A. L. Baker, and C. Ruby, “JML: a java
modeling language,” in Formal Underpinnings of Java Workshop (at
OOPSLA ’98), 1998. [Online]. Available: citeseer.ist.psu.edu/\protect
discretionary{\char\hyphenchar\font } { }{ }leavens98jml.html

A. Pnueli, “The temporal logic of programs,” in Proc. 18th IEEE Sym-
posium on Foundation of Computer Science, 1977, pp. 46-57.

W. Ahrendt, J. M. Chimento, G. J. Pace, and G. Schneider, “A specifi-
cation language for static and runtime verification of data and control
properties,” in FM’15, ser. Incs. spv, 2015, vol. 9109, pp. 108-125.

C. Colombo, G. J. Pace, and G. Schneider, “Dynamic Event-Based Run-
time Monitoring of Real-Time and Contextual Properties,” in FMICS 08,
ser. LNCS, vol. 5596. Springer, 2009, pp. 135-149.

G. Reger, H. C. Cruz, and D. E. Rydeheard, “MarQ: Monitoring at
Runtime with QEA.” in TACAS, ser. LNCS, vol. 9035. Springer, 2015,
pp. 596-610.

C. Colombo, G. J. Pace, and G. Schneider, “LARVA - A Tool for Runtime
Monitoring of Java Programs,” in SEFM’09, 2009.

T. M. Moldovan and P. Abbeel, “Safe exploration in markov decision
processes,” arXiv preprint arXiv:1205.4810, 2012.

M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in
finite markov decision processes with gaussian processes,” in Advances in
Neural Information Processing Systems, 2016, pp. 4312-4320.

P. Thomas, G. Theocharous, and M. Ghavamzadeh, “High confidence
policy improvement,” in International Conference on Machine Learning,
2015, pp. 2380-2388.

Z. C. Lipton, K. Azizzadenesheli, A. Kumar, L. Li, J. Gao, and L. Deng,
“Combating Reinforcement Learning’s Sisyphean Curse with Intrinsic
Fear,” arXiv e-prints, p. arXiv:1611.01211, Nov. 2016.

W. Saunders, G. Sastry, A. Stuhlmiiller, and O. Evans, “Trial without
error: Towards safe reinforcement learning via human intervention,” in
Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, ser. AAMAS ’18. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2018, p.
20672069.

M. Hasanbeig, A. Abate, and D. Kroening, “Logically-constrained rein-
forcement learning,” arXiv: Learning, 2018.

http://doi.acm.org/10.1145/1368088.1368094
citeseer.ist.psu.edu/\protect \discretionary {\char \hyphenchar \font }{}{}leavens98jml.html
citeseer.ist.psu.edu/\protect \discretionary {\char \hyphenchar \font }{}{}leavens98jml.html

BIBLIOGRAPHY 159

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]
[166]

[167]

M. Al-Shedivat, L. Lee, R. Salakhutdinov, and E. Xing, “On the
complexity of exploration in goal-driven navigation,” arXiv preprint
arXiw:1811.06889, 2018.

T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum, “Hi-
erarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” arXiv preprint arXiv:1604.06057, 2016.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

L. Medsker and L. C. Jain, Recurrent neural networks: design and
applications. CRC press, 1999.

J. Randlgv and P. Alstrgm, “Learning to drive a bicycle using rein-
forcement learning and shaping.” in ICML, vol. 98. Citeseer, 1998, pp.
463-471.

I. Kostrikov, “Pytorch implementations of reinforcement learning algo-
rithms,” https://github.com /ikostrikov/pytorch-a2c-ppo-acktr, 2018.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928-1937.

J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo,
R. Munos, C. Blundell, D. Kumaran, and M. Botvinick, “Learning
to reinforcement learn,” CoRR, vol. abs/1611.05763, 2016. [Online].
Available: http://arxiv.org/abs/1611.05763

IFR, “World Robotic Survey,” https://ifr.org/ifr-press-releases/news/world-

robotics-survey-service-robots-are-conquering-the-world-, 2016.

Markets and Markets, “Service Robotics Market — Global Fore-
cast to 2022, https://www.marketsandmarkets.com/Market- Reports/
service-robotics-market-681.html, 2017.

D. Bozhinoski, D. D. Ruscio], 1. Malavolta, P. Pelliccione, and
I. Crnkovic, “Safety for mobile robotic systems: A systematic mapping
study from a software engineering perspective,” Journal of Systems
and Software, vol. 151, pp. 150 — 179, 2019. [Oanline]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121219300317

ISO, “ISO - Robotics,” https://www.iso.org/obp/ui/#iso:std:is0:8373:ed-2:v1:en,
2012.

“Roomba Robot Vacuum Cleaners,” https://www.irobot.se/roombal

ABB, “ABB makes robot programming more intuitive with Wizard Easy
Programming software,” https://shorturl.at/sFU15.

SPARC, “Robotics 2020 Multi-Annual Roadmap,” shorturl.at/rIQ07,
2016.

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
http://arxiv.org/abs/1611.05763
https://www.marketsandmarkets.com/Market-Reports/service-robotics-market-681.html
https://www.marketsandmarkets.com/Market-Reports/service-robotics-market-681.html
http://www.sciencedirect.com/science/article/pii/S0164121219300317
https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en
https://www.irobot.se/roomba
https://shorturl.at/sFU15
shorturl.at/rIQ07

160

BIBLIOGRAPHY

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

S. Garcia, D. Struber, D. Brugali, T. Berger, and P. Pelliccione, “An
empirical assessment of robotics software engineering,” in ACM Joint
European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE 2020), 2020.

P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli, R. M.
Murray, A. Donzé, and S. A. Seshia, “A contract-based methodology for
aircraft electric power system design,” IEEFE Access, vol. 2, pp. 1-25,
2014.

P. Nuzzo, M. Lora, Y. A. Feldman, and A. L. Sangiovanni-Vincentelli,
“CHASE: Contract-based requirement engineering for cyber-physical sys-
tem design,” in 2018 Design, Automation € Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 839-844.

P. Nuzzo, J. Finn, A. Iannopollo, and A. L. Sangiovanni-Vincentelli,
“Contract-based design of control protocols for safety-critical cyber-
physical systems,” in Proc. Design Automation and Test in Europe
Conference, Mar. 2014, pp. 1-4.

C. Menghi, C. Tsigkanos, T. Berger, and P. Pelliccione, “PsALM: Speci-
fication of dependable robotic missions,” Proceedings - 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion,
ICSE-Companion 2019, pp. 99-102, 2019.

J. Krumm, Ubiquitous Computing Fundamentals, 1st ed. ~Chapman
& Hall/CRC, 20009.

A. K. Dey, “Understanding and using context,” Personal and ubiquitous
computing, vol. 5, no. 1, pp. 4-7, 2001.

D. D. Bloisi, D. Nardi, F. Riccio, and F. Trapani, Context in
Robotics and Information Fusion. Cham: Springer International
Publishing, 2016, pp. 675-699. [Online]. Available: https://doi.org/10|
1007/978-3-319-28971-7_25

A. Tannopollo, P. Nuzzo, S. Tripakis, and A. Sangiovanni-Vincentelli,
“Library-based scalable refinement checking for contract-based design,”
in 2014 Design, Automation & Test in Furope Conference & Exhibition
(DATE). 1EEE, 2014, pp. 1-6.

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model
checker,” in CAV, 2014, pp. 334-342.

Y. A. Feldman and H. Broodney, “A cognitive journey for requirements
engineering,” in INCOSE International Symposium, vol. 26, no. 1. Wiley
Online Library, 2016, pp. 430-444.

P. Nuzzo, M. Lora, Y. A. Feldman, and A. L. Sangiovanni-Vincentelli,
“CHASE: Contract-based requirement engineering for cyber-physical sys-
tem design,” in 2018 Design, Automation € Test in Furope Conference
& Ezhibition (DATE). 1EEE, 2018, pp. 839-844.

https://doi.org/10.1007/978-3-319-28971-7_25
https://doi.org/10.1007/978-3-319-28971-7_25

BIBLIOGRAPHY 161

[180]

[181]

[182]

[183]

[184]

[185)

[186)]

[187]

188

[189)

[190]

[191]

R. Darimont and A. Van Lamsweerde, “Formal refinement patterns
for goal-driven requirements elaboration,” in ACM SIGSOFT Software
Engineering Notes, vol. 21, no. 6. ACM, 1996, pp. 179-190.

B. DeVries and B. H. Cheng, “Automatic detection of incomplete re-
quirements via symbolic analysis,” in Proceedings of the ACM/IEEFE 19th
International Conference on Model Driven Engineering Languages and
Systems. ACM, 2016, pp. 385-395.

——, “Automatic detection of feature interactions using symbolic analysis
and evolutionary computation,” in 2018 IEEFE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2018, pp.
257-268.

A. Moitra, K. Siu, A. Crapo, H. Chamarthi, M. Durling, M. Li, H. Yu,
P. Manolios, and M. Meiners, “Towards development of complete and
conflict-free requirements,” in 2018 IEEE 26th International Requirements
Engineering Conference (RE), 2018, pp. 286—296.

B. H. Cheng and J. M. Atlee, “Research directions in requirements
engineering,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 285-303.

A. Ferrari, F. dellOrletta, G. O. Spagnolo, and S. Gnesi, “Measuring and
improving the completeness of natural language requirements,” in Inter-
national Working Conference on Requirements Engineering: Foundation
for Software Quality. Springer, 2014, pp. 23-38.

A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr.
Frankenstein: Contract-based design for cyber-physical systems,” Furo-
pean journal of control, vol. 18, no. 3, pp. 217-238, 2012.

W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand, “Using
contract-based component specifications for virtual integration testing
and architecture design,” in 2011 Design, Automation & Test in Europe.
IEEE, 2011, pp. 1-6.

Y. Wang, X. Duan, D. Tian, G. Lu, and H. Yu, “Throughput and Delay
Limits of 802.11p and its Influence on Highway Capacity,” Procedia -
Social and Behavioral Sciences, vol. 96, no. Cictp, pp. 2096-2104, 2013.

P. Mallozzi, “CoGoMo tool - Web Interface and source code,” https:
/ /rebrand.ly /cogomoweb), https://rebrand.ly /cogomotool, 2020.

L. De Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337-340.

A. Cimatti, M. Dorigatti, and S. Tonetta, “OCRA: A tool for checking the
refinement of temporal contracts,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). I1EEE, 2013, pp.
702-705.

https://rebrand.ly/cogomoweb
https://rebrand.ly/cogomoweb
https://rebrand.ly/cogomotool

162

BIBLIOGRAPHY

[192]

(193]

[194]

[195]

[196]

[197]

[198]

[199]

200]

201]

[202]

203]

D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaValley, and L. Sha,
“Compositional verification of architectural models,” in NASA Formal
Methods Symposium. Springer, 2012, pp. 126-140.

A. Cimatti and S. Tonetta, “Contracts-refinement proof system for
component-based embedded systems,” Science of computer programming,
vol. 97, pp. 333-348, 2015.

C. A. Ribeiro dos Santos, A. Saleh, T. Schrijvers, and M. Nicolai, “Con-
dense: Contract-based design synthesis,” in Proceedings of the 22th
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems. Institute of Electrical and Electronics Engineers,
2019.

D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo, and S. Uchitel,
“Generating obstacle conditions for requirements completeness,” in 2012
34th International Conference on Software Engineering (ICSE), June
2012, pp. 705-715.

C. Menghi, P. Spoletini, and C. Ghezzi, “Integrating goal model analysis
with iterative design,” in International Working Conference on Require-
ments Engineering: Foundation for Software Quality. Springer, 2017,
pp. 112-128.

A. Pneuli and R. Rosner, “Distributed reactive systems are hard to
synthesize,” in Proceedings [1990] 31st Annual Symposium on Foundations
of Computer Science. IEEE, 1990, pp. 746-757.

Y. Lustig and M. Y. Vardi, “Synthesis from component libraries,” Inter-
national Journal on Software Tools for Technology Transfer, vol. 15, no.
5-6, pp. 603-618, 2013.

A. Tannopollo, S. Tripakis, and A. Sangiovanni-Vincentelli, “Constrained
synthesis from component libraries,” Science of Computer Programming,
vol. 171, pp. 21-41, 2019. [Online]. Available: https://doi.org/10.1016/j|
scico.2018.10.003

P. Mallozzi, P. Nuzzo, P. Pelliccione, and G. Schneider, “Crome: Contract-
based robotic mission specication,” in 2020 18th ACM-IEEE Interna-
tional Conference on Formal Methods and Models for System Design
(MEMOCODE). IEEE, 2020.

C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-Gazit,
“Provably correct reactive control from natural language,” Autonomous
Robots, vol. 38, mno. 1, pp. 89-105, 2015. [Online]. Available:
https://doi.org/10.1007/s10514-014-9418-8

S. Garcia, D. Striiber, D. Brugali, A. Di Fava, P. Schillinger, P. Pelliccione,
and T. Berger, “Variability modeling of service robots: Experiences and
challenges,” in VaMoS. ACM, 2019, p. 8.

J. Bohren and S. Cousins, “The smach high-level executive [ros news],”
IEEE Robotics € Automation Magazine, vol. 17, no. 4, pp. 18-20, 2010.

https://doi.org/10.1016/j.scico.2018.10.003
https://doi.org/10.1016/j.scico.2018.10.003
https://doi.org/10.1007/s10514-014-9418-8

BIBLIOGRAPHY 163

[204]

205)

[206]

207]

208]

[209]

[210]

211]

[212]

213

[214]

U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann, “A
new skill based robot programming language using uml/p statecharts,”
in 2013 IEEE International Conference on Robotics and Automation.
IEEE, 2013, pp. 461-466.

M. Klotzbiicher and H. Bruyninckx, “Coordinating robotic tasks and
systems with rfsm statecharts,” Journal of Software Engineering for
Robotics, 2012.

F.-Y. Wang, K. J. Kyriakopoulos, A. Tsolkas, and G. N. Saridis, “A
petri-net coordination model for an intelligent mobile robot,” IEEFE
Transactions on Systems, Man, and Cybernetics, vol. 21, no. 4, pp. 777-
789, 1991.

V. A. Ziparo, L. Tocchi, D. Nardi, P. F. Palamara, and H. Costelha,
“Petri net plans: a formal model for representation and execution of multi-
robot plans,” in Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems-Volume 1. International
Foundation for Autonomous Agents and Multiagent Systems, 2008, pp.
79-86.

S. Gotz, M. Leuthduser, J. Reimann, J. Schroeter, C. Wende, C. Wilke,
and U. ABmann, “A role-based language for collaborative robot applica-
tions,” in Leveraging Applications of Formal Methods, Verification, and
Validation, ser. Communications in Computer and Information Science.
Springer Berlin Heidelberg, 2012.

M. Campusano and J. Fabry, “Live robot programming: The language,
its implementation, and robot api independence,” Science of Computer
Programming, vol. 133, pp. 1-19, 2017.

B. Schwartz, L. Nagele, A. Angerer, and B. A. MacDonald, “Towards a
graphical language for quadrotor missions,” CoRR, 2014.

D. Di Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli, “Automatic
generation of detailed flight plans from high-level mission descriptions,”
in International Conference on Model Driven Engineering Languages and

Systems, ser. MODELS. ACM, 2016.

F. Ciccozzi, D. D. Ruscio, I. Malavolta, and P. Pelliccione, “Adopting
mde for specifying and executing civilian missions of mobile multi-robot
systems,” Journal of IEEE Access, 2016.

P. Doherty, F. Heintz, and D. Landén, “A distributed task specification
language for mixed-initiative delegation,” in Principles and Practice of
Multi-Agent Systems, N. Desai, A. Liu, and M. Winikoff, Eds. Springer
Berlin Heidelberg, 2012.

S. Maoz and J. O. Ringert, “Spectra: a specification language for
reactive systems,” Software and Systems Modeling, 2021. [Online].
Available: https://doi.org/10.1007/s10270-021-00868-z

https://doi.org/10.1007/s10270-021-00868-z

164

BIBLIOGRAPHY

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

K. He, A. M. Wells, L. E. Kavraki, and M. Y. Vardi, “Efficient sym-
bolic reactive synthesis for finite-horizon tasks,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 8993-8999.

S. Moarref and H. Kress-Gazit, “Reactive synthesis for robotic swarms,”
in Formal Modeling and Analysis of Timed Systems, D. N. Jansen and
P. Prabhakar, Eds. Cham: Springer International Publishing, 2018, pp.
71-87.

S. Maoz and J. O. Ringert, “On the software engineering challenges
of applying reactive synthesis to robotics,” in Proceedings of the 1st
International Workshop on Robotics Software Engineering, ser. RoSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
1722. [Online]. Available: https://doi.org/10.1145/3196558.3196561

S. Dragule, S. Garca Gonzalo, T. Berger, and P. Pelliccione, “Languages
for specifying missions of robotic applications,” Chapter of the Book
Software Engineering for Robotics edited by Ana Cavalcanti, Brijesh
Dongol, Rob Hierons, Jon Timmis, and Jim Woodcock, 2021.

S. Dragule, T. Berger, C. Menghi, and P. Pelliccione, “A survey on
the design space of end-user-oriented languages for specifying robotic
missions,” Software and Systems Modeling, 2021. [Online]. Available:
https://doi.org/10.1007/s10270-020-00854-x

L. Nahabedian, V. Braberman, N. D’Ippolito, S. Honiden, J. Kramer,
K. Tei, and S. Uchitel, “Dynamic update of discrete event controllers,”
IEEE Transactions on Software Engineering, vol. 46, no. 11, pp. 1220—
1240, 2020.

N. D’Ippolito, V. Braberman, J. Kramer, J. Magee, D. Sykes, and
S. Uchitel, “Hope for the best, prepare for the worst: Multi-tier
control for adaptive systems,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 688699. [Online].
Available: https://doi.org/10.1145/2568225.2568264

P. Mallozzi, P. Nuzzo, and P. Pelliccione, “Incremental refinement of goal
models with contracts,” in in submission to Fundamentals of Software
Engineering (FSEN) 2021. 1EEE, 2020.

E. A. Lee, Structure and interpretation of signals and systems. Lee &
Seshia, 2011.

G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Pettersson,
W. Yi, and M. Hendriks, “Uppaal 4.0,” 2006.

C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger,
“Specification Patterns for Robotic Missions,” IFEE Transactions on
Software Engineering, pp. 1-1, 2019.

P. J. Meyer, S. Sickert, and M. Luttenberger, “Strix: Explicit
reactive synthesis strikes back!” in Computer Aided Verification - 30th

https://doi.org/10.1145/3196558.3196561
https://doi.org/10.1007/s10270-020-00854-x
https://doi.org/10.1145/2568225.2568264

BIBLIOGRAPHY 165

International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Ozford, UK, July 14-17, 2018, Proceedings,
Part I, ser. Lecture Notes in Computer Science, H. Chockler and
G. Weissenbacher, Eds., vol. 10981. Springer, 2018, pp. 578-586.
[Online]. Available: https://doi.org/10.1007/978-3-319-96145-3_31

https://doi.org/10.1007/978-3-319-96145-3_31

166 BIBLIOGRAPHY

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	The world and the machine
	Challenges and Related Work
	Challenge 1: Capturing and modeling requirements
	Challenge 2: From requirement to specification
	Challenge 3: Environment assumptions are unknown
	Challenge 4: Gap between system specification and system implementation

	Trustworthiness
	Linear Temporal Logic
	Model Checking
	Runtime Verification
	Reactive Synthesis
	Contracts for System Design
	Reinforcement Learning

	Goals and Methodology
	Summary of Contributions
	Building a system model and verify invariants
	From the system requirements to reward function
	Train a system and later monitor its invariants
	Modeling requirements as Goal Model and incrementally refining them
	Modeling system specifications and automatically realize them in the context of robotic missions
	Dynamically orchestrate controllers for several system specifications providing guarantees on the overall system behavior

	Conclusions and Future Work

	Paper A
	Introduction
	Multi-Mode System
	Uppaal Model Description
	Requirement specifications verified with model checking
	Simulation
	Verification results
	Related Works
	Conclusion
	Acknowledgement

	Paper B
	Introduction
	Background
	Reinforcement Learning
	Formal Verification
	Runtime Enforcement

	Reward engineering: state of the art
	Conveying rewards to the agents
	Unexpected behaviours

	MoVEMo
	Step 1: From requirements to reward function
	Step 2: Verifying the requirement
	Step3: Enforcing the reward function

	Autonomous Driving with TORCS
	Conveying the goals to the agent
	Verifying properties
	Results

	Conclusion and future work

	Paper C
	Introduction
	Background
	Specification patterns
	Reinforcement learning
	Runtime verification

	Related Work
	WiseML
	Monitoring
	Shaping
	Enforcing

	Evaluation
	Gridworld Environment
	Evaluation

	Conclusions and Future Work
	Acknowledgement

	Paper D
	Introduction
	Background and Related Work
	Assume-Guarantee Contracts
	Contract Refinement
	Contract Composition
	Contract Conjunction

	Linear Temporal Logic
	Specification Patterns and Context
	Robotic Patterns
	Specification Patterns with Scopes
	Context

	Overview of CROME
	Capturing Mission Requirements
	Atomic Propositions
	Context
	Goals
	Domain Properties

	Context-Based Specification Clustering
	Mission Specification via Contract-Based Goal Graphs
	Contract Formalization and Analysis
	Contract-Based Goal Graph
	Building the CGG via Composition and Conjunction
	Extending the CGG via Refinement from Library of Goals
	Controller Synthesis

	Case Study: Urgent Care
	Conclusions

	Paper E
	Introduction
	Background
	Running Example: Vehicle Platooning
	The CoGoMo Approach
	Goal Formalization
	Detecting Conflicts.
	Checking Completeness.

	Goal Manipulation via Composition and Refinement
	Assumptions Propagation.

	Goal Manipulation via Conjunction
	Goal Priority.

	CGT Extension
	Numerical Validation.

	Related Work
	Conclusions

	Paper F
	Introduction
	Main contributions
	Running Example and Mission Requirements
	Roadmap of the paper

	Background and Related works
	Assume-Guarantee Contracts
	Contract Refinement
	Contract Composition
	Contract Conjunction

	Linear Temporal Logic
	Reactive Synthesis
	Mission specification and Robotic Patterns
	Contexts and mission-related contexts

	From Mission Requirements to Mission Specifications
	From Mission Specification to Mission Controller
	Problem Definition
	Difficulties by using only LTL Contracts to define the mission

	Controllers Orchestration
	Specification and Transition Controllers
	The orchestration system
	Time Synchronization

	Orchestration in the running example
	Timeline of the full running example

	Mission satisfaction and CGG satisfaction Relationship
	Evaluation
	Conclusions

	Bibliography

