11 research outputs found

    Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross-sections

    Get PDF
    Multiple-point statistics (MPS) has shown promise in representing complicated subsurface structures. For a practical three-dimensional (3-D) application, however, one of the critical issues the difficulty to obtain a credible 3-D training image. However, bidimensional (2-D) training images are often available because established workflows exist to derive 2-D sections from scattered boreholes and/or other samples. In this work, we propose a locality-based MPS approach to reconstruct 3-D geological models on the basis of such 2-D cross-sections, making 3-D training images unnecessary. Only several local training sub-sections closer to the central uninformed node are used in the MPS simulation. The main advantages of this partitioned search strategy are the high computational efficiency and a relaxation of the stationarity assumption. We embed this strategy into a standard MPS framework. Two probability aggregation formulas and their combinations are used to assemble the probability density functions (pdfs) from different sub-sections. Moreover, a novel strategy is adopted to capture more stable pdfs, where the distances between patterns and flexible neighborhoods are integrated on several multiple grids. A series of sensitivity analyses demonstrate the stability of the proposed approach. Several hydrogeological 3-D application examples illustrate the applicability of our approach in reproducing complex geological features. The results, in comparison with previous MPS methods, show better performance in portraying anisotropy characteristics and in CPU cost

    Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross sections

    Get PDF
    Multiple-point statistics (MPS) has shown promise in representing complicated subsurface structures. For a practical three-dimensional (3-D) application, however, one of the critical issues is the difficulty in obtaining a credible 3-D training image. However, bidimensional (2-D) training images are often available because established workflows exist to derive 2-D sections from scattered boreholes and/or other samples. In this work, we propose a locality-based MPS approach to reconstruct 3-D geological models on the basis of such 2-D cross sections (3DRCS), making 3-D training images unnecessary. Only several local training subsections closer to the central uninformed node are used in the MPS simulation. The main advantages of this partitioned search strategy are the high computational efficiency and a relaxation of the stationarity assumption. We embed this strategy into a standard MPS framework. Two probability aggregation formulas and their combinations are used to assemble the probability density functions (PDFs) from different subsections. Moreover, a novel strategy is adopted to capture more stable PDFs, where the distances between patterns and flexible neighborhoods are integrated on multiple grids. A series of sensitivity analyses demonstrate the stability of the proposed approach. Several hydrogeological 3-D application examples illustrate the applicability of the 3DRCS approach in reproducing complex geological features. The results, in comparison with previous MPS methods, show better performance in portraying anisotropy characteristics and in CPU cost.</p

    Acta mineralogica-petrographica : abstract series : volume 8.

    Get PDF

    Volume II: Mining Innovation

    Get PDF
    Contemporary exploitation of natural raw materials by borehole, opencast, underground, seabed, and anthropogenic deposits is closely related to, among others, geomechanics, automation, computer science, and numerical methods. More and more often, individual fields of science coexist and complement each other, contributing to lowering exploitation costs, increasing production, and reduction of the time needed to prepare and exploit the deposit. The continuous development of national economies is related to the increasing demand for energy, metal, rock, and chemical resources. Very often, exploitation is carried out in complex geological and mining conditions, which are accompanied by natural hazards such as rock bursts, methane, coal dust explosion, spontaneous combustion, water, gas, and temperature. In order to conduct a safe and economically justified operation, modern construction materials are being used more and more often in mining to support excavations, both under static and dynamic loads. The individual production stages are supported by specialized computer programs for cutting the deposit as well as for modeling the behavior of the rock mass after excavation in it. Currently, the automation and monitoring of the mining works play a very important role, which will significantly contribute to the improvement of safety conditions. In this Special Issue of Energies, we focus on innovative laboratory, numerical, and industrial research that has a positive impact on the development of safety and exploitation in mining

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    Calibration of DART Radiative Transfer Model with Satellite Images for Simulating Albedo and Thermal Irradiance Images and 3D Radiative Budget of Urban Environment

    Get PDF
    Remote sensing is increasingly used for managing urban environment. In this context, the H2020 project URBANFLUXES aims to improve our knowledge on urban anthropogenic heat fluxes, with the specific study of three cities: London, Basel and Heraklion. Usually, one expects to derive directly 2 major urban parameters from remote sensing: the albedo and thermal irradiance. However, the determination of these two parameters is seriously hampered by complexity of urban architecture. For example, urban reflectance and brightness temperature are far from isotropic and are spatially heterogeneous. Hence, radiative transfer models that consider the complexity of urban architecture when simulating remote sensing signals are essential tools. Even for these sophisticated models, there is a major constraint for an operational use of remote sensing: the complex 3D distribution of optical properties and temperatures in urban environments. Here, the work is conducted with the DART (Discrete Anisotropic Radiative Transfer) model. It is a comprehensive physically based 3D radiative transfer model that simulates optical signals at the entrance of imaging spectro-radiometers and LiDAR scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental (atmosphere, topography,…) and instrumental (sensor altitude, spatial resolution, UV to thermal infrared,…) configuration. Paul Sabatier University distributes free licenses for research activities. This paper presents the calibration of DART model with high spatial resolution satellite images (Landsat 8, Sentinel 2, etc.) that are acquired in the visible (VIS) / near infrared (NIR) domain and in the thermal infrared (TIR) domain. Here, the work is conducted with an atmospherically corrected Landsat 8 image and Bale city, with its urban database. The calibration approach in the VIS/IR domain encompasses 5 steps for computing the 2D distribution (image) of urban albedo at satellite spatial resolution. (1) DART simulation of satellite image at very high spatial resolution (e.g., 50cm) per satellite spectral band. Atmosphere conditions are specific to the satellite image acquisition. (2) Spatial resampling of DART image at the coarser spatial resolution of the available satellite image, per spectral band. (3) Iterative derivation of the urban surfaces (roofs, walls, streets, vegetation,…) optical properties as derived from pixel-wise comparison of DART and satellite images, independently per spectral band. (4) Computation of the band albedo image of the city, per spectral band. (5) Computation of the image of the city albedo and VIS/NIR exitance, as an integral over all satellite spectral bands. In order to get a time series of albedo and VIS/NIR exitance, even in the absence of satellite images, ECMWF information about local irradiance and atmosphere conditions are used. A similar approach is used for calculating the city thermal exitance using satellite images acquired in the thermal infrared domain. Finally, DART simulations that are conducted with the optical properties derived from remote sensing images give also the 3D radiative budget of the city at any date including the date of the satellite image acquisition

    Neural Radiance Fields: Past, Present, and Future

    Full text link
    The various aspects like modeling and interpreting 3D environments and surroundings have enticed humans to progress their research in 3D Computer Vision, Computer Graphics, and Machine Learning. An attempt made by Mildenhall et al in their paper about NeRFs (Neural Radiance Fields) led to a boom in Computer Graphics, Robotics, Computer Vision, and the possible scope of High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D models have gained traction from res with more than 1000 preprints related to NeRFs published. This paper serves as a bridge for people starting to study these fields by building on the basics of Mathematics, Geometry, Computer Vision, and Computer Graphics to the difficulties encountered in Implicit Representations at the intersection of all these disciplines. This survey provides the history of rendering, Implicit Learning, and NeRFs, the progression of research on NeRFs, and the potential applications and implications of NeRFs in today's world. In doing so, this survey categorizes all the NeRF-related research in terms of the datasets used, objective functions, applications solved, and evaluation criteria for these applications.Comment: 413 pages, 9 figures, 277 citation

    Three-Dimensional Reconstruction and Modeling Using Low-Precision Vision Sensors for Automation and Robotics Applications in Construction

    Full text link
    Automation and robotics in construction (ARC) has the potential to assist in the performance of several mundane, repetitive, or dangerous construction tasks autonomously or under the supervision of human workers, and perform effective site and resource monitoring to stimulate productivity growth and facilitate safety management. When using ARC technologies, three-dimensional (3D) reconstruction is a primary requirement for perceiving and modeling the environment to generate 3D workplace models for various applications. Previous work in ARC has predominantly utilized 3D data captured from high-fidelity and expensive laser scanners for data collection and processing while paying little attention of 3D reconstruction and modeling using low-precision vision sensors, particularly for indoor ARC applications. This dissertation explores 3D reconstruction and modeling for ARC applications using low-precision vision sensors for both outdoor and indoor applications. First, to handle occlusion for cluttered environments, a joint point cloud completion and surface relation inference framework using red-green-blue and depth (RGB-D) sensors (e.g., Microsoft® Kinect) is proposed to obtain complete 3D models and the surface relations. Then, to explore the integration of prior domain knowledge, a user-guided dimensional analysis method using RGB-D sensors is designed to interactively obtain dimensional information for indoor building environments. In order to allow deployed ARC systems to be aware of or monitor humans in the environment, a real-time human tracking method using a single RGB-D sensor is designed to track specific individuals under various illumination conditions in work environments. Finally, this research also investigates the utilization of aerially collected video images for modeling ongoing excavations and automated geotechnical hazards detection and monitoring. The efficacy of the researched methods has been evaluated and validated through several experiments. Specifically, the joint point cloud completion and surface relation inference method is demonstrated to be able to recover all surface connectivity relations, double the point cloud size by adding points of which more than 87% are correct, and thus create high-quality complete 3D models of the work environment. The user-guided dimensional analysis method can provide legitimate user guidance for obtaining dimensions of interest. The average relative errors for the example scenes are less than 7% while the absolute errors less than 36mm. The designed human worker tracking method can successfully track a specific individual in real-time with high detection accuracy. The excavation slope stability monitoring framework allows convenient data collection and efficient data processing for real-time job site monitoring. The designed geotechnical hazard detection and mapping methods enable automated identification of landslides using only aerial video images collected using drones.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138626/1/yongxiao_1.pd

    Divergence in Architectural Research

    Get PDF
    ConCave Ph.D. Symposium 2020: Divergence in Architectural Research, March 5-6, 2020, Georgia Institute of Technology, Atlanta, GA.The essays in this volume have come together under the theme “Divergence in Architectural Research” and present a snapshot of Ph.D. research being conducted in over thirty architectural research institutions, representing fourteen countries around the world. These essays also provide a window into the presentations and discussions that took place March 5-6, 2020, during the ConCave Ph.D. Symposium “Divergence in Architectural Research,” under the auspices of the School of Architecture, Georgia Institute of Technology, in Atlanta, Georgia. On a preliminary reading, the essays respond to the call of divergence by doing just that; they present the great diversity of research topics, methodologies, and practices currently found under the umbrella of “architectural research.” They inform inquiry within architectural programs and across disciplinary concentrations, and also point to the ways that the academy, research methodologies, and the design profession are evolving and encroaching upon one another, with the unspoken hope of encouraging new relationships, reconfiguring previous assumptions about the discipline, and interweaving research and practice
    corecore