96,727 research outputs found

    A coordinate system on a surface: definition, properties and applications

    Get PDF
    Coordinate systems associated to a finite set of sample points have been extensively studied, especially in the context of interpolation of multivariate scattered data. Notably, Sibson proposed the so-called natural neighbor coordinates that are defined from the Voronoi diagram of the sample points. A drawback of those coordinate systems is that their definition domain is restricted to the convex hull of the sample points. This makes them difficult to use when the sample points belong to a surface. To overcome this difficulty, we propose a new system of coordinates. Given a closed surface SS, i.e. a (dāˆ’1)(d-1)-manifold of Rd\mathbb{R} ^d, the coordinate system is defined everywhere on the surface, is continuous, and is local even if the sampling density is finite. Moreover, it is inherently (dāˆ’1)(d-1)-dimensional while the previous systems are dd-dimensional. No assumption is made about the ordering, the connectivity or topology of the sample points nor of the surface. We illustrate our results with an application to interpolation over a surface

    A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces

    Get PDF
    In this paper we present a high-order kernel method for numerically solving diffusion and reaction-diffusion partial differential equations (PDEs) on smooth, closed surfaces embedded in Rd\mathbb{R}^d. For two-dimensional surfaces embedded in R3\mathbb{R}^3, these types of problems have received growing interest in biology, chemistry, and computer graphics to model such things as diffusion of chemicals on biological cells or membranes, pattern formations in biology, nonlinear chemical oscillators in excitable media, and texture mappings. Our kernel method is based on radial basis functions (RBFs) and uses a semi-discrete approach (or the method-of-lines) in which the surface derivative operators that appear in the PDEs are approximated using collocation. The method only requires nodes at "scattered" locations on the surface and the corresponding normal vectors to the surface. Additionally, it does not rely on any surface-based metrics and avoids any intrinsic coordinate systems, and thus does not suffer from any coordinate distortions or singularities. We provide error estimates for the kernel-based approximate surface derivative operators and numerically study the accuracy and stability of the method. Applications to different non-linear systems of PDEs that arise in biology and chemistry are also presented

    Interpolation and scattered data fitting on manifolds using projected Powellā€“Sabin splines

    Get PDF
    We present methods for either interpolating data or for fitting scattered data on a two-dimensional smooth manifold. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of a family of charts {(UĪ¾ , Ī¾)}Ī¾āˆˆ satisfying certain conditions of smooth dependence on Ī¾. If is a C2-manifold embedded into R3, then projections into tangent planes can be employed. The data fitting method is a two-stage method. We prove that the resulting function on the manifold is continuously differentiable, and establish error bounds for both methods for the case when the data are generated by a smooth function

    A Novel Asymptotic Solution to the Sommerfeld Radiation Problem: Analytic field expressions and the emergence of the Surface Waves

    Full text link
    The well-known "Sommerfeld radiation problem" of a small -Hertzian- vertical dipole above flat lossy ground is reconsidered. The problem is examined in the spectral domain, through which it is proved to yield relatively simple integral expressions for the received Electromagnetic (EM) field. Then, using the Saddle Point method, novel analytical expressions for the scattered EM field are obtained, including sliding observation angles. As a result, a closed form solution for the subject matter is provided. Also, the necessary conditions for the emergence of the so-called Surface Wave are discussed as well. A complete mathematical formulation is presented, with detailed derivations where necessary.Comment: 14 pages, 3 figures, Submitted for publication to "Progress in Electromagnetics Research" (PIER) at 21/09/201

    Helicity Maximization of Structured Light to Empower Nanoscale Chiral Matter Interaction

    Full text link
    Structured light enables the characterization of chirality of optically small nanoparticles by taking advantage of the helicity maximization concept recently introduced in[1]. By referring to fields with nonzero helicity density as chiral fields, we first investigate the properties of two chiral optical beams in obtaining helicity density localization and maximization requirements. The investigated beams include circularly polarized Gaussian beams and also an optical beam properly composed by a combination of a radially and an azi-muthally polarized beam. To acquire further enhancement and localization of helicity density beyond the diffraction limit, we also study chiral fields at the vicinity of a spherical dielectric nanoantenna and demon-strate that the helicity density around such a nanoantenna is a superposition of helicity density of the illu-minating field, scattered field, and an interference helicity term. Moreover, we illustrate when the nanoan-tenna is illuminated by a proper combination of azimuthal and radially polarized beams, the scattered nearfields satisfy the helicity maximization conditions beyond the diffraction limit. The application of the concept of helicity maximization to nanoantennas and generating optimally chiral nearfield result in helici-ty enhancement which is of great advantage in areas like detection of nanoscale chiral samples, microsco-py, and optical manipulation of chiral nanoparticles
    • ā€¦
    corecore