In this paper we present a high-order kernel method for numerically solving
diffusion and reaction-diffusion partial differential equations (PDEs) on
smooth, closed surfaces embedded in Rd. For two-dimensional
surfaces embedded in R3, these types of problems have received
growing interest in biology, chemistry, and computer graphics to model such
things as diffusion of chemicals on biological cells or membranes, pattern
formations in biology, nonlinear chemical oscillators in excitable media, and
texture mappings. Our kernel method is based on radial basis functions (RBFs)
and uses a semi-discrete approach (or the method-of-lines) in which the surface
derivative operators that appear in the PDEs are approximated using
collocation. The method only requires nodes at "scattered" locations on the
surface and the corresponding normal vectors to the surface. Additionally, it
does not rely on any surface-based metrics and avoids any intrinsic coordinate
systems, and thus does not suffer from any coordinate distortions or
singularities. We provide error estimates for the kernel-based approximate
surface derivative operators and numerically study the accuracy and stability
of the method. Applications to different non-linear systems of PDEs that arise
in biology and chemistry are also presented