8 research outputs found

    An Algorithm based on VANET Technology to Count Vehicles Stopped at a Traffic Light

    Get PDF
    Vehicular Ad hoc Networks (VANETs) have gained considerable attention in the past few years due to their promising applicability in relation to the Intelligent Transportation Systems (ITSs). This emerging new technology will provide timely information to develop adaptive traffic light control systems that will allow a significant optimization of the vehicular traffic flow. In this paper, we introduce a novel algorithm for counting vehicles stopped at a traffic light using VANET technology. The algorithm is based on the idea of the propagation of a count request message from the RSU (originating unit) toward the vehicles that are at the end of the waiting line, and the propagation of a response message (with the number of vehicles counted) in the opposite direction, that is, from the vehicles at the end of the line toward the RSU. For this, our algorithm uses BEACON messages periodically to exchange the necessary information between any two 1-hop neighbors. Using the data received from BEACON messages, each vehicle can maintain its own neighbors list. To validate and evaluate the performance of our proposal, we use Veins (Vehicle in Network Simulation) and TraCI (Traffic Control Interface). The former is a framework that ties together a network simulator (OMNeT++) with a road traffic simulator (SUMO), and the latter is an API for the communications between both simulators by providing TCP connections between each other. The results of the simulations performed in different scenarios are encouraging since they indicate that the proposed algorithm efficiently computes a number of vehicles very close to the real one, using a few control messages

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios

    Detection of traffic congestion and incidents from GPS trace analysis

    Get PDF
    This paper presents an expert system for detecting traffic congestion and incidents from real-time GPS data collected from GPS trackers or drivers’ smartphones. First, GPS traces are pre-processed and placed in the road map. Then, the system assigns to each road segment of the map a traffic state based on the speeds of the vehicles. Finally, it sends to the users traffic alerts based on a spatiotemporal analysis of the classified segments. Each traffic alert contains the affected area, a traffic state (e.g., incident, slowed traffic, blocked traffic), and the estimated velocity of vehicles in the area. The proposed system is intended to be a valuable support tool in traffic management for municipalities and citizens. The information produced by the system can be successfully employed to adopt actions for improving the city mobility, e.g., regulate vehicular traffic, or can be exploited by the users, who may spontaneously decide to modify their path in order to avoid the traffic jam. The elaboration performed by the expert system is independent of the context (urban o non-urban) and may be directly employed in several city road networks with almost no change of the system parameters, and without the need for a learning process or historical data. The experimental analysis was performed using a combination of simulated GPS data and real GPS data from the city of Pisa. The results on incidents show a detection rate of 91.6%, and an average detection time lower than 7 min. Regarding congestion, we show how the system is able to recognize different levels of congestion depending on different road use

    The Internet of Things: A Review of Enabled Technologies and Future Challenges

    Get PDF
    The Internet of Things (IoT) is an emerging classical model, envisioned as a system of billions of small interconnected devices for posing the state-of-the-art findings to real-world glitches. Over the last decade, there has been an increasing research concentration in the IoT as an essential design of the constant convergence between human behaviors and their images on Information Technology. With the development of technologies, the IoT drives the deployment of across-the-board and self-organizing wireless networks. The IoT model is progressing toward the notion of a cyber-physical world, where things can be originated, driven, intermixed, and modernized to facilitate the emergence of any feasible association. This paper provides a summary of the existing IoT research that underlines enabling technologies, such as fog computing, wireless sensor networks, data mining, context awareness, real-time analytics, virtual reality, and cellular communications. Also, we present the lessons learned after acquiring a thorough representation of the subject. Thus, by identifying numerous open research challenges, it is presumed to drag more consideration into this novel paradigm. 2013 IEEE.This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government(MSIT) (No. 2018-0-01411, A Micro-Service IoTWare Framework Technology Development for Ultra small IoT Device).Scopus2-s2.0-8505888625

    Context-Aware Recommendation Systems in Mobile Environments

    Get PDF
    Nowadays, the huge amount of information available may easily overwhelm users when they need to take a decision that involves choosing among several options. As a solution to this problem, Recommendation Systems (RS) have emerged to offer relevant items to users. The main goal of these systems is to recommend certain items based on user preferences. Unfortunately, traditional recommendation systems do not consider the user’s context as an important dimension to ensure high-quality recommendations. Motivated by the need to incorporate contextual information during the recommendation process, Context-Aware Recommendation Systems (CARS) have emerged. However, these recent recommendation systems are not designed with mobile users in mind, where the context and the movements of the users and items may be important factors to consider when deciding which items should be recommended. Therefore, context-aware recommendation models should be able to effectively and efficiently exploit the dynamic context of the mobile user in order to offer her/him suitable recommendations and keep them up-to-date.The research area of this thesis belongs to the fields of context-aware recommendation systems and mobile computing. We focus on the following scientific problem: how could we facilitate the development of context-aware recommendation systems in mobile environments to provide users with relevant recommendations? This work is motivated by the lack of generic and flexible context-aware recommendation frameworks that consider aspects related to mobile users and mobile computing. In order to solve the identified problem, we pursue the following general goal: the design and implementation of a context-aware recommendation framework for mobile computing environments that facilitates the development of context-aware recommendation applications for mobile users. In the thesis, we contribute to bridge the gap not only between recommendation systems and context-aware computing, but also between CARS and mobile computing.<br /

    5G wireless network support using umanned aerial vehicles for rural and low-Income areas

    Get PDF
    >Magister Scientiae - MScThe fifth-generation mobile network (5G) is a new global wireless standard that enables state-of-the-art mobile networks with enhanced cellular broadband services that support a diversity of devices. Even with the current worldwide advanced state of broadband connectivity, most rural and low-income settings lack minimum Internet connectivity because there are no economic incentives from telecommunication providers to deploy wireless communication systems in these areas. Using a team of Unmanned Aerial Vehicles (UAVs) to extend or solely supply the 5G coverage is a great opportunity for these zones to benefit from the advantages promised by this new communication technology. However, the deployment and applications of innovative technology in rural locations need extensive research

    Adaptive Energy Saving and Mobility Support IPv6 Routing Protocol in Low-Power and Lossy Networks for Internet of Things and Wireless Sensor Networks

    Get PDF
    Internet of Things (IoT) is an interconnection of physical objects that can be controlled, monitored and exchange information from remote locations over the internet while been connected to an Application Programme Interface (API) and sensors. It utilizes low-powered digital radios for communication enabling millions and billions of Low-power and Lossy Network (LLN) devices to communicate efficiently via a predetermined routing protocol. Several research gaps have identified the constraints of standardised versions of IPv6 Routing Protocol for Low Power and Lossy Networks evidently showing its lack of ability to handle the growing application needs and challenges. This research aims to handle routing from a different perspective extending from energy efficiency, to mobility aware and energy scavenging nodes thereby presenting numerous improvements that can suit various network topologies and application needs. Envisioning all the prospects and innovative services associated with the futuristic ubiquitous communication of IoT applications, we propose an adaptive Objective Function for RPL protocol known as Optimum Reliable Objective Function (OR-OF) having a fuzzy combination of five routing metrics which are chosen based on system and application requirements. It is an approach which combines the three proposed implemented Objective Functions within this thesis to enable the OR-OF adapt to different routing requirements for different IoT applications. The three proposed OFs are Energy saving Routing OF, Enhanced Mobility Support Routing OF and Optimized OF for Energy Scavenging nodes. All proposed OFs were designed, implemented, and simulated in COOJA simulator of ContikiOS, and mathematical models were developed to validate simulated results. Performance Evaluation indicated an overall improvement as compared with the standardised versions of RPL protocols and other related research works in terms of network lifetime with an average of 40%, packet delivery ratio of 21%, energy consumption of 82% and End-to-End Delay of 92%
    corecore