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An Algorithm based on VANET Technology to Count Vehicles Stopped at a 

Traffic Light 
 
Abstract Vehicular Ad hoc Networks (VANETs) have gained 

considerable attention in the past few years due to their 

promising applicability in relation to the Intelligent 

Transportation Systems (ITSs). This emerging new 

technology will provide timely information to develop 

adaptive traffic light control systems that will allow a 

significant optimization of the vehicular traffic flow. In this 

paper, we introduce a novel algorithm for counting vehicles 

stopped at a traffic light using VANET technology. The 

algorithm is based on the idea of the propagation of a count 

request message from the RSU (originating unit) toward the 

vehicles that are at the end of the waiting line, and the 

propagation of a response message (with the number of 

vehicles counted) in the opposite direction, that is, from the 

vehicles at the end of the line toward the RSU. For this, our 

algorithm uses BEACON messages periodically to exchange 

the necessary information between any two 1-hop neighbors. 

Using the data received from BEACON messages, each 

vehicle can maintain its own neighbors list. To validate and 

evaluate the performance of our proposal, we use Veins 

(Vehicle in Network Simulation) and TraCI (Traffic Control 

Interface). The former is a framework that ties together a 

network simulator (OMNeT++) with a road traffic simulator 

(SUMO), and the latter is an API for the communications 

between both simulators by providing TCP connections 

between each other. The results of the simulations performed 

in different scenarios are encouraging since they indicate that 

the proposed algorithm efficiently computes a number of 

vehicles very close to the real one, using a few control 

messages. 

 

Keywords: VANETs; Vehicular Networks; Vehicle 

Counting; OMNeT++; SUMO; Veins. 

1 Introduction 

Vehicular Ad hoc Networks (VANETs) are aimed at 
communications between vehicles [1]. They are similar to 
Mobile Ad hoc Networks (MANETs), where mobile units are 
vehicles, but with a very dynamic topology and density, high 
speed, and a mobility bounded by the road infrastructure and 
neighboring vehicles [2]. 

According to [3], the aim of VANETs is the development 
of platforms for communications between moving vehicles and 
between them and the road infrastructure. In VANET, there are 
two types of networking units: (1) On-Board Units (OBUs) are 
placed inside vehicles for communications to make them 
“smart objects” rather than mere transportation tools and (2) 
Road Side Units (RSUs) that are fixed and installed near the 
road. A VANET allows two types of communications: (1) 
communications between vehicles often referred to as Vehicle-
to-Vehicle (V2V) communications that take place between 
OBUs, and (2) communications between vehicles and RSUs, 

known as Vehicle-to-Infrastructure (V2I). Both modes of 
communications can be performed using the same wireless 
communication technology, such as IEEE 802.11p [4]. Also, a 
VANET-enabled vehicle should be able to receive and relay 
messages to other VANET-enabled vehicles in its 
neighborhood (also known as multi-hop relaying) [1]. 

VANETs used short-range wireless communications (e.g., 
IEEE 802.11p [4]). A band of frequencies has already been 
reserved by the Federal Communications Commission (5.850 
to 5.925 GHz), and it is generally divided into channels of 10 
MHz: 6 Service CHannels (SCHs) and 1 Control CHannel 
(CCH) [4][5]. The SCHs are general purpose channels, that is, 
they can be used for safety applications or not. The CCH is 
reserved for safety applications. IEEE 802.11p also permits the 
aggregation of two contiguous channels, to form a wider 
channel with a bandwidth of 20 MHz. In the specialized 
literature, this band of frequencies designated by the Federal 
Communications Commission (FCC) is also known as 
Dedicated Short Range Communication (DSRC). 

Wireless Access in Vehicular Environments (WAVE) has 
been proposed by the IEEE to specify the architecture for 
VANETs. It is based on several documents for standardization. 
The Physical (PHY) and the Medium Access Control (MAC) 
layers of WAVE are presented in the IEEE 802.11p standard. 
In the network layer, WAVE promotes the usage of two 
protocols: (1) Internet Protocol version 6 (IPv6) and (2) 
WAVE Short Message Protocol (WSMP). As known, IPv6 is 
the successor of IPv4, and it can be used for most of the 
applications. Unlike IPv6, WAVE is a very fast and light 
protocol, focused on supporting safety applications. To manage 
the seven channels that are not overlapped, IEEE 1609.4 [6] 
introduces the multi-channel operations. 

VANETs support a large number of Intelligent 
Transportation System (ITS) applications, that will allow in the 
not too distant future, the increase of the physical safety of 
drivers and passengers, the optimization of daily traffic, the 
notification of real-time road congestions, the propagation of 
alerts of accidents or obstacles on the road, the distribution of 
useful information for drivers (e.g., nearby restaurants, hotels, 
gas stations), the access to social networks, file-sharing 
services, or chats, as well as the connection to external 
networks such as Internet. 

The growing of traffic density on the roads of most towns 
and cities around the world is becoming a problem. This 
growing brings traffic congestion on the roads, resulting in 
negative effects on traveling time, traffic safety, air pollution, 
noise disturbance, and energy consumption. Therefore, the task 
of controlling and optimizing the vehicular flows, in 
agglomerations and their outskirts, is one of the main activities 
of traffic engineering, seeking to benefit the communities. 
Before tackling such a complex problem as the optimization of 
vehicular traffic, the main point is to know how that traffic 
behaves, i.e., to obtain reliable models of the same. How many 
vehicles use a road section? Something as simple as that is hard 



and expensive to know in most of our main cities. If we lack 
the number of vehicles on a road, we cannot know or estimate 
the occupation in a certain road section, or propose a dynamic 
schedule for the traffic lights at an intersection, etc. However, 
the actual ATCSs (Adaptive Traffic Control Systems) have 
been using basic “in situ” technologies (e.g., inductive loops, 
digital cameras, video cameras, thermal cameras, pneumatic 
road tubes, magnetic sensors, radars, piezoelectric sensors, 
infrared beams) to reduce road accidents and optimize traffic 
flows, which could be dramatically improved with the 
integration of emerging technologies such as VANET. 

As stated before, in “Traffic Engineering”, a specific 
problem to be solved is the development of algorithms to 
optimize the cycles of traffic lights of a set of intersections and 
thus achieve a greater vehicular flow with fairer waiting times 
for all vehicles. Therefore, much research has been done in the 
field of ATCSs [7] and traffic congestion detection [8][9][10] 
to improve the flow of vehicles. As we have seen, there is no 
single solution to solve the above problem. The range of 
initiatives is wide, and many of them must be applied together 
to get tangible results. However, to improve existing solutions 
or to propose new ones, basic algorithms and tools must be 
developed. An example of such tools is the counting of 
vehicles with a specific characteristic or within a specified 
geographical area. According to [11][12][13], there are some 
alternatives or proposals for counting vehicles based primarily 
on “in situ” technologies. These “in situ” technologies are 
complex to install, and they suffer a high economic cost caused 
by both, installation and recurring maintenance. Due to the 
huge number of roads worldwide, alternatives to “in situ” 
technologies must be considered. The VANET technology 
seems to be a good option for vehicle counting and should 
become ubiquitous promptly since it is estimated that all 
vehicles will be equipped with a WAVE device within the next 
15 years [14]. In addition, in the case of WAVE, the costs of 
installing and maintaining the technology are shared between 
the owners of the vehicles and the organization that maintains 
the roads (town hall, city hall, county administration, state 
government, highway administration, etc.) That is, the owner 
of a vehicle will have to buy an RSU for his/her car, and will 
have to pay the charges related to its maintenance. Local, 
national, or international establishments will install and 
maintain RSUs on the road infrastructure. 

In this research work, we propose a novel algorithm to 
count vehicles that are stopped at a traffic light based on 
VANET technology, as a basic and integral tool for the 
development of applications for the ITS. With the aim of 
validating the proposed algorithm, we use a discrete event 
network simulator called OMNeT++ in conjunction with a road 
traffic simulator known as SUMO (Simulation of Urban 
Mobility), and the Veins (Vehicle in Network Simulation) 
framework that bidirectionally couples the previously 
mentioned simulators. We test and analyze our proposal in 
diverse scenarios, where we vary some parameters such as the 
number of vehicles, the signal propagation range, the number 
of lanes, the penetration rate, etc. The simulation results show 
that our novel algorithm performs an efficient vehicle counting 
very close to the real one, with a short response time and a 
small number of control messages. 

We have structured the rest of this paper in the following 
way. First, we review the previous work in Section 2. Then, in 
section 3, we introduce in details our novel algorithm to count 
vehicles that are stopped at a traffic light using WAVE 
technologies. Section 4 justifies our selection of the used 
simulation tools and briefly describes the testbeds for the 
validation of the proposed algorithm. A discussion of the 
results obtained by our simulations is done in Section 5. In the 
last section, we conclude and give directions for future work. 

2 Related Work 

Vehicle counting represents a tool that has numerous 
applications, and due to its usefulness, it has been done in 
various ways or disciplines with several technologies that 
makes it applicable to diverse situations. Up to now, most of 
the proposals to count vehicles, with greater or lesser accuracy, 
are based mainly on methods or techniques supported by 
conventional “in-situ” technologies (e.g., inductive loops, 
digital cameras, video cameras, thermal cameras, pneumatic 
road tubes, magnetic sensors, radars, piezoelectric sensors, 
infrared beams) [15]. 

In the specialized literature, there are many methods, 
techniques, and algorithms based on the “in situ” technologies 
mentioned above. For example, there is a lot of work done with 
images or recordings of digital or video cameras. 
Chintalacheruvu and Muthukumar [16] proposed an efficient 
video-based vehicle detection system constructed on top of 
Harris-Stephen corner detector algorithm [17]. The algorithm 
was used to develop a standalone vehicle detection and 
tracking system that determines vehicle count and speed at 
arterial roadways and freeways. The authors of [18][19] 
employed images obtained from video cameras to count 
vehicles in real time. Peiris and Sonnadara [20] used a single 
digital camera to extract various traffic parameters, including 
vehicle count, density, and type at a three-way junction. 

Sensor networks have also been used to count vehicles. 
Knaian [21] developed a low-cost package, based on 
anisotropic magnetoresistive magnetic field sensors that can 
count passing vehicles. According to the author, the sensors 
can operate in the roadbed for at least ten years without 
maintenance, and do not require running wires under the road, 
facilitating a wide deployment. Litzenberger et al. [22] 
proposed an embedded system based on an transient optical 
sensor that is capable of detecting, counting, and measuring the 
velocity of passing vehicles. 

Contreras and Gamess [23] proposed an algorithm to count 
objects (people, animals, devices, etc.) with wireless 
technologies (IEEE 802.11) in circular-bounded areas, using 
several non-overlapping communication channels. In the field 
of counting vehicles based on VANET technologies, just a few 
efforts have been made up to today. Gamess and Mahgoub [1] 
proposed a method to obtain the length of a line of vehicles 
stopped at a traffic light, by using VANET technology. The 
algorithm is based on an effective propagation of a request 
message from the beginning of the line (started by the traffic 
light) towards the end, and the transmission of the 
correspondent response message from the last vehicle to the 
traffic light, using multi-hop, with the expected length. 



According to the authors, a possible approximation of the 
number of vehicles can be obtained by dividing the resulting 
length by a constant value (e.g., 7 meters), where 7 meters 
represents the average space to accommodate a vehicle in a 
line. Unlike the present work, the counting obtained in [1] is an 
approximation. 

Some other works do not count, but estimate the density of 
vehicles in a specific region. In their work, Luo, Wei, Cheng, 
and Ren [24] developed an innovative query-response 
framework which not only enables vehicles to detect the traffic 
crowdedness of their surrounding region, but also enables 
vehicles to obtain the remote region traffic crowdedness by 
sending query messages and fusing reply messages. 

Generally speaking, a considerable amount of work has 

been done with “in-situ” technologies to count vehicles in 

different scenarios. However, algorithms based on VANET 

technologies are still very rare, and new proposals are welcome 

to consolidate this area of knowledge. 

3 Algorithm to Count Vehicles that are Stopped at a 

Traffic Light, using VANET Technologies 

In this section, we describe our novel algorithm to count 

vehicles that are waiting for the traffic light to change from 

red to green. 

3.1 Requirements and Assumptions 

Note that in this paper, we use the word “unit” 

interchangeably with the word “vehicle”. They are one and the 

same. Also, we call “originator” the RSU which initiates the 

counting process, i.e., the entity that requires the number of 

vehicles around it, up to a specified range or hop count (called 

Hop Limit in our algorithm). As can be seen, the field Hop 

Limit delimits the counting range, so that application 

developers will have to select this parameter according to their 

needs. In our simulations, the RSU starts counting with a value 

of Hop Limit equal to 3, but any value can be used according to 

the type of applications where the algorithm will be used. 

For the implementation of our novel algorithm, we only 

require the usage of a unique channel, of the seven channels 

that are available in the DSRC band (5.850–5.925 GHz) [25]. 

We also assume that each vehicle is capable of determining its 

actual position on the road using, for example, location 

services like the Global Positioning System (GPS) [26]. In our 

work, the location is specified through the latitude and the 

longitude. However, the same algorithm can be modified to 

use Cartesian coordinates, by choosing an origin and the 

direction of the axis. The vehicles that do not have a WAVE 

device will not be counted, since there is no way to detect 

them (a penetration rate of 100%). Additionally, the algorithm 

requires symmetric radio ranges, i.e., there is no one-way 

communication between two vehicles (if vehicle V1 can 

communicate with vehicle V2, a transmission from V2 will 

also reach V1). 

3.2 Structure of Unicast COUNT_REQUEST and 

COUNT_REPLY Messages 

The COUNT_REQUEST and COUNT_REPLY messages are 
unicast messages propagated by the RSU and the vehicles in 
the process of counting vehicles stopped at a traffic light. 
When starting the counting, the RSU will send a unicast 
COUNT_REQUEST message toward the last vehicle in the 
line of waiting vehicles, and later this last vehicle will respond 
with a unicast COUNT_REPLY message that will be 
transmitted toward the RSU. Both messages have the same 
Protocol Data Unit (PDU) and are composed of 10 fields (see 
Fig. 1). 

 

Fig. 1 COUNT_REQUEST and COUNT_REPLY Messages 

The field Unit ID represents the identification of the sender 

vehicle or RSU. The value of Unit ID must be unique. Message 

Type can be either 0 or 1 and is used to identify the type of 

message. A value of 0 identifies a COUNT_REQUEST, while 

1 is for a COUNT_REPLY. Sequence Number is used to match 

COUNT_REQUEST messages with COUNT_REPLY 

messages and to distinguish between different requests. The 

RSU and the vehicles transmit COUNT_REQUEST messages 

along with the argument Hop Away which represents the 

number of hops-away the receiver of the message is from the 

RSU. The RSU is the unit that initiates the process of counting 

specifying a value of Hop Away equal to 1. Each vehicle that 

retransmits the COUNT_REQUEST message shall increment 

this value by 1. The units will discard the message when the 

value of Hop Away is greater than Hop Limit. The field Hop 

Limit is a way to control how far away COUNT_REQUEST 

messages can be forwarded. It delimits the counting range. 

Timestamp is set by the RSU when it sends the 

COUNT_REQUEST message. It is a timestamp taken by the 

RSU at the moment of sending the COUNT_REQUEST 

message and is aimed to control out-of-date messages and 

replay attacks. Message Direction indicates in which direction 

the message must be transmitted. For this, the four least 

significant bits of the Message Direction field are used to 

indicate one of four possible directions (North, South, East, 

and West). For example, if the message must be transmitted in 

all directions, then all lowest four bits of the field Message 

Direction must be set to 1 (1111). RSU Position is the position 

(latitude and longitude) of the RSU, and is set by the RSU 

when sending the COUNT_REQUEST message. Farthest 

Position is the location (latitude and longitude) of the actual 

known unit that is farthest away from the RSU in the line of 

vehicles. Number Vehicles is set with the number of vehicles 

counted up to now during the transmission of the 
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COUNT_REQUEST message. In other words, before the 

retransmission of a COUNT_REQUEST, a unit must update 

the value of this field by adding the number of valid neighbors 

stored on its neighbors list. In the forwarding of 

COUNT_REPLY messages back to the RSU, its value is not 

altered. 

3.3 Structure of BEACON Messages 

The PDU of BEACON messages is composed of 4 fields as 
depicted in Fig. 2. 

 

Fig. 2 Structure of a BEACON Message 

Unit ID refers to the sender identification. Timestamp is the 
actual time set by the unit when it sends a BEACON message. 
The synchronization of time between the different units is 
solved with the time received from the GPS satellites. Sender 
Position and Sender Speed represent the actual position 
(latitude and longitude) and speed of the unit when it sends the 
BEACON message, respectively. 

3.4 Discovery Protocol for Neighboring Vehicles 

As stated before, we propose a discovery protocol of 1-hop 
neighbors that helps in the transmission of both the 
COUNT_REQUEST messages started by the RSU and the 
COUNT_REPLY messages started by the last vehicle, in the 
opposite direction. 

 

Fig. 3 Flow Diagram for Updating the Neighbors List 

Our algorithm uses BEACON messages to periodically 
exchange the necessary information between any two in-range 
neighbors to maintain a list of 1-hop neighbors. The number of 
neighboring vehicles around one unit can be easily obtained 
from its neighbors list. Every unit periodically broadcasts 
BEACON messages that include its Unit ID, a timestamp, and 
its actual position and speed (see Fig. 2), so that, 1-hop 
neighbors are aware of its presence, position, and speed. 
Position and speed are obtained by units from their GPS 
receivers. When a vehicle receives a BEACON message, it first 
checks the Timestamp field (see Fig. 2) to validate that the 
BEACON message is current and not a copy of a previous 
message injected by a replay attack. If the Timestamp is valid, 

then the unit checks whether or not the Unit ID exists in its list 
of 1-hop neighbors. If the Unit ID does not exist, a new entry is 
created and the information of this neighbor is stored. 
Otherwise, the information of the fields Sender Position and 
Sender Speed for the sending vehicle are just updated as well 
as the associated timer. With this information, the unit can 
interpolate the actual position of its 1-hop neighbors at any 
time. Moreover, entries in the neighbors list that are not 
updated during a certain period of time will be considered stale 
and then removed. The flow diagram for creating a 1-hop 
neighbors list using BEACON messages is given in Fig. 3. The 
BEACON interval is set to 1s to ensure that the information in 
the neighbors list is always up-to-date. 
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3.5 Algorithm 

Beside of the neighbor discovery protocol described before, the 
basic approach of the algorithm is: 

1) Propagate a unicast COUNT_REQUEST, from the RSU 
toward the vehicle that is farther away in the line of 
vehicles, with the total number of vehicles counted up to 
now (called Number Vehicles in our algorithm) 

2) Propagate a unicast COUNT_REPLY in the opposite 
direction, i.e., from the last vehicle in the line toward the 
RSU, with the total number of vehicles calculated 
according to the propagation of the previous 
COUNT_REQUEST message. 

Fig. 4 depicts a simplified flow diagram for the procedure 
followed by the RSU in the counting algorithm. The RSU starts 
the vehicle counting by sending a unicast COUNT_REQUEST 
message (see Fig. 1) with its own geographic location in the 
field RSU Position, toward the last unit in the line of waiting 
vehicles. For this, the RSU will determine and put in the 
Farthest Position field the location (latitude and longitude) of 
the vehicle that is farther away from it in the line and within its 

propagation range. The RSU will also set in the field Number 
Vehicles the result of computing the total number of vehicles in 
its neighbors list, that are waiting in the line. Additionally, the 
RSU will specify a value of Hop Away equal to 1 and put a 
time sample in the Timestamp field. 

Now, when the RSU receives a COUNT_REPLY message, 
it will first validate its Timestamp field. If the timestamp is not 
within the expected interval of time, the COUNT_REPLY is 
discarded. Otherwise, the RSU will obtain the total number of 
vehicles in the field Number Vehicles. 

It is worth to point out that not all the entries that are in the 
neighbors list of the RSU are valid for the counting. That is, the 
neighbors list also includes vehicles that are moving in the 
opposite direction and vehicles that have already passed the 
traffic light. However, the vehicles in the reverse direction can 
be easily discarded in accordance to their speed. Also, the 
actual location can be used to distinguish vehicles that have 
already passed the traffic light. 

 

Fig. 4 Flow Diagram of the Procedure Followed by the RSU to Count Vehicles Stopped at a Traffic Light 
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Fig. 5 depicts a simplified flow diagram for the procedure 
followed by the vehicles in the counting algorithm. When a 
vehicle receives a COUNT_REQUEST message, it will first 
validate the fields Timestamp and Hop Away. If the timestamp 
is not within the expected interval of time or the number of 
hops has been exceeded, the COUNT_REQUEST is discarded. 
Otherwise, the behavior of the vehicle will depend on whether 
or not it is the last unit of the line, or whether or not the field 
Hop Away is equal to the field Hop Limit. If so, the vehicle will 
start to send a unicast COUNT_REPLY message back to the 
RSU. As can be appreciated, only this “last unit” in the line is 
responsible for eliminating the COUNT_REQUEST and 
replacing it by a COUNT_REPLY that moves in the opposite 
direction. It is a copy of the COUNT_REQUEST message with 
Message Type equal to 1 (to indicate a COUNT_REPLY) and a 
Unit ID field updated to the correct ID. Note that the value of 
Hop Away and Farthest Position are not modified during the 
propagation of the COUNT_REPLY, allowing the RSU to 
know how far away (in hops and in meters), the counting was 
done. Otherwise, if the vehicle is not the “last one” of the line, 
then it will make the following modifications: (1) increment by 

1 the Hop Away field, (2) update the field Number Vehicles 
based on the information from its neighbors list, (3) determine 
the farthest vehicle from the RSU in the line within its range, 
and (4) resend the COUNT_REQUEST message to the unit 
defined in the Farthest Position field. 

Now, when a vehicle receives a COUNT_REPLY message, 
it will first validate its Timestamp field. If the timestamp is not 
within the expected interval of time, the COUNT_REPLY is 
discarded. Otherwise, the vehicle will determine from its 
neighbors list the closest unit to the RSU (the next forwarder) 
in the line, within its propagation range, and will resend the 
COUNT_REPLY message to this unit. It is obvious that if the 
originating RSU is within the propagation range of the vehicle, 
the COUNT_REPLY message will be sent to it directly. 

New units can be added in the line of waiting vehicles at 
any moment. If an RSU had already made a counting before 
the arrival of new vehicles, this RSU would not be informed 
about the change, unless it starts a new counting. That is, the 
proposed algorithm is based on the request/response model, 
and the counting obtained only applies for a specific time. 

 

Fig. 5 Flow Diagram of the Procedure Executed by Vehicles to Count Units Stopped at a Traffic Light 
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COUNT_REQUEST (Fig. 6) and a COUNT_REPLY (Fig. 7) 
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by the units. To facilitate the explanation of the example, we 

will assume that the radius of the propagation range of a 

message is equivalent to five vehicles. In a real scenario, it will 

be bigger than five vehicles since the range of DSRC is 

targeted to be up to 1 km [1]. The basic operation of the 

algorithm is as follows: Before the initiation of the counting 

process, the RSU will listen to BEACON messages to discover 

vehicles that are within its propagation range. In this case, the 

RSU will detect the presence of V1, V2, V3, V4, and V5 that are 

waiting for the green light, where V5 is the farthest away 

vehicle from the RSU. Therefore, the RSU will transmit a 

unicast COUNT_REQUEST message to V5 (see Fig. 6) with 

Hop Away equal to 1, Farthest Position with the location of 

V5 (the next forwarder), and Number Vehicles set to 5. Using 

the information from its neighbors list, V5 determines that 

there are five vehicles (V6, V7, V8, V9, and V10) that are 

waiting in the line and are farther away from the position 

specified in the field Farthest Position of the received 

COUNT_REQUEST. So, vehicle V5 resends the 

COUNT_REQUEST to V10 with the appropriate changes by 

incrementing by 1 the value Hop Away (its new value is 2), 

setting the location of V10 in the Farthest Position field (the 

farthest unit from the RSU discovered by V5), and adding 5 to 

Number Vehicles (its new value is 10). The process of 

counting will continue with the transmission of the 

COUNT_REQUEST by vehicle V10, followed by vehicle V15 

(see Fig. 6). In this case, vehicle V10 will resend the 

COUNT_REQUEST message with Hop Away equal to 3, 

Farthest Position set to the location of vehicle V15, and 

Number Vehicles equal to 15, whereas V15 will resend the 

COUNT_REQUEST message with Hop Away equal to 4, 

Farthest Position set to the location of vehicle V18, and 

Number Vehicles equal to 18. Vehicle V18 will know that it is 

the last vehicle in the line according to information from its 

neighbors list. Hence, V18 will start the process of the 

propagation of the COUNT_REPLY message (with Number 

Vehicles equal to 18) back to the RSU (see Fig. 7). 

 

 

 
 

Fig. 6 Propagation of the COUNT_REQUEST Message 

 

We can observe in Fig. 7 that vehicle V18 initiates the process 

of the propagation of the unicast COUNT_REPLY message 

back to the RSU, by sending it to V13, the closest unit to the 

RSU discovered by V18. This message is a copy of the 

COUNT_REQUEST received with small changes (Unit ID and 

Message Type are the only modified fields). That is, the 

following important fields will be kept unchanged: Hop Away 

equal to 4, Farthest Position set to the location of vehicle V18, 

and Number Vehicles equal to 18. When vehicle V13 receives 

the COUNT_REPLY, it will resent it to V8 according to the 

result of the selection of the closest unit to the RSU from its 

neighbors list. The above process will continue in sequence 

with the retransmission of the COUNT_REPLY message by 

vehicles V8 and V3, up to the RSU. Finally, when the RSU 

receives the COUNT_REPLY from V3, it simply processes 

the results obtained in the PDU. 

 



 
 
Fig. 7 Propagation of the COUNT_REPLY Message back to the RSU 

 

4 Environments and Scenarios for Simulation 

To evaluate the accuracy and performance of our novel 
algorithm, we carried out extensive simulation experiments 
with different sets of parameters. This section aims to present 
the selected simulation tools and common parameters for this 
evaluation. 

4.1 Simulation Tools 

Nowadays, there are numerous simulation tools ranging from 
open source to commercial products. In any research work, it is 
always important to choose the most appropriate. A 
comprehensive study about current simulators, their 
characteristics, capabilities, and approaches is provided in [27]. 

Up to now, there are no simulation tools that cover vehicle 
mobility and networking, at the same time. That is, on the one 
hand, vehicle mobility simulation tools have been proposed for 
researchers in the field of traffic engineering. The objective of 
these tools is to import road networks from well-known maps 
(e.g., Google Maps or OpenStreetMap) and to generate realistic 
vehicular traffic flows over the roads, by specifying some 
constraints. On the other hand, networking simulators with 
very basic mobility models are used by researchers in the area 
of networking. For traffic engineering, some open-source 
projects have been actively used by the community, such as 
VanetMobiSim and Simulation of Urban MObility (SUMO) 
[28]. Unfortunately, VanetMobiSim seems to be a dead project 
now. Its last version (version 1.1) was released in February 
2007. SUMO is an open source, highly portable, microscopic 
and continuous road traffic simulation package designed to 
handle large road networks. For network simulation, two open-
source simulators outstand (ns-3 and OMNeT++). OMNeT++ 
[29] is an open-source, multiplatform (Windows, MacOS, and 
Linux), C++ based discrete event simulator for networking. 
Through its GUI, users can create topology files and inspect 
the state of each component during simulations [30]. 

To bridge the gap between the two worlds, some projects 
propose a way to couple a road traffic simulator with a network 

simulator, which seems to be the only viable solution in the 
present time to do VANET simulations. For our work, we used 
an open source bidirectional simulation framework called 
Vehicles in Network Simulation (Veins) [31]. Veins couples 
SUMO with OMNeT++ using the Traffic Control Interface 
(TraCI) [32]. Veins already implements the WAVE protocol 
stacks. It is most noticeable for IEEE 802.11p, IEEE 1609.4 
multi-channel operation, and comprehensive models for the 
MAC and PHY layers. We implemented the algorithm on top 
of WAVE Short Message Protocol (WSMP) and IEEE 
802.11p. Unlike the standard IP protocol, WSMP allows 
applications to directly control the lower-layer parameters such 
as transmission power, data rate, channel number, and receiver 
MAC addresses. 

We chose the Veins framework because it includes a 
complete suite of models to make vehicular network 
simulations as realistic as possible, without sacrificing the 
speed of execution. Additionally, Veins offers interesting 
features such as online reconfiguration and re-routing of 
vehicles in reaction to the network simulator. 

We simulated different scenarios where vehicles are 
stopped at a traffic light. Table 1 summarizes the technical 
parameters shared by all the scenarios and simulated cases of 
our algorithm. For all our simulations, we selected WAVE 
(IEEE 802.11p) for the wireless communication standard, with 
a bitrate of 18 Mbps. The propagation model used in the 
simulations was the two-ray ground model. We opted for this 
model because it is suitable for predicting signal strength over 
distances of several kilometers, so for a vehicular network 
where distances can be long, it gives better results in terms of 
accuracy compared with other models. It is worth to note that 
the bitrate, modulation and coding were chosen based on [33]. 

Table 1 Simulation Parameters 

Parameter Value 

Type of roads Main roads 

Length of Road Section 8 km 

Wireless Standard IEEE 802.11p 



Transmission Bitrate 18 Mbps 

Transmission Power 20 mW (13 dBm) 

Receptor Sensitivity -89 dBm 

Thermal Noise -110 dBm 

Message Type WSMP data 

Channel Bandwidth 10 MHz 

Frequency Band 5.850–5.925 GHz 

Radio Propagation Model Two-ray ground 

Simulation Time 120 seconds 

Vehicle Beacon Interval 1 second 

Another important point to consider is the definition of a 
stopped vehicle at a traffic light. There is no doubt that it is a 
complex topic, and it will vary from person-to-person. In our 
simulations, we considered two cases. The first case is related 
to vehicles that are close-by the RSU (at a distance inferior to 
15 meters). These vehicles are considered stopped at the traffic 
light if the light has been red for at least 0.5 seconds, and the 
vehicles are immobile. For the vehicles that are at a distance of 
15 meters or more from the RSU, we considered that they were 
stopped if they were at a distance of 5 meters or less of another 
stopped vehicle, and with a speed inferior or equal to 5 km/h. 

5 Analysis of the Performance Results of our Simulations 

This section discusses the results obtained for our experiments 
in different scenarios. 

In order to evaluate the accuracy and performance of the 
proposed algorithm, we present and analyze some of the results 
of our simulations that were executed mainly in three types of 
scenarios: (1) scenarios with a one-way road of a single lane, 
(2) scenarios with a one-way road of two lanes, and (3) 
scenarios with a one-way road of three lanes. The one-way 
road was 8000m long, and each lane was 3.6m in width (note 
that ‘m’ as a unit notation corresponds to meters). We used 
SUMO [28] to generate the vehicular movement patterns, 
where the vehicles move with random speeds within the given 
speed limit of the roads, and according to the vehicles ahead. 
We run our simulations with different numbers of vehicles. 

We consider scenarios where vehicles are equally injected 
in time into the scenarios (entering the road every 0.5 seconds) 
in an extremity and move toward the traffic light. The vehicles 
move forward when the traffic light is green and slow down 
and wait at red traffic light until the light turns green. Thus, 
vehicles tend to form a line of vehicles where some of them are 
stopped by the red traffic light, and others are moving toward 
it. 

We also considered a fourth scenario, where we simulate a 
simple signalized intersection with two roads that cross each 
other at right angles (see Fig. 14). We propose this fourth 
scenario to study the impact of two-way traffic over the 
algorithm, and see if it presents scalability issues. Finally, in 
the fifth scenario, we study the impact of the penetration rate of 
WAVE over the algorithm. 

5.1 Scenarios with a One-way Road of One Lane 

In this section, we study the accuracy and performance of the 
algorithm in terms of the number of vehicles counted, the 

associated response time to count the vehicles, and the number 
of control messages (COUNT_REQUEST and 
COUNT_REPLY) sent by the units during the counting, when 
we vary the number of units and their propagation range in a 
road with one lane. For all these scenarios, the RSU initiates 
the counting process with a value of Hop Limit = 3. 

Table 2 shows the number of units counted by our 
algorithm when we varied the number of units (25, 50, 75, 100, 
125, 150, and 175) and their propagation range (200m, 250m, 
300m, 350m, and 400m). The results are represented as values 
a/b, where a indicates the number of vehicles that are within 
the scope of the RSU using multihop routing (i.e., vehicles that 
should be counted) and b the number of vehicles actually 
counted by our algorithm. For these experiments, we can see 
that the algorithm has a high accuracy in the vehicle counting, 
specifically for values of the propagation range equal to 300m, 
350m, and 400m, even in conditions of high vehicular flow, 
with an effectiveness between 97% and 100%, in the counting. 
For example, for a number of units equal to 175 and a 
propagation range of 300m, the RSU should count 175 units. 
As shown in Table 2, our algorithm also counted 175 units, 
being 100% effective in this case. There are some factors that 
can contribute to the small error observed. The major is due to 
missing information in the neighbors list of some vehicles, and 
can be the result of BEACON messages that suffer collisions 
or BEACON messages not sent on time. 

Fig. 8 shows the performance of the algorithm for the 

response time when we varied the number of units (25, 50, 75, 

100, 125, 150, and 175) and their propagation range (200m, 

250m, 300m, 350m, and 400m). For each number of units, the 

results are shown in groups of five bars according to the 

propagation range value, i.e., the first blue bar corresponds to 

200m, the second cyan bar to 250m, the third purple bar to 

300m, the fourth green bar to 350m, and the fifth yellow bar to 

400m. Each of these bars represents the response time in 

milliseconds (ms) for the proposed algorithm. We can note that 

for any number of units, the response time is much lower for 

higher values of the propagation range, specifically for values 

equal to 350m and 400m. For example, for a number of units 

equal to 100, the response time is equal to 24.98ms and 

12.65ms for a propagation range of 250m and 400m, 

respectively. 

Table 2 Units Counted when Varying the Number of Units and 

Propagation Range (Road with One Lane) 

Total 

Number 

of Units 

Propagation Range Values in Meters 

200m 250m 300m 350m 400m 

25 25/25 25/25 25/25 25/25 25/25 

50 50/50 50/50 50/50 50/50 50/50 

75 75/73 75/73 75/73 75/74 75/75 

100 100/98 100/99 100/100 100/100 100/100 

125 125/123 125/124 125/125 125/125 125/125 

150 150/149 150/149 150/150 150/150 150/150 

175 175/173 175/174 175/175 175/175 175/175 



 

Fig. 8 Response Time in Different Scenarios during the Vehicle Counting (Road with One Lane) 

 

Fig. 9 illustrates the behavior of the algorithm in terms of 

the total number of COUNT_REQUEST and COUNT_REPLY 

control messages transmitted by units during the counting of 

vehicles, when we varied the number of units (25, 50, 75, 100, 

125, 150, and 175) and their propagation range (200m, 250m, 

300m, 350m, and 400m). We can see that for a given number 

of vehicles, as we increase the propagation range, the total 

number of control messages is reduced significantly. For 

example, for a number of units equal to 175, the number of 

control messages transmitted is equal to 16 and 10 for a 

propagation range of 200m and 400m, respectively. 

 

Fig. 9 Total Number of Control Messages Sent in Different Scenarios during the Vehicle Counting (Road with One Lane) 

 

5.2 Scenarios with a One-way Road of Two Lanes 

In this section, we study the accuracy and performance of the 
proposed algorithm in terms of the number of vehicles counted, 

the response time, and the total number of control messages 
sent by the units during the counting, in scenarios where the 
vehicles are stopped at a traffic light on a one-way road with 
two lanes. At the beginning of the simulations, the vehicles 
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are distributed in both lanes with a total number of units 
varying from 50 to 350. The RSU starts the counting process 
with Hop Limit=3. 

Table 3 contains the results that we obtained in the simulations 
concerning the number of units counted. The results are 
presented as values a/b, where a is the number of vehicles that 
are within the scope of the RSU using multihop routing (i.e., 
vehicles that should be counted), and b is the number of 
vehicles actually counted by our novel algorithm. As it can be 
inferred from Table 3, our algorithm does well in this scenario, 
and has a high accuracy in the vehicles counting. For example, 
for a total number of 300 units and a propagation range of 
350m, the RSU should count 300 units. In our simulations, our 
proposed algorithm counted 293 units, resulting in a small 
error of 2.3%. 

Table 3 Units Counted when Varying the Number of Units and 

Propagation Range (Road with Two Lanes) 

Total 

Number  

of Units 

Propagation Range Values in Meters 

200m 250m 300m 350m 400m 

50 50/50 50/50 50/50 50/50 50/50 

100 100/99 100/100 100/100 100/100 100/100 

150 150/147 150/147 150/147 150/147 150/148 

200 200/194 200/194 200/194 200/194 200/197 

250 250/242 250/242 250/244 250/244 250/246 

300 300/289 300/292 300/293 300/293 300/297 

350 350/323 350/327 350/329 350/331 350/334 

In Figs. 10 and 11, we varied the total number of units (50, 
100, 150, 200, 250, 300, and 350) and their propagation range 
(200m, 250m, 300m, 350m, and 400m) with the aim of 
evaluating the behavior of the algorithm with respect to the 
response time and the total number of control messages sent by 
the vehicles during the counting, respectively. The RSU started 
the counting process with Hop Limit=3. According to our 
simulations, the best results are obtained with values of the 
propagation range of 350m and 400m. For example, for 300 
units, we can see that the response time is 36.78ms (see Fig. 
10) and the total number of control messages sent is 12 (see 
Fig. 11) for a propagation range equal to 250m; while it is 
25.86ms (see Fig. 10) and 8 messages (see Fig. 11) for a 
propagation range of 350m. This behavior can be explained by 
the fact that for a bigger propagation range and a queue length 
that can be totally covered by the specified Hop Limit, the 
number of actual hops to complete the counting is smaller. As 
a result, the response time and the number of control messages 
sent are smaller. 

 

 

Fig. 10 Response Time in Different Scenarios during the Vehicle Counting (Road with Two Lanes) 
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Fig. 11 Total Number of Control Messages Sent in Different Scenarios during the Vehicle Counting (Road with Two Lanes) 

5.3 Scenarios with a One-way Road of Three Lanes 

In this section, we look at the behavior of the proposed 
algorithm, in terms of the number of units counted, the 
response time, and the total number of control messages sent 
by the units during the counting in scenarios where the vehicles 
are stopped at a traffic light on a one-way road with three 
lanes. At the beginning of the simulations, the vehicles are 
distributed in the three lanes with a total number of units 
varying from 100 to 400. The RSU starts the counting process 
with Hop Limit=3. 

Table 4 shows the results of the experiments for scenarios 
where we varied the total number of units (100, 150, 200, 250, 
300, 350, and 400) and their propagation range (200m, 250m, 
300m, 350m, and 400m). Similarly to the experiments of 
Tables 2 and 3, our algorithm also has a high precision in the 
counting of vehicles for these scenarios. 

Table 4 Units Counted when Varying the Number of Units and 

Propagation Range (Road with Three Lanes) 

Total 

Number 

of Units 

Propagation Range Values in Meters 

200m 250m 300m 350m 400m 

100 100/100 100/100 100/100 100/100 100/100 

150 150/147 150/147 150/147 150/150 150/150 

200 200/193 200/196 200/196 200/197 200/200 

250 250/236 250/242 250/243 250/244 250/246 

300 300/289 300/293 300/294 300/294 300/296 

350 350/325 350/327 350/330 350/330 350/341 

400 400/375 400/380 400/384 400/386 400/390 

Figs. 12 and 13 show the results of the simulations for 
scenarios where we varied the total number of units (100, 150, 
200, 250, 300, 350, and 400) and their propagation range 
(200m, 250m, 300m, 350m, and 400m) with the aim of 
evaluating the behavior of the algorithm with respect to the 
response time and the total number of control messages sent by 
the vehicles during the counting, respectively. In all the 
simulations, the RSU started the counting process with Hop 
Limit=3. Again, the results of the simulations show good 
response times with a small number of control messages sent 
by the units during the counting of vehicles. Also, it is 
important to mention that the best results are obtained for 
propagation range values equal to 350m and 400m. For 
example, for 400 units, we can see that the response time is 
34.57ms (see Fig. 12) and the number of control messages sent 
is 12 (see Fig. 13) for a propagation range equal to 200m; 
while it is 20.26ms (see Fig. 12) and 6 messages (see Fig. 13) 
for a propagation range of 400m. 

We can see that the results obtained by the algorithm in terms 
of counting were much more accurate in the scenarios with a 
one-way road of a single lane (with a accuracy that varies from 
97.3% to 100%) compared to those obtained with two (with an 
accuracy of 92.3% to 100%) and three lanes (with a precision 
that fluctuates from 92.9% to 100%). However, the response 
times and the total number of control messages sent by the 
units during the counting were lower in the scenarios with a 
one-way road of three lanes. 
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Fig. 12 Response Time in Different Scenarios during the Vehicle Counting (Road with Three Lanes) 

 

Fig. 13 Total Number of Control Messages Sent in Different Scenarios during the Vehicle Counting (Road with Three Lanes) 

 

5.4 Application of the Proposed Algorithm in a Scenario 

with a Four-way Intersection 

This section deals with the importance of estimating the 
number of vehicles stopped at a traffic light in road 
intersections, to improve vehicular traffic. For that, we study 
the accuracy and performance of our algorithm using a four-
way intersection with multiple lanes on both sides (as shown in 
Fig. 14). 
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Fig. 14 Outline of a Four-way Intersection 

In Fig. 14, labels A, B, C, D, E, F, G, and H indicate the 
segments of the roads. In the corners of the intersection, there 
are traffic lights. These traffic lights are denoted as S1, S2, S3, 
and S4. The arrows indicate the directions that should take the 
vehicles when arriving at the intersection. Each traffic light 
cycle is composed of four phases as described next: 

(1) In the first phase (see Fig. 15), the traffic light S1 
changes to green and the traffic lights S2, S3, and S4 to 
red, so that the vehicles of segment A can cross the 
intersection in direction to G, or turn right toward H, or 
turn left in direction to F. 

 

Fig. 15 First Phase of the Traffic Light Cycle at the Intersection 

(2) In the second phase (see Fig. 16), the traffic light S2 
changes to green and the traffic lights S1, S3, and S4 to 
red, so that the vehicles of segment B can cross the 
intersection in direction to H, or turn right toward E, or 
turn left in direction to G. 

 
Fig. 16 Second Phase of the Traffic Light Cycle at the Intersection 

(3) In the third phase (see Fig. 17), the traffic light S3 
changes to green and the traffic lights S1, S2, and S4 to 
red, so that the vehicles on segment D can cross the 
intersection in direction to F, or turn right toward G, or 
turn left in direction to E. 

 
Fig. 17 Third Phase of the Traffic Light Cycle at the Intersection 

(4) Finally, in the fourth phase (see Fig. 18), the traffic light 
S4 changes to green and the traffic lights S1, S2, and S3 
to red, so that the vehicles of segment C can cross the 
intersection in direction to E, or turn right toward F, or 
turn left in direction to H. 

Additionally, we placed the RSU in the center of the 
intersection (see Fig. 14). It is worth mentioning that in any of 
the phases described above (see Figs. 15, 16, 17, and 18), in 
those segments where the traffic lights change to red (segments 
B, C, and D in the first phase; segments A, C, and D in the 
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second phase; segments A, B, and C in the third phase; 
segments A, B, and D in the fourth phase), the vehicles will 
stop and, consequently, vehicle queues will be formed and 
gradually increased in size with the arrival of more vehicles. 
Now, our algorithm can count vehicles in several directions in 
parallel. For that, the field Message Direction (see Fig. 1) must 
be set in the COUNT_REQUEST messages. In these 
experiments, we counted the number of vehicles in segments 
B, C, and D, respectively, at the same time, during the first 
phase of the traffic light cycle. For that, the RSU sends three 
successive COUNT_REQUEST messages. The first one is sent 
toward the end of segment B (with a Message Direction field 
set to EAST), the second one is sent toward the end of segment 
C (with a Message Direction field set to SOUTH), and the 
third one is sent toward the end of segment D (with a Message 
Direction field set to WEST). At the beginning of the 
simulations, the vehicles are distributed in the different lanes 
of the roads that form the intersection with a total number of 
units varying from 50 to 500. The RSU starts the counting 
process with Hop Limit=3 

 
Fig. 18 Fourth Phase of the Traffic Light Cycle at the Intersection 

In Tables 5, 6, and 7, we reported results relevant for 
experiments of the proposed algorithm associated with the 
number of units counted, the response time, and the total 
number of control messages sent by the units during the 
counting, respectively, in scenarios where we varied the 
number of vehicles (50, 100, 150, 200, 250, 300, 350, 400, 
450, and 500) randomly distributed in the three segments (B, 
C, and D). Additionally, we varied their propagation range: 
200m, 300m, and 400m. As already stated, the simulations 
were done for the first phase of the traffic light cycle (Fig. 15), 
that is, when the traffic lights S2 (segment B), S3, (segment D), 
and S4 (segment C) are red, and the traffic light S1 (segment A) 
is green. Since the vehicles of segments B, C, and D will stop 
and wait for the green light, queues will be created in these 
segments, and increase in size as the time passes with the 
arrival of new vehicles, while vehicles in segment A will 
continue their way to segments F, G, or H (see Fig. 19). The 

results shown in columns B, C, and D of Table 5 are the 
number of vehicles that should be counted/the number of 
vehicles actually counted by our algorithm. Table 6 represents 
the response time in milliseconds (ms), while Table 7 reports 
the total number of control messages sent by the units during 
the counting. We can observe from the results of our 
experiments that our algorithm effectively performs the 
counting of vehicles in segments B, C, and D, with an adequate 
response time (see Table 6), and with a low number of control 
messages sent by the units (see Table 7). These counting 
results can be used to select the next light phase of the traffic 
lights at the intersection. 

For example, for a total number of vehicles equal to 450 
(which were distributed in segments B, C, and D with 144, 
142, and 164 vehicles, respectively), and a propagation range 
equal to 300m, we can see that our algorithm made a counting 
with a high degree of accuracy in each of the segments (B, C, 
and D). That is, in segment B, C, and D, the RSU should count 
144, 142, and 164 vehicles, respectively, and our algorithm 
reported 144 (an exact counting), 142 (an exact counting), and 
163 (with a margin of error of 0.6%), respectively. According 
to Table 6, the response times were 9.07ms (segment B), 
9.02ms (segment C), and 11.96ms (segment D), and a total 
number of control messages sent by the vehicles equal to 4, in 
each of these segments (see Table 7). 

It is important to mention that in real vehicular contexts, in 
fact, vehicle counting can be very helpful during critical 
periods of flow at an intersection, to make a wiser decision 
about the light change [34]. Currently, vehicles have to wait a 
fixed amount of time to get a green signal, even if the other 
roads at the intersection have no traffic or a light traffic load. 
This situation can be avoided by programming the lights 
according to the vehicular density. In other words, the green 
light should be extended to a longer period for the road where 
the vehicular density is higher. 

 
Fig. 19 Example of a Scenario in a Four-way Intersection 
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Table 5 Units Counted at an Intersection when Varying the Number of Units and Propagation Range 

Total 

Number 

of Units 

Propagation Range Values in Meters 

200m 300m 400m 

B C D B C D B C D 

50 20/20 11/11 19/19 20/20 14/14 16/16 16/16 16/16 18/18 

100 29/29 39/39 32/32 30/30 36/36 34/34 30/30 31/31 39/39 

150 40/39 60/60 50/49 54/54 48/48 48/48 62/62 38/38 50/50 

200 64/63 74/73 62/62 71/71 70/70 59/59 64/64 66/66 70/70 

250 87/86 84/82 79/78 91/91 88/87 71/71 77/77 97/97 76/76 

300 91/89 99/97 110/108 110/110 103/103 87/86 94/94 110/108 96/96 

350 117/116 125/123 108/107 117/117 137/137 95/95 117/116 113/113 120/120 

400 142/140 127/127 131/130 137/136 137/137 126/126 154/154 131/131 115/115 

450 160/158 144/142 146/145 144/144 142/142 164/163 141/141 142/142 167/166 

500 177/175 158/157 165/163 164/163 178/177 158/157 163/163 157/157 180/179 

 
Table 6 Response Time during the Counting at an Intersection when Varying the Number of Units and Propagation Range 

Total 

Number 

of Units 

Propagation Range Values in Meters 

200m 300m 400m 

B C D B C D B C D 

50 3.99ms 3.59ms 3.83ms 3.97ms 3.99ms 4.01ms 3.96ms 3.95ms 3.99ms 

100 4.30ms 4.85ms 4.43ms 4.54ms 4.67ms 4.60ms 4.10ms 4.35ms 4.64ms 

150 5.12ms 5.80ms 5.23ms 4.33ms 4.25ms 4.23ms 5.68ms 5.27ms 5.52ms 

200 10.74ms 10.97ms 7.51ms 7.52ms 13.76ms 7.18ms 5.38ms 5.75ms 5.84ms 

250 11.95ms 11.72ms 8.51ms 13.98ms 13.49ms 4.60ms 5.47ms 9.15ms 5.35ms 

300 10.78ms 11.50ms 13.49ms 11.35ms 10.26ms 9.05ms 7.25ms 10.32ms 8.58ms 

350 16.69ms 16.88ms 12.27ms 7.67ms 7.43ms 6.81ms 5.45ms 8.99ms 9.23ms 

400 20.15ms 19.22ms 19.54ms 8.06ms 13.69/0ms 8.19ms 9.45ms 8.99ms 6.23ms 

450 22.45ms 22.38ms 21.93ms 9.07ms 9.02ms 11.96ms 9.05ms 9.08ms 10.21ms 

500 16.95ms 16.48ms 16.56ms 9.58ms 17.18ms 13.64ms 12.64ms 12.28ms 12.74ms 

 
Table 7 Total Number of Control Messages Sent by the Units during the Counting at an Intersection when Varying the Number of Units and 

Propagation Range 

Total 

Number 

of Units 

Propagation Range Values in Meters 

200m 300m 400m 

B C D B C D B C D 

50 2 2 2 2 2 2 2 2 2 

100 2 2 2 2 2 2 2 2 2 

150 2 2 2 2 2 2 2 2 2 

200 4 4 3 2 5 2 2 2 2 

250 4 4 3 4 4 2 2 3 2 

300 4 4 5 4 4 4 3 4 3 

350 6 6 4 4 4 2 2 3 4 

400 6 6 6 4 5 4 3 3 2 

450 6 6 6 4 4 4 4 4 4 

500 6 6 6 4 6 5 5 5 5 

 

5.5 Scenarios with Different Penetration Rates 

In this section, we study the influence of the penetration rate 
over the algorithm. To this end, we use the same scenario as 
the one of Section 5.1 (one-way road of a single lane). 

Table 8 shows the counting error as a percentage when we 
varied the number of vehicles (25, 50, 75, 100, 125, 150, and 
175) and the penetration rate (100%, 95%, 90%, 85%, and 

80%), with a propagation range of 300m. The simulations 
seem to indicate that the counting error is proportionally 
affected by the decrease of the penetration rate, i.e., for a 
penetration rate of 80%, the counting error fluctuates around 
20% (which is 100%-80%). These results are encouraging, 
since the algorithm still makes an effective counting of the 
units that do have an RSU, even in the presence of not 



VANET-based vehicles. It is worth to mention that there is no 
way to count a vehicle that does not have an RSU when we 
limit the system to the WAVE and GPS technologies. 
Aggregating some other information from other sensors of the 
vehicles or from a few “in-situ” sensors on the roadside might 
reduce the error counting, but this possible research is outside 
the scope of this paper. 

Table 8 Counting Error in Percent when Varying the Number of Units and 

Penetration Rate (Road with One Lane) 

Total 

Number 

of Units 

Penetration Rates 

100% 95% 90% 85% 80% 

25 0.0 4.9 10.0 15.1 19.8 

50 0.0 5.0 9.7 14.8 20.1 

75 0.2 5.2 10.3 15.2 20.0 

100 0.5 4.7 9.2 15.3 20.2 

125 1.1 5.5 9.1 14.3 19.1 

150 1.7 6.1 11.8 16.9 21.0 

175 1.8 6.9 12.3 17.2 22.3 

 

6 Conclusions and Future Work 

The major contribution that we have achieved in this paper is 
the design and implementation of an efficient novel algorithm 
to count vehicles that are stopped at a traffic light, by using 
VANET technology. This algorithm can be used as a basic tool 
in the development of Adaptive Traffic Control Systems 
(ATCSs), and should dramatically help to optimize vehicular 
flow. 

The proposed algorithm was simulated in different 
scenarios using SUMO and OMNeT++ as simulators, and 
Veins as a framework to bi-directionally couple the simulators. 
To evaluate its performance, we conducted two different sets 
of experiments. In the first set of experiments, we evaluated the 
performance of our algorithm in scenarios where we varied the 
total number of units and their respective propagation range in 
one-way roads of one, two, and three lanes. In the second set of 
experiments, we evaluated the behavior of the algorithm in a 
four-way intersection, with several lanes. 

The simulations that we performed show that our algorithm 
efficiently calculates a total number of vehicles, with very low 
response times and small numbers of control messages 
(COUNT_REQUEST and COUNT_REPLY) sent by the units 
during the counting. 

As possible future work, we plan to enhance our algorithm 
by dividing roads into “segments” or “regions of counting” of 
fixed or variable size, where a segment leader will be 
designated and be in charge of counting the vehicles in its 
respective segment, with the purpose of minimizing the 
response time. We also intend to implement our algorithm 
under a radio propagation model with random behavior and 
variations in the link qualities from one transmission to the 
next, in order to study and analyze its influence on the results. 
In the same direction, we project to study the impact of a 10- to 
15-meter error over the positions reported by GPSs, in the 
algorithms. Finally, we are also interested in the development 
of a complete procedure for more intelligent signal timing 

strategies to improve traffic capacity at intersections [35], 
based on the counting algorithm presented in this paper. 
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