1,015 research outputs found

    CliqueStream: an efficient and fault-resilient live streaming network on a clustered peer-to-peer overlay

    Full text link
    Several overlay-based live multimedia streaming platforms have been proposed in the recent peer-to-peer streaming literature. In most of the cases, the overlay neighbors are chosen randomly for robustness of the overlay. However, this causes nodes that are distant in terms of proximity in the underlying physical network to become neighbors, and thus data travels unnecessary distances before reaching the destination. For efficiency of bulk data transmission like multimedia streaming, the overlay neighborhood should resemble the proximity in the underlying network. In this paper, we exploit the proximity and redundancy properties of a recently proposed clique-based clustered overlay network, named eQuus, to build efficient as well as robust overlays for multimedia stream dissemination. To combine the efficiency of content pushing over tree structured overlays and the robustness of data-driven mesh overlays, higher capacity stable nodes are organized in tree structure to carry the long haul traffic and less stable nodes with intermittent presence are organized in localized meshes. The overlay construction and fault-recovery procedures are explained in details. Simulation study demonstrates the good locality properties of the platform. The outage time and control overhead induced by the failure recovery mechanism are minimal as demonstrated by the analysis.Comment: 10 page

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    Node clone detection using a stable overlay network

    Get PDF
    Wireless sensor networks consist of number of sensor nodes widely distributed in particular region to communicate and sharing the environmental information and also these data’s are stored in central location for further data prediction. Such nodes are susceptible to cloning attack where the adversary captures a node, replicates with the same identity as that of the captured node and deploys the clone back into the network, causing severe harm to the network. Hence to thwart such attacks, a distributed detection protocol is used with initiator-observer-inspector roles assigned randomly for the nodes to witness the clone and thereby broadcast the evidence through a balanced overlay network. Use of such balanced network provides high security level and reduces the communication cost when compared to other overlay networks with a reasonably less storage consumption

    GLive: The Gradient overlay as a market maker for mesh-based P2P live streaming

    Get PDF
    Peer-to-Peer (P2P) live video streaming over the Internet is becoming increasingly popular, but it is still plagued by problems of high playback latency and intermittent playback streams. This paper presents GLive, a distributed market-based solution that builds a mesh overlay for P2P live streaming. The mesh overlay is constructed such that (i) nodes with increasing upload bandwidth are located closer to the media source, and (ii) nodes with similar upload bandwidth become neighbours. We introduce a market-based approach that matches nodes willing and able to share the stream with one another. However, market-based approaches converge slowly on random overlay networks, and we improve the rate of convergence by adapting our market-based algorithm to exploit the clustering of nodes with similar upload bandwidths in our mesh overlay. We address the problem of free-riding through nodes preferentially uploading more of the stream to the best uploaders. We compare GLive with our previous tree-based streaming protocol, Sepidar, and NewCoolstreaming in simulation, and our results show significantly improved playback continuity and playback latency

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    MULTIMEDIA ON GEOGRAPHIC NETWORK

    Get PDF
    In this thesis we investigate the topic of the multimedia contents distribution on a geo- graphic network which is a rarefied and huge field. First of all we have to classify the main parts necessary in the multimedia distribution on a geographic network. The main aspects of a geographic network that will be highlighted in this thesis are: the mechanism used to retrieve the sources of the multimedia content; in the case of the peer-to-peer network on geographic network one of the most important mechanism is the query flooding protocol. The kind of overlay network (peer-to-peer) used to distribute the multimedia content. The usage of this overlay network in a multicast network. The security of the overlay network over a geographic network. Therefore the first topic which is investigated in this thesis is the query flooding protocol that can be used in any kind of query operation on a peer-to-peer network. For this protocol we achieve an analytical model through a complex analysis of the proxies network. In this analysis we can see how the proxies permit an improvement in the performance with respect to the routing operations in a generic network of routers. Moreover we address a simple formulation and framework about the performance of the network with and without layer 7 (proxy) and we apply them in three different types of scenarios to show the advantages achieved with the usage of proxies instead of routers. Through the query flooding operation, each peer of the peer-to-peer network can achieve the list of the peers that hold the desired multimedia content. In a multimedia content dis- tribution system, after the previous step in which the list of the peers that hold the desired multimedia content is retrieved, it is necessary to establish the kind of peer-to-peer network used to distribute this multimedia content to the peers that require it. Therefore the second aspect analysed in this thesis, is how the peer-to-peer network is built so that it is possible to provide the multimedia content to the vast majority of peers (that require this content) with the minimum delay. The construction of the peer-to-peer networks used for the distribution of the multimedia contents is not a very investigated field. Thus in this thesis we produce new algorithms used to build peer-to-peer networks in an incremental way on asymmetric and radio channel and we establish which algorithm is better with respect to the maximum delay of the network, the maximization of the number of peers accepted in the network and the minimization of the bit error probability of each peer of the peer-to-peer network. In this thesis, we propose an usage of the overlay network (peer-to-peer network) in a multicast network. We introduce an innovative mechanism that exploits the peer-to-peer network to make reliable a standard unreliable multicast network. Moreover we present an analytical model for this innovative mechanism. Finally the last aspect of a geographic network is the security of the communications among a group of peers. Thus to ensure the maximum level of security with secure commu- nications among a group of three or more peers, in this thesis we propose a new protocol, based on the Massey Omura protocol, which can allow the communications among the peers of a peer-to-peer network in a secure way. Moreover we present the security prob- lems of this Massey Omura Multiple Users Protocol and how it is possible to avoid these issues through a specific encryption function and a specific decryption function by chang- ing the encryption and decryption keys of each peer when the source peer changes. Finally we present a new cryptography protocol which we use to share the decryption shared key that is used in the Massey Omura Multiple Users Protocol
    corecore