24 research outputs found

    PALPAS - PAsswordLess PAssword Synchronization

    Full text link
    Tools that synchronize passwords over several user devices typically store the encrypted passwords in a central online database. For encryption, a low-entropy, password-based key is used. Such a database may be subject to unauthorized access which can lead to the disclosure of all passwords by an offline brute-force attack. In this paper, we present PALPAS, a secure and user-friendly tool that synchronizes passwords between user devices without storing information about them centrally. The idea of PALPAS is to generate a password from a high entropy secret shared by all devices and a random salt value for each service. Only the salt values are stored on a server but not the secret. The salt enables the user devices to generate the same password but is statistically independent of the password. In order for PALPAS to generate passwords according to different password policies, we also present a mechanism that automatically retrieves and processes the password requirements of services. PALPAS users need to only memorize a single password and the setup of PALPAS on a further device demands only a one-time transfer of few static data.Comment: An extended abstract of this work appears in the proceedings of ARES 201

    Counteracting Phishing Page Polymorphism: An Image Layout Analysis Approach

    Full text link
    Abstract. Many visual similarity-based phishing page detectors have been developed to detect phishing webpages, however, scammers now cre-ate polymorphic phishing pages to breach the defense of those detectors. We call this kind of countermeasure phishing page polymorphism. Poly-morphic pages are visually similar to genuine pages they try to mimic, but they use different representation techniques. It increases the level of difficulty to detect phishing pages. In this paper, we propose an effective detection mechanism to detect polymorphic phishing pages. In contrast to existing approaches, we analyze the layout of webpages rather than the HTML codes, colors, or content. Specifically, we compute the sim-ilarity degree of a suspect page and an authentic page through image processing techniques. Then, the degrees of similarity are ranked by a classifier trained to detect phishing pages. To verify the efficacy of our phishing detection mechanism, we collected 6, 750 phishing pages and 312 mimicked targets for the performance evaluation. The results show that our method achieves an excellent detection rate of 99.6%.

    Once IS Enough: Single Sign-On

    Get PDF
    For eons, passwords have been the gatekeepers to information and data located that is behind a ‘locked door’ or stored in a secret location. It is no different today, as passwords are a key to secrets, however, what is different today is the number of passwords that one needs to construct, recall and keep safe. This multiplicity has created a memory overload for the user, less secure passwords, and often, a strain on computer help-desk staff. Password technologies that reduce the need for multiple passwords are evolving; their developers claim that the technologies lessen the security risk to a system due to a reduction in the number of passwords required to get through the day-to-day work of a 21st century citizen. Smart cards, biometric devices, and Single Sign-On (SSO) systems are the most promoted alternatives. Specifically, Single Sign-On password systems are of interest to the study presented here. Single Sign-On allows end users to access multiple services and systems with a single username and password, therefore reducing the cognitive load on the end user and thus supposedly, reducing end user frustration which is turn reduces password-related security risks. This paper presents the results of a study conducted within two businesses that explored the influence SSO password systems have on system security

    CROO: A universal infrastructure and protocol to detect identity fraud

    Get PDF
    Identity fraud (IDF) may be defined as unauthorized exploitation of credential information through the use of false identity. We propose CROO, a universal (i.e. generic) infrastructure and protocol to either prevent IDF (by detecting attempts thereof), or limit its consequences (by identifying cases of previously undetected IDF). CROO is a capture resilient one-time password scheme, whereby each user must carry a personal trusted device used to generate one-time passwords (OTPs) verified by online trusted parties. Multiple trusted parties may be used for increased scalability. OTPs can be used regardless of a transaction’s purpose (e.g. user authentication or financial payment), associated credentials, and online or on-site nature; this makes CROO a universal scheme. OTPs are not sent in cleartext; they are used as keys to compute MACs of hashed transaction information, in a manner allowing OTP-verifying parties to confirm that given user credentials (i.e. OTP-keyed MACs) correspond to claimed hashed transaction details. Hashing transaction details increases user privacy. Each OTP is generated from a PIN-encrypted non-verifiable key; this makes users’ devices resilient to off-line PIN-guessing attacks. CROO’s credentials can be formatted as existing user credentials (e.g. credit cards or driver’s licenses)

    Understanding user behavior towards passwords through acceptance and use modelling

    Get PDF
    The security of computer systems that store our data is a major issue facing the world. This research project investigated the roles of ease of use, facilitating conditions, intention to use passwords securely, experience and age on usage of passwords, using a model based on the Unified Theory of Acceptance and Use of technology. Data was collected via an online survey of computer users, and analyzed using PLS. The results show there is a significant relationship between ease of use of passwords, intention to use them securely and the secure usage of passwords. Despite expectations, facilitating conditions only had a weak impact on intention to use passwords securely and did not influence actual secure usage. Computing experience was found to have an effect on intention to use passwords securely, but age did not. The results of this research lend themselves to assisting in policy design and better understanding user behavior

    TwoKind Authentication: Protecting Private Information in Untrustworthy Environments (Extended Version)

    Get PDF
    We propose and evaluate TwoKind Authentication, a simple and effective technique that allows users to limit access to their private information in untrustworthy environments. Users often log in to Internet sites from insecure computers, and more recently have started divulging their email passwords to social-networking sites, thereby putting their private communications at risk. To mitigate this problem, we explore the use of multiple authenticators for the same account that are associated with specific sets of privileges. In its simplest form, TwoKind features two modes of authentication, a low and a high authenticator. By using a low authenticator, users can signal to the server they are in an untrusted environment, following which the server restricts the user\u27s actions, including access to private data. In this paper, we seek to evaluate the effectiveness of multiple authenticators in promoting safer behavior in users. We demonstrate the effectiveness of this approach through a user experiment --- we find that users make a distinction between the two authenticators and generally behave in a security-conscientious way, protecting their high authenticator a majority of the time. Our study suggests that TwoKind will be beneficial to several Internet applications, particularly if the privileges can be customized to a user\u27s security preferences
    corecore