
A Novel Approach for Secure Identity Authentication
in Legacy Database Systems

Juanita Blue 1, 2, Eoghan Furey 1, Joan Condell 2

1
 Department of Computing, Letterkenny Institute of Technology, Letterkenny, County Donegal, Ireland

2
 Intelligent Systems Research Centre, University of Ulster, Derry, Northern Ireland, UK

Abstract— Information systems in the digital age have

become increasingly dependent on databases to store a
multitude of fundamental data. A key function of
structured databases is to house authentication credentials
that verify identity and allow users to access more salient
personal data. Authentication databases are frequently a
target of attack as they potentially provide an avenue to
commit further, more lucrative crimes. Despite the
provision of industry standard best practice
recommendations from organisations such as Open Web
Application Security Project (OWASP), Payment Card
Industry Security Standards Council (PCI-SSC), Internet
Engineering Task Force (IETF) and Institute of Electrical
and Electronics Engineers (IEEE), often practical security
implementations within industry flounder. Lacking or
substandard implementations have cultivated an
environment where authentication databases and the data
stored therein are insecure.

This was demonstrated in the 2016 exposure of a breach
experienced by Yahoo where approximately one billion
user credentials were stolen. The global technology
company was found to be using obsolete security
mechanisms to protect user passwords. Dated
implementations such as these pose serious threat as they
render authentication data highly vulnerable to theft and
potential misuse.

This paper offers a novel solution for securing
authentication databases on non-compliant Apache servers.
The method applies the recommended best practice
mechanisms in the form of salt, one-way encryption
(hashing) and iterations to both pre-existing and newly
created passwords that are stored on insecure systems. The
proposed solution can be implemented server-side, with
little alteration to the existing infrastructure, unbeknownst
to the user. It possesses the potential to improve system
security, aid compliance, preserve privacy and protect
users.

Keywords— passwords; salt; encryption, authentication; user-
credentials

I. INTRODUCTION

According to Intel Security and the Centre for Strategic &
International Studies (CSIS), “Cybercrime is a growth industry
where the returns are great and the risks are low” In a report
produced in 2014, the group estimated the global economic
cost at more than 400 billion US dollars annually [1]. This
figure was approximated based on documented personal loss,
organisational theft, damage to professional reputation and also
global economic effect.
Due to the sensitive nature of breaches, governments and
organisations are reluctant to disclose the details of system
vulnerabilities that have been key in each breach. Hence, there

is difficulty in identifying an exact cost figure relating to
authentication data theft. However, it can be stated that
exposed authentication data often acts as a gateway to greater
breaches [2]. Based on this premise, a substantial portion of
the aforementioned sum could be attributed to insecure
authentication data storage.

Usernames and passwords currently remain the most
commonly implemented and widely accepted form of identity
verification [3]. Prior to the present focus on mitigating risk of
cybercrime, typical web application authentication provisions
were central repositories now referred to as ‘legacy databases’.
Traditionally, the risk of breach was not contemplated and
therefore passwords were frequently stored in plaintext [4]. It
is claimed that a large number of these legacy databases remain
in common use and still store authentication credentials in
plaintext or by obsolete and substandard means [5].

Frequent and successful compromises of authentication
databases such as eHarmony and LinkedIn [6] have indicated
an urgent need for a server-side solution capable of rectifying
the security shortfalls of existing legacy databases, with an
objective of protecting any pre-existing and future passwords
written to the database. Such a solution should provide a
simple, convenient and affordable option that aids
administrators in the mitigation of risks associated with
compromised authentication data and user accounts.

II. BACKGROUND

In seeking a solution to secure noncompliant legacy databases,
various associated areas were explored. These included large
scale legacy system breaches, best practice standards, state of
the art authentication technologies, commonly implemented
password policies and existing password strengthening
applications.

A. Legacy Databases, Breaches & Best Practice Standards

An increase in incidents of cybercrime has forced industry
to adapt and develop methods by which cybersecurity may be
improved [7]. Expert groups such as OWASP have identified
the protection of authentication credentials as chief in the
prevention of additional crime [8]. Initial breaches occur
largely by way of ‘injections’, an attack vector that tops the
OWASP list of the ‘Most Critical Web Application Security
Risks’, where attackers gain access to the content of databases
[9]. Recent years have seen a plethora of breaches suffered by
global corporations such as LinkedIn, Target, Ashley Madison
and TalkTalk [10][7][11][12]. The end of 2016 alone saw the
culmination of breaches experienced by large web-based
companies such as Friend Finder, Yahoo and Hello Kitty. The
web accounts linked to these compromised credentials all
contained private personal data belonging to both adults and
minors [13]14][15]. The associated web accounts stored
personal data that included financial and residential details,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287023139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

leaving the registered users directly susceptible to additional
crime.

Breaches such as these have highlighted the importance of
securing authentication data, forcing a re-evaluation of the
defences in place [6][7]. Adherence to standard guidelines
such as the ‘OWASP Password Storage Cheat sheet’, the
‘IEEE Standard Specifications for Password-Based Public-Key
Cryptographic Techniques’ and ‘RFC 2898: Password-Based
Cryptography Specification’ is recommended to prevent theft
and misuse of passwords. These documents offer guidance on
the security mechanisms that must be invoked to protect stored
authentication data. As depicted in Figure 1, in order to
maintain the confidentiality and integrity of credentials, best
practice guidelines advise that all passwords should be:

 Salted with a random string of not less than 32
bytes [16]

 Encrypted/hashed using a one-way, proven and
un-cracked cryptographic hash function such as
SHA-256 or SHA-512 [8][17]

 The output of this hash function should be re-
hashed for no less than 1,000 iterations [18]

Fig. 1. Application of salt, hashing & iterations to password

The Payment Card Industry Data Security Standard (PCI-
DSS), produced by the PCI-SSC, insists that at minimum, the
above criteria must be met in order for organisations to be
considered compliant [19]. However, despite a multitude of
available information relating to best practice implementation,
best practice and compliance still evade many organisations
due to budget constraints, time factors and a reluctance to
replace existing infrastructure [7][20][21].

Often, even organisations who attempt to adopt protective
measures fail to implement best practice correctly [22].
Subsequent investigation into password breaches has revealed
that several of the companies maintained substandard
implementations [5]. Yahoo, Friend Finder and Hello Kitty’s
compromised databases were found to be storing passwords in
plaintext or hashing with depreciated one-way encryption
functions such as MD5 and SHA-128. Furthermore, all had
omitted the use of salt and iterations within their password
protection mechanisms [23][13][15]. The targeted
organisations had not adhered to basic best practice
recommendations and were therefore non-compliant. Had the

recommended basic best practice mechanisms been
implemented, the user credentials may have been protected
from potential misuse.

It is improbable that organisations will openly declare that
they maintain non-compliant implementations, as doing so
compromises customer data, system security and company
reputation. Based on cost alone it is unlikely that organisations
globally will improve or replace their entire existing
infrastructure in a bid to mitigate risk [10][20]. An increase in
successful breaches and industry’s failure to improve current
infrastructure vociferates for a solution which utilizes an
existing staple technology that can be discretely applied server-
side by an administrator, incurring minimal cost, effort and
downtime.

B. State of the Art Technologies

 State of the art technologies such as biometric and multi-
factor authentication were assessed for applicability. It was
surmised that despite a considerable amount of current research
and new developments, in view of the complexity, expense and
unreliability of these more recent technologies and their
hardware components, it is improbable that these solutions will
be deployed for common practical use in the near future.
Reliance upon passwords will remain [24].

C. Common Implementation of Password Policy

 An examination of commonly implemented password
security policies was conducted to establish if they increased
security of user accounts. The implementation of policies that
dictate length, entropy and lifetime of passwords are successful
in mitigating risk of unauthorized access to singular accounts
via brute force or a dictionary attack. However, passwords at
rest in an authentication database remain vulnerable to
exposure via an injection attack.

D. Password Strengthening Applications

 Several password management applications including
Password Agent, Lucent Personalized Web Assistant (LPWA),
PwdHash and Password Multiplier were assessed for
functionality[25][26][27][28]. Operating essentially as
pluggable web browser extensions, these solutions offer
password strengthening and management features that aid in
securing user accounts. Despite implementing best practice
recommendations, each solution operated client-side, therefore
it was surmised that these applications were intended for
private use by individuals wishing to strengthen authentication
for assorted personal web accounts. These applications could
not provide a valid solution for organisations to improve the
security of password storage server-side. No commercial
applications were discovered that assist administrators in
applying best practice security measures to
webserver/authentication database infrastructure.

III. METHODOLOGY

The following describes key methods and technologies that
were invoked to develop, implement and test the proposed
solution.

A. Environment

A suitable virtual Windows test environment was
constructed that included an Apache web server. The server
was combined with a MySQL database to store authentication
data and PHP authentication files to render web interfaces and

perform basic user account registration and login authentication
functions, as shown in Figure 2. According to the Netcraft
Web Server Survey of February 2016, open source Apache
servers hold 32.80% of the market share of top servers on the
internet [29]. This platform was selected based on popularity
and common utilisation with online accounts.

Fig. 2. Authentication via login interface verified via database

The basic environment emulated that of a typical legacy
system. It contained no best practice mechanisms and no
repository to store salt strings or protected passwords. The
database simply contained a ‘Users’ table that stored account
usernames and plaintext passwords.

B. Apache Rewrites

Apache mod_rewrite is a module that allows server-side
manipulation of requested URLs. Incoming URLs are checked
against a series of rules that contain a regular expression to
detect a certain set of conditions. If the conditions are found to
be true in the URL, the desired portion of the URL is replaced
with a provided substitution string or action. This process
continues until there are no more rules or the process is
explicitly told to stop.

The mod_rewrite module can be utilized to manipulate
URLs whilst they are being accessed. It has the capacity to
translate complex URLs into a more human-readable format
still understandable by a server. It can also be adapted to
seamlessly redirect to other pre-constructed files that contain
alternate functions; it was this capability that provoked its use
as a key component in constructing a server-side authentication
solution.

C. PHP Authentication Files

To implement a solution utilizing the features of the
Apache mod_rewrite module, the server had to be configured
to render the web interfaces from the original authentication
files and then internally redirect all requests for authentication
functions to alternate files. This was achieved by creating new
authentication files that contained functions to salt, hash and
iterate passwords for user accounts that were newly created and
also pre-existing accounts where passwords were stored in
plaintext. Upon rendering the web interface created in the
original ‘Login Page’ file, instead of calling the functions from
this file to conduct the authentication process, the system
would redirect to a new file that would perform the functions to
protect the password and then redirect back to the original file.

The new authentication files were stored alongside the original
files, in the HTTP folder on the web server.

To force the server to redirect to alternate files and execute
newly implemented functions, the web server configuration file
was altered to include a set of mod_rewrite rules that dictated
the conditions under which a redirect should occur. The rules
stipulated that when an attempt was made to access the login
page, the web page should be rendered from the original file
and then a redirect to the new protective file should occur. The
redirect would allow for the salt, hash and iteration functions
from the new file to be executed. Following the application of
protective mechanisms and storage in the database, control
would be passed back to the original file to finalise the
authentication process, as shown in Figure 3. The switch to the
new files was executed seamlessly, without the browser URL
displaying any indication of a redirect.

Fig. 3. Authentication with original and new PHP files

D. MySQL Database

The database present in the original insecure environment
contained a single table to store usernames and plaintext
passwords, with no column present to store randomly
generated salt strings. The newly created authentication files
were configured to assess if a salt table was already present in
the database. If no table was present, one was created with
columns to store the username, salt string and protected
password for each user account. This process was triggered by
any attempt to log in or register a new account. Upon creation
of the salt table, the user’s original plaintext password, stored
in the pre-existing Users table was replaced with a randomly
generated string of characters. Figure 4 depicts the new
distribution of data.

Fig. 4. Pre-existing database and new altered database with Salt table

Following the creation of the salt table, users who were
logging in for the first time since the changes were invoked
would have the aforementioned protective mechanisms applied
to their credentials. Users who were conducting subsequent
login attempts were authenticated initially based on their
hashed password. When control was transferred back to the
original authentication file, users were authenticated once again
based on the random string present in the pre-existing user
table. All newly created accounts automatically stored the
username, salt string and hashed password in the Salt table and
stored the username and randomly generated string of
characters in the pre-existing Users table. Authentication was
then conducted in the aforementioned manner. The purpose of
the insertion of a random string in the password field of the
original Users table was to remove the plaintext password and
to confuse a would-be attacker with two potential passwords.
The second password is authenticated automatically by the
system without a user prompt, however it is important to note
that authentication must be successfully executed using both
passwords to be granted further access.

From this point forward, any subsequent successful
authentication attempts resulted in the automatic protection of
passwords stored in plaintext. At no point was the user
prompted to actively change their password.

IV. RESULTS

On invoking the use of Apache re-writes, the system had
been successfully manipulated to:

 Create a salt table (if none existed) to store the
username, salt and protected password

 Salt, hash and iterate all passwords for newly
registered user accounts

 Salt, hash and iterate each plaintext password for
pre-existing user accounts when users successfully
logged in

 Successfully authenticate for both new and old
accounts

A test environment was constructed whereby the rendered
webpages were accessed remotely from a client machine on the
same network. The success of this implementation was
explored through results relating to functionality, viability,
reliability and security.

A. Functionality

The functionality of the implemented solution was assessed
via login attempts from a remote client on the same network.
While authenticating, the mod_rewrite module was activated
and successfully redirected to new authentication files and
applied best practice mechanisms to passwords without any
changes to the URL in the browser bar. Essentially, this
indicated that the redirects had occurred unbeknownst to the
client/user. Redirects were further verified by the presence of
the username, salt string and protected password within the Salt
table.

The redirects were not found to raise any session alerts or
flag any suspicious activity on the server or client systems.
This was due to the fact that the redirects were conducted
server-side, before the client received any data relating to GET
and POST requests. From the server’s perspective, the
mod_rewrite module was simply meeting the conditions and
rules stipulated in the server configuration file and carrying out

the functions as defined in the new authentication files. From
the client’s perspective, the system was simply rendering the
pages received following GET requests and returning user
input to the server in the form of POST requests. This
indicated that the solution could be implemented without any
negative ramifications on the client or server systems. Table I
depicts the impact of redirects on invoked security devices and
software applications, the solution could be implemented
without experiencing any interference from infrastructural
security implementations.

Table I. Redirect Alerts by Security Devices & Software

Device/Software Type Alert Raised
Redirect

Successful

Web Browser Security Features
Intrusion Detection System
(IDS)
Intrusion Prevention System
(IPS)
Firewall
Antivirus Software

The solution was also trialed with several popular web
browsers including Google Chrome, Microsoft Internet
Explorer and Mozilla Firefox. Redirects were found to be
successful with all the browsers tested, thus, the solution was
proven to be browser independent.

Overall these assessments indicated that the solution could
potentially be implemented without any negative impact on the
functionality of the client or server systems. It was also noted
that the original authentication process carried out by the
legacy system was neither truncated nor discarded. The system
still conducted the same sequence of steps that were present
prior to the new implementation; However, the solution had
added additional steps to the authentication process that
allowed for new and old passwords to be protected. Not only
were passwords being protected to best practice
recommendations, but two successful authentication sequences
were subsequently required to access user accounts.

B. Viability

The implemented solution was found to be a viable server-
side option for administrators seeking to apply best practice
recommendations to legacy authentication databases. The
solution successfully implemented security mechanisms in the
form of salt, hashing and iterations to protect new and old
passwords, thus securing user accounts.

This was achieved without incurring any additional cost of
overhauling the system or installing new software. The results
indicated that the method invoked is a viable, cost effective
solution that could be introduced to secure existing systems
that store passwords by substandard means. Furthermore, the
solution could be implemented with relatively little downtime.
Table II below outlines the infrastructural changes required to
implement the solution.

Table II. Infrastructural Changes for Implementation

Component Change Required

PHP Two new files created

HTTP
Activate mod_rewrite module
Add code to configuration file

MySQL Generation of Salt table (Automatic)

It must be noted that the solution requires implementation
by an individual who is competent in system configuration,
PHP and MySQL. This is based on the premise that currently
the solution must be implemented manually. There is potential
for the necessary alterations to be executed by a pre-defined
script; however this requires the parameter and variable names
to be included in the script. Creation of the script would entail
knowledge of the system in place, or temporary introduction of
monitoring software that could identify and communicate the
data required to automate the process.

This solution is currently only suitable for Apache web
servers as the primary technology invoked is the Apache
mod_rewrite module. It is possible that the solution could be
adapted for alternative platforms, provided the given server
possesses a similar URL rewrite function.

C. Reliability

The implemented solution was found to be completely
reliable and thus, the method could be permanently invoked.
The experiments conducted demonstrated that redirects and
protective PHP functions would continue to be executed as
long as the rewrite conditions and rules were present in the web
server configuration file.

D. Security

To test the security of the implemented solution, an attack
in the form of an SQL injection was executed on the system.
This attack was designed to extract usernames and passwords
from the database so that they may theoretically be used for
other purposes.

To facilitate the attack, a dynamic SQL statement had been
deliberately placed within the authentication files. This was
included as a feature of the original ‘insecure environment’. It
is typically considered bad practice to include dynamic
statements, as they can increase the attack surface of a system,
rendering it vulnerable to injections. Despite the recommended
use of prepared statements, this secure coding practice is often
omitted due to poor programming skills, technical requirements
or repeated re-working of code. Use of prepared statements
reduces risk but does not entirely mitigate injections as an
attack vector.

The SQL injection was successfully executed and resulted
in the extraction of all the information contained within the
Users and Salt tables.

Successful penetration of the database unequivocally
demonstrated the following:

1. The legacy test environment was insecure and
vulnerable to attack.

2. The unprotected pre-existing plaintext passwords stored
in the Users table were vulnerable and could easily be
compromised and potentially misused.

The SQL injection extracted all usernames and passwords
present in both tables. Whilst the plaintext passwords required
no decipher process and could be immediately utilised, the new
hashed passwords would be considered virtually worthless.
Significant processing would be required to restore the
passwords to a usable form, necessitating a rainbow tables
attack to un-iterate, un-hash and un-salt each individual
password string. Given the inclusion of the cryptographically
secure SHA-256 hashing mechanism, this process would be
extremely complex and time consuming, if even possible at all.

Table III outlines the potential attack vectors where the
solution has mitigated risk.

Table III. Attack Vectors Mitigated by Implemented Solution

Attack Vector Risk Mitigated

Injection

Security Misconfiguration

Sensitive Data Exposure
Using Known Vulnerable
Components

Misuse of Authentication
Credentials

Brute Force Attack

Rainbow Tables Attack

Despite National Institute of Standards and Technology
(NIST) depreciation of hashing methods such as SHA-128 and
MD5, the mechanisms remain commonly implemented. In
February 2017, Google discovered the first official SHA-128
collision, conclusively identifying the function as insecure [30].
In systems where SHA-128 is utilized, the proposed solution
may be invoked to over-ride the noncompliant implementation
and aid migration to a Federal Information Processing Standard
(FIPS) approved secure hash standard such as SHA-256 or
SHA-512.

V. CONCLUSION

Overall, the protective mechanisms introduced by the
implemented solution were found to greatly increase the
security of the system. As demonstrated by the SQL injection,
unprotected passwords stored in the Users table were easily
extracted and thus were potentially available for nefarious use.
The passwords that had undergone the salt, hash and iteration
process maintained integrity and confidentiality. These
passwords would require reverse engineering to be converted
back to a usable plaintext state.

In a case where passwords have been successfully hashed,
but salt has been omitted, a rainbow tables attack could still
potentially decipher the plaintext password. Concatenation of
salt and iterated hashing are crucial in placing large demands
on the resources of an attack system and complicating the
decipher process.

The retention of the original authentication function
contributed to the improvement of the system’s overall
security. Although the enhanced system authenticated based
on the hashed password stored in the Salt table, the original
authentication sequence also had to be executed for a user
session to be initiated.

The concept of adding randomly generated hexadecimal
strings to the password column in the original Users table
served several purposes. These included the continued
execution of the pre-existing authentication process, the
removal of the plaintext password from the database and it also
sought to confuse a would-be attacker. If the contents of both
tables were obtained, the random hexadecimal strings would
appear to be hashed passwords. In theory the attacker could
spend lengthy periods trying to un-hash these individual strings
by way of a rainbow tables attack; but this would be
impossible, as the inserted strings were randomly generated.

The attacker would also be unaware that the system
authenticates twice, initially based on the hashed password
present in the Salt table and then on the random string present
in the Users table. Without the plaintext password matching
the hashed version stored in the Salt table, the random
password stored in the Users table is rendered useless. An
understanding of this nested process would require
familiarization with the content of the authentication files.

The rewrite implements security mechanisms that comply
with best practice recommendations, including 32 bytes of salt,
one-way hashing using SHA-256 and no less than 1,000
iterations [16][17][18]. Inclusion of these best practice
mechanisms meets compliance recommendations outlined by
organisations such as the IEEE, IETF, PCI-SSC and OWASP,
in compliance with documents such as PCI-DSS and HIPAA
(Health Insurance Portability and Accountability Act). These
recommendations are considered basic requirements of secure
authentication data storage, yet all recommended mechanisms
can potentially be improved. Stronger measures could be
easily incorporated, however enhanced security may result in
latency when the server is experiencing high demand.
Increased salt bytes, longer hashing functions and additional
iterations all place higher demands on system resources.

Overall, the solution does not appear to have introduced
any additional security risks. Vulnerabilities present in the
system are inherent to Apache, PHP and MySQL, and would
be present regardless of the implemented solution.

Breaches like that experienced by Yahoo not only
compromised Yahoo account holders, but customers of large
corporations such as British Telecom, AT&T, SBCGlobal,
Verizon.net and BellSouth, who all relied on Yahoo for their
customer email service. Had Yahoo implemented a solution
such as this to over-ride their use of the depreciated MD5 hash
function, the compromise of approximately one billion user
credentials could have been prevented.

The application of this solution has been successful in
improving security on a highly vulnerable system, with few
negative ramifications. This implementation has proven
successful in encouraging a shift toward compliance with
several standards including PCI-DSS, HIPAA and Data
Protection Act requirements, improving system security, aiding
compliance, preserving privacy and protecting users.

REFERENCES
[1] Centre for Strategic & International Studies, “Net Losses: Estimating

the global cost of cybercrime: Economic impact of cyber crime II”,
McAfee. Santa Clara, CA,vol. 61162, pp. 2-3, June 2014.

[2] R. Hasan and W. Yurcik, “Beyond Media Hype: Empirical Analysis
of Disclosed Privacy Breaches 2005-2006 and a DataSet/Database
Foundation for Future Work”, National Centre for Supercomputing
Applications (NCSA), University of Illinois, Urbana, IL, 2007

[3] B. Ur, J. Bees, S. Segreti, L. Bauer, N. Christin and L. Cranor, “Do
Users’ Perceptions of Password Security Match Reality?”, Carnegie
Mellon University, Pittsburg, PA, Association for Computing
Machinery (ACM), Santa Clara, CA 2016

[4] J. Graham, J. Hieb and J. Naber, “Improving Cybersecurity for
Industrial Control Systems”, True Secure Scada LLC, J.B Speed
School of Engineering, Louisville, KY, IEEE 25th International
Symposium on Industrial Electronics, IEEE, Santa Clara, CA, 2016

[5] S. Karod, N. Sharma and A. Sharma , “An Improved Hashing Based
Password Security Scheme Using Salting and Differential Masking”,
4th International Conference on Reliability, Infocom Technologies
and Optimization (ICRITO), IEEE, Noida, India, December 2015

[6] D. Mirante and C. Justin, “Understanding Password Database
Compromises”, Dept. of Computer Science and Engineering
Polytechnic Inst. of NYU, Tech. Rep. TR-CSE-2013-02, 2013

[7] The OWASP Foundation, “Password Storage Cheat Sheet”,
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#In
troduction, August 2016

[8] N. Manworrena, J. Letwatb and Olivia Dailyc, , “Why you should care
about the Target data breach”, Business Horizons, Kelly School of
Business, Indiana , Elsevier, Vol. 59, Issue 3, pp. 257-266, 2015

[9] The OWASP Foundation, “Top 10 – 2013: The ten most critical web
application security risks”, https://www.owasp.org/images/f/f8/
OWASP_Top_10_-_2013.pdf, 2013

[10] I. Erguler, “Achieving Flatness: Selecting the Honeywords from
Existing User Passwords”, IEEE Transactions on Dependable and
Secure Computing, IEEE, Vol.13, Issue 2, 2016

[11] D. Horn and S. Nair, “The Prom Problem: Fair and Privacy-Enhanced
Matchmaking with Identity Linked Wishes, IEEE, Orlando, 2016

[12] R. Kozik, M. Choraś, W. Hołubowicz and R.Renk, “Extreme Learning
Machines for Web Layer Anomaly Detection”, Image Processing and
Communications Challenges 8. IP&C 2016. Advances in Intelligent
Systems and Computing, vol 525. Springer, Cham, October 2016

[13] H. Graupner, D. Jaeger, F. Cheng and C. Meinel, “Automated parsing
and interpretation of identity leaks”, Hasso Plattner Institute,
University of Potsdam, Germany, ACM, May 2016

[14] L. Trautman, and P. Ormerod, “Corporate Directors’ and Officers’
Cybersecurity Standard of Care: The Yahoo Data Breach”, American
University Law Review, Vol. 66, February 2017

[15] T. Spring, “Hello Kitty database of 3.3 million breached credentials
surfaces”, Threat Post, https://threatpost.com/hello-kitty-database-of-
3-3-million-breached-credentials-surfaces/122932/, January 2017

[16] N. Ferguson, B. Schneier and T. Kohno, “Cryptography Engineering:
Design Principles and Practical Applications”, Wiley Publishing Inc.,
Indianapolis, IN, Chapter 21, pp 304, 2010

[17] Information Technology Laboratory, “Secure Hash Standard (SHS)”,
Federal Information Processing Standards, Gaithersburg, MD, FIPS
PUB 180-4, August 2015

[18] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification
Version 2.0”, IETF, Network Working Group, RFC 2898, 2000

[19] Payment Card Industry Security Standard Ccouncil, “Payment Card
Industry (PCI) Data Security Standard”, Version 3.2, April 2016

[20] A. Schneider, “When companies become prisoners of legacy
systems”, The Wall Street Journal, http://deloitte.wsj.
com/cio/2013/10/01/when-companies-become-prisoners-of-legacy-
systems/, October 2013

[21] Ron Condon, “Is it time to replace passwords with more complex
authentication tools”, Computer Weekly, pp026-30, September 2010

[22] K. Brown, “The Dangers of Weak Hashes, “SANS Institute InfoSec
Reading Room, November, 2013

[23] B. Krebs, “My Yahoo account was hacked! Now what?”, Krebs On
Security, https://krebsonsecurity.com/2016/12/my-yahoo-account-
was-hacked-now-what/, December 2016

[24] P. Grassi, M. Garcia, J. Fenton, “DRAFT NIST Special Publication
800-63-3 Digital Identity Guidelines”, National Institute of Standards
and Technology, Los Altos, CA, February 2017

[25] B. Strahs, C. Yue and H. Wang, “Secure Passwords Through
Enhanced Hashing”, The College of William and Mary, VA, 2009

[26] D. Kristol, E. Gabber, P. Gibbons, Y. Matias and A. Mayer, “Design
and Implementation of the Lucent Personalized Web Assistant
LPWA”, Information Sciences Research Center, Bell Laboratories,
Lucent Technologies, Murray Hill, NJ, June 1998

[27] B. Ross, C. Jackson, N. Maiyake, D. Boneh, J. Mitchell, “Stronger
Password Authentication Using Browser Extensions” Dept. of
Computer Science, Stanford University, Stanford, CA, 2005

[28] J. Halderman, B. Waters and E. Felten, ”A Convenient Method for
Securely Managing Passwords”, Princeton & Stanford Uni, 2005

[29] Netcraft, “February 2016 web server survey” (online),
https://news.netcraft.com/archives/2016/02/22/february-2016-web-
server-survey.html, February 2016

[30] M. Stevens, E. Bursztein, P. Karpman1, A. Albertini and Yarik
Markov, “The first collision for full SHA-1”, CWI Amsterdam,
Google Research, February 2017

