5,318 research outputs found

    Development and validation of computational models of cellular interaction

    Get PDF
    In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    On the Minimal Revision Problem of Specification Automata

    Full text link
    As robots are being integrated into our daily lives, it becomes necessary to provide guarantees on the safe and provably correct operation. Such guarantees can be provided using automata theoretic task and mission planning where the requirements are expressed as temporal logic specifications. However, in real-life scenarios, it is to be expected that not all user task requirements can be realized by the robot. In such cases, the robot must provide feedback to the user on why it cannot accomplish a given task. Moreover, the robot should indicate what tasks it can accomplish which are as "close" as possible to the initial user intent. This paper establishes that the latter problem, which is referred to as the minimal specification revision problem, is NP complete. A heuristic algorithm is presented that can compute good approximations to the Minimal Revision Problem (MRP) in polynomial time. The experimental study of the algorithm demonstrates that in most problem instances the heuristic algorithm actually returns the optimal solution. Finally, some cases where the algorithm does not return the optimal solution are presented.Comment: 23 pages, 16 figures, 2 tables, International Joural of Robotics Research 2014 Major Revision (submitted
    • …
    corecore