3 research outputs found

    A power-scalable variable-length analogue DFT processor for multi-standard wireless transceivers

    Get PDF
    In the Orthogonal Frequency-Division Multiplexing (OFDM) based transceivers, digital computation of the Discrete Fourier Transform (DFT) is a power hungry process. Reduction in the hardware cost and power consumption is possible by implementing the DFT processor with analogue circuits. This thesis presents the real-time recursive DFT processor. Previously, changing the transform length and scaling the power could only be performed by digital Fast Fourier Transform (FFT) processors. By using the real-time recursive DFT processor, the decimation filter is eliminated. Thus, further reduction in the hardware cost and power consumption of the multi-standard transceiver is achieved. The real-time recursive DFT processor was designed in 180 nm CMOS technology. Results of device mismatch analysis indicate that the 8-point recursive DFT processor has a yield of 97.5% for the BPSK modulated signal. For the QPSK modulated signal, however, yield of the 8-point recursive DFT processor is 8.9%. Moreover, doubling the transform length reduces the average dynamic range by 3dB. Accordingly, the 16-point recursive DFT processor has a yield of 43.4% for the BPSK modulated signal. Power consumption of the recursive DFT processor is about 1/6 of the power consumption of a previous analogue FFT processor

    Prototype mixed-signal hardware for public safety radio interoperability

    Get PDF
    In performing their required duties public safety personnel from differing departments often need to communicate with one another using their in-car radios. However, in many cases, especially involving small departments, this interoperability doesn\u27t exist. A prototype circuit design has been developed and tested within the laboratory using two common radio systems: EFJohnson and Motorola. The preliminary results have shown successful operation as a system gateway between the two radio systems with good performance regarding audio signal latency and minimizing the push-to-talk signal generation delay

    Development of a Full-Field Time-of-Flight Range Imaging System

    Get PDF
    A full-field, time-of-flight, image ranging system or 3D camera has been developed from a proof-of-principle to a working prototype stage, capable of determining the intensity and range for every pixel in a scene. The system can be adapted to the requirements of various applications, producing high precision range measurements with sub-millimetre resolution, or high speed measurements at video frame rates. Parallel data acquisition at each pixel provides high spatial resolution independent of the operating speed. The range imaging system uses a heterodyne technique to indirectly measure time of flight. Laser diodes with highly diverging beams are intensity modulated at radio frequencies and used to illuminate the scene. Reflected light is focused on to an image intensifier used as a high speed optical shutter, which is modulated at a slightly different frequency to that of the laser source. The output from the shutter is a low frequency beat signal, which is sampled by a digital video camera. Optical propagation delay is encoded into the phase of the beat signal, hence from a captured time variant intensity sequence, the beat signal phase can be measured to determine range for every pixel in the scene. A direct digital synthesiser (DDS) is designed and constructed, capable of generating up to three outputs at frequencies beyond 100 MHz with the relative frequency stability in excess of nine orders of magnitude required to control the laser and shutter modulation. Driver circuits were also designed to modulate the image intensifier photocathode at 50 Vpp, and four laser diodes with a combined power output of 320 mW, both over a frequency range of 10-100 MHz. The DDS, laser, and image intensifier response are characterised. A unique method of measuring the image intensifier optical modulation response is developed, requiring the construction of a pico-second pulsed laser source. This characterisation revealed deficiencies in the measured responses, which were mitigated through hardware modifications where possible. The effects of remaining imperfections, such as modulation waveform harmonics and image intensifier irising, can be calibrated and removed from the range measurements during software processing using the characterisation data. Finally, a digital method of generating the high frequency modulation signals using a FPGA to replace the analogue DDS is developed, providing a highly integrated solution, reducing the complexity, and enhancing flexibility. In addition, a novel modulation coding technique is developed to remove the undesirable influence of waveform harmonics from the range measurement without extending the acquisition time. When combined with a proposed modification to the laser illumination source, the digital system can enhance range measurement precision and linearity. From this work, a flexible full-field image ranging system is successfully realised. The system is demonstrated operating in a high precision mode with sub-millimetre depth resolution, and also in a high speed mode operating at video update rates (25 fps), in both cases providing high (512 512) spatial resolution over distances of several metres
    corecore