7 research outputs found

    Conceptual hydrological model calibration using multi-objective optimization techniques over the transboundary Komadugu-Yobe basin, Lake Chad Area, West Africa

    Get PDF
    Study Area: The discharge of the transboundary Komadugu-Yobe Basin, Lake Chad Area, West Africa is calibrated using multi-objective optimization techniques. Study focus: The GR5J hydrological model parameters are calibrated using six optimization methods i.e. Local Optimization-Multi Start (LOMS), the Differential Evolution (DE), the Multiobjective Particle the Swarm Optimization (MPSO), the Memetic Algorithm with Local Search Chains (MALS), the Shuffled Complex Evolution-Rosenbrock’s function (SCE-R), and the Bayesian Markov Chain Monte Carlo (MCMC) approach. Three combined objective functions i.e. Root Mean Square Error, Nash- Sutcliffe efficiency, Kling-Gupta efficiency are applied. The calibration process is divided into two separate episodes (1974–2000 and 1980–1995) so as to ascertain the robustness of the calibration approaches. Runoff simulation results are analysed with a timefrequency wavelet transform. New hydrological insights for the region: For calibration and validation stages, all optimization methods simulate the base flow and high flow spells with a satisfactory level of accuracy. For calibration period, MCMC underestimate it by -0.07 mm/day. The performance evaluation shows that MCMC has the highest values of mean absolute error (0.28) and mean square error (0.40) while LOMS and MCMC record a low volumetric efficiency of 0.56. In all cases, the DE and the SCE-R methods perform better than others. The combination of multi-objective functions and multi-optimization techniques improve the model’s parameters stability and the algorithms’ optimization to represent the runoff in the basin

    Combining hydrologic simulations and stream‐network models to reveal flow‐ecology relationships in a large Alpine catchment

    Get PDF
    7openInternationalItalian coauthor/editorFlow regimes profoundly influence river organisms and ecosystem functions, but regulatory approaches often lack the scientific basis to support sustainable water allocation. In part, this reflects the challenge of understanding the ecological effects of flow variability over different temporal and spatial domains. Here, we use a process‐based distributed hydrological model to simulate 23 years of natural flow regime in 100 bioassessment sites across the Adige River network (NE Italy), and to identify typical nivo‐glacial, nivo‐pluvial, and pluvial reaches. We then applied spatial stream‐network models (SSN) to investigate the relationships between hydrologic and macroinvertebrate metrics while accounting for network spatial autocorrelation and local habitat conditions. Macroinvertebrate metrics correlated most strongly with summer, winter and temporal variation in streamflow, but effects varied across flow regime types. For example: i) taxon richness appeared limited by high summer flows and high winter flows in nivo‐glacial and pluvial streams, respectively; ii) invertebrate grazers increased proportionally with the annual coefficient of flow variation in nivo‐glacial streams but tended to decline with flow variation in pluvial streams. Although local land‐use and water quality also affected benthic communities, most variation in macroinvertebrate metrics was associated with spatial autocorrelation. These findings highlight the importance of developing environmental flow management policies in ways that reflect specific hydro‐ecological and land use contexts. Our analyses also illustrate the importance of spatially‐explicit approaches that account for auto‐correlation when quantifying flow‐ecology relationships.openLarsen, S.; Majone, B.; Zulian, P.; Stella, E.; Bellin, A.; Bruno, M.C.; Zolezzi, G.Larsen, S.; Majone, B.; Zulian, P.; Stella, E.; Bellin, A.; Bruno, M.C.; Zolezzi, G

    Development of Integrated Water Resources Planning Model for Dublin using WEAP21

    Get PDF
    Population growth, urbanisation, and climate change are predicted to impose huge pressure on water resource systems of many cities around the world including Dublin. Integrated water resources management is seen as a viable approach to address these challenges. This approach examines the water resources system in a more interconnected manner, focusing on reducing water demands, reducing reliance on fresh water supplies, reducing discharges into receiving water bodies, and creating water supply assets from storm water and wastewater. The role of mathematical modelling in designing an integrated water resources management plan is paramount as it provides a tool whereby performances of alternative water management plans can be predicted and evaluated under future scenarios of population growth, urban development and climate. There is a lack of an integrated water resources management model for Dublin that integrates the main components of the water resources system including water supply sources, sectoral water uses, wastewater disposal, urban runoff and associated infrastructure. Previous models also did not consider water management options such as rainwater harvesting, greywater reuse, and groundwater recharge - which are important for the implementation of an integrated water resources management approach. Moreover, integration of uncertainty analysis into water resources modelling helps understand associated uncertainties and hence reduce the

    Scale dependence of hydrological effects from different climatic conditions on glacierized catchments

    Get PDF
    The high altitude environments are particularly sensitive to climate change and very rapid and intense effects are affecting the Alpine cryosphere. Knowledge of the hydrological responses of high-altitude watershed is critical to manage water resources, especially in the context of current climate change, resulting in a lower percentage of solid precipitation, temporal redistribution and quantitative variations in precipitation inputs, higher temperatures, and more persistent drought conditions during the summer. Although the remaining glacial masses are still able to secure sufficient water supplies, the rate of reduction of the glaciers, however, is now very rapid. Mountain glaciers have generally experienced worldwide retreat since the second half of XIX Century, and for example in the Alps they lost about two/thirds of the initial area, with area loss rates accelerating since 2003. At this pace, the hydrological buffering effect of the glaciers will run out quickly. Several years in the last decades, which have been particularly warm and dry, have shown that glaciers can compensate scarce rainfall with a significant contribution to the runoff of rather large basins, especially in summer. The aim of this work was to understand how different climatic and glacier cover conditions can modify the hydrological response of glacierized catchments, and to analyze the scale dependency of the hydrological response and the resulting impacts on fresh water availability. The investigations were carried out in the Noce catchment, a 1050 km2 watershed located in the Eastern Italian Alps, and in three sub-catchments of the same basin, with area ranging from 8 to 385 km2 and different percent glacierization. Valuable information on past and current evolution of climate and glaciers exist in this study area. In particular, precious data series of high-altitude meteorological and hydrometric data, reconstructions of glacier fluctuations since the Little Ice Age, and measurements of glacier mass balance were available. Based on this availability, and considering the high uncertainties affecting model studies that use future projections of climate and glaciers, we decided to do a sensitivity analysis based on past observations. This approach has the advantage of analyzing the sensitivity of the glacio-hydrological system of the study area under actually observed climatic and glacier cover conditions, likely reducing the main source of error caused by model approaches based on future projections. Moreover using real observations has the potential of increasing the internal consistency of the glacio-hydrological model employed in this sensitivity analysis, during calibration and validation. A drawback of this method is that it does not take into consideration future change in climate and glacier cover. For this reason, we analyzed also a condition with complete absence of glaciers, and recent ‘extreme’ years, like 2003, that has been frequently referred to as a possible example of future climatic conditions during summer in the Alps. The results of this study confirm previous research that indicate a progressive transition from a glacial to a nival hydrological regime in the analyzed catchments, with a tendency to a strong decrease in runoff after the seasonal snow has melted, in the second half of summer. The runoff peak tends to shift from mid- to early summer. Different glacier cover scenarios (LIA, current and absence of glaciers) have highest impacts in August runoff, during periods of glacier wastage as in the 1940s and in the 2000s, and in the smaller catchments with high percent glacierization. Compared to the absence of glaciers, current glaciers still ensure higher runoff during summer, in all climatic conditions considered. However, this glacier damping effect is largely decreased if compared to the LIA conditions, and this decrease is directly related to catchment area. If smaller and highly glacierized catchment still preserves ~50% of the initial damping effect in August, the larger catchments keep only 25-30% of it. The glacier contribution to late summer runoff decreases obviously from headwater to lower and larger catchments. However, the decreasing rate tends to flatten for catchment area larger than 80 km2, and for the larger analyzed catchment it still reaches 26%. Most importantly, the current glacier contribution to late summer runoff in the larger catchment reaches ~60% in extremely warm and dry summers, like in 2003. However, increased runoff due to glacier wastage in 2003 occurred only in the headwater and most glacierized catchment, whereas using the LIA glacier cover would have ensured increased runoff in all analyzed catchments. This suggests that the expected peak in runoff under warming climate, attributable to glacier melt, has already passed in the study area

    Biomorphodynamics of river bars in channelized, hydropower-regulated rivers

    Get PDF
    Doctoral thesis in Science for MAnagement of Rivers and their Tidal System, Primary Institution: Department of Civil, Environmental and Mechanical Engineering, University of Trento Secondary Institution: Department of Physical Geography, Queen Mary University of LondonOver the past 200 years, rivers in industrialized countries have been significantly altered by human interventions such as channelization, hydropower development, and sediment mining causing observable biogeomorphological changes. In the European Alpine region, many large rivers have been impounded and channelized, yet few studies have conducted in-depth research on the temporal patterns of the causes and trajectories of these biogeomorphological responses, in comparison to rivers that can adjust their planform. Moreover, it is well-known that within channelized rivers alternating bars may appear due to an instability of the riverbed, but the development and influence of vegetation on such bars, its feedbacks on the morphodynamics of the bars and the degree to which these mutual interaction processes responds to anthropic stressors related to alterations in the flow and sediment supply regimes has received little attention. The present research aims to disentangle the mechanisms that may determine dramatically diverging biogeomorphological trajectories in regulated Alpine rivers. It further intends to identify the underlying relations of the triad that connects vegetation – sediment – flow regime and its feedbacks in regulated, channelized, rivers with vegetated bars. The methodology comprises an interdisciplinary approach which combines field and historical investigations with theoretical predictions, and integrates a variety of spatial and temporal scales and different levels of detail in characterising processes. Two case studies in the Alpine region (the Isère river in southeast France and the Noce river in northeast Italy) were selected for a quantitative, historical analysis of the biomorphological trajectories using remotely sensed data to investigate the apparent responses to human-induced modifications of natural processes. Both rivers have been heavily impacted, with a notable increase of human stressors since the mid-20th century which can be associated with the transition of both systems from an initial, stable dynamic state characterized by bars having only sparse colonizing vegetation with a frequent turnover to a new, apparently stable state characterised by reduced morphodynamics and an increased vegetation cover in recent decades. The Isère river, which underwent a shift from unvegetated, migrating bars to vegetated, stable bars, was further explored with a hydromorphodynamic modelling approach to investigate historical changes in riparian vegetation recruitment and survival related to changes in the flow regime. The Windows of Opportunity model was successful at revealing temporal changes in recruitment conditions in response to flow regime alterations. Further results indicated a reduction in relevant high flow events that might be competent to induce large bar migration in the system. Alterations of the flow regime are assumed to have played a major role ix in vegetation encroachment directly by affecting vegetation recruitment through reduced flow disturbances and indirectly inducing modifications of bar morphodynamics. Field observations of root development were also made on the Noce and Isère rivers, focusing on two species Salix alba and Phalaris arundinacea, with the aim of improving understanding of the role of roots on the presence and movement of vegetated bars. When comparing results from different sites, more predictable linear relationships between root properties and depth below the ground surface were associated with stronger flow regulation. Bar morphology (surface elevation or depth of sedimentation and sediment calibre) and flow regime were found to be the main drivers of root architecture. Furthermore, roots were found to have an important role in the stabilization of the bars with the ability to stabilise fine sediments trapped by the plant’s canopy during phases of bar aggradation. To understand the current state of channelized Alpine rivers, which often show diverging biogeomorphic features, it is necessary to understand the underlying interactions between flow, sediment, and vegetation dynamics. Only through investigating the historical biomorphological evolution of rivers and the main drivers of that evolution it is possible to design measures that can be effective in rehabilitating desired ecosystem functions that have been markedly modified by those state transitions. In summary, this study has provided novel, quantitative insights about the complexity of flow – vegetation – morphology interactions occurring in channelized river systems in relation to anthropogenic stressors causing alteration in their flow and sediment supply regimes. By integrating different approaches, this study has shown how these river systems can be highly sensitive to even small changes in the anthropogenic stressors, depending on the stage in their evolutionary trajectory, which is crucial to be detected to support the development of sustainable management strategies aimed at restoring or improving target riverine functions and processes.Erasmus Mundus Programme1, within the framework of the Erasmus Mundus Joint Doctorate (EMJD) SMART (Science for MAnagement of Rivers and their Tidal systems)

    Propuesta y análisis de metodologías para la evaluación de recursos hídricos mediante modelos precipitación-escorrentía

    Full text link
    [ES] La evaluación de los recursos hídricos es una pieza clave para la solución sostenible de problemas que la sociedad enfrenta día con día relacionados con la disponibilidad del agua. Para distribuir los recursos disponibles en una región y gestionarlos correctamente, dada su distribución tanto espacial como temporalmente errática, es necesario primero cuantificarlos y posteriormente definir planes de actuación. Es así, que la evaluación de recursos hídricos es considerada como el punto de partida para la planificación y la gestión del agua, y la base para el análisis del impacto de fenómenos como las sequías y el cambio climático. Por todo lo anterior, la evaluación de recursos hídricos debe ser un instrumento confiable que dé fortaleza en la toma de decisiones; ya que, si la base no es lo suficientemente robusta, las decisiones tomadas a partir de ella tampoco serán fiables. El principal instrumento utilizado para la evaluación de recursos hídricos son los modelos hidrológicos, ya que permiten el análisis del ciclo del agua a escala de cuenca a través de expresiones matemáticas. La modelación hidrológica ha sido utilizada con otros propósitos además de la evaluación de recursos hídricos, el más recurrido: la predicción y control de crecidas, cuya metodología y estudios de casos son muy extensos en la literatura. No obstante, ante el problema de la evaluación de recursos hídricos, las referencias en la literatura suelen ser escasas y más aún, cuando los sistemas son complejos y han sufrido alteraciones de origen antrópico que modifican su estado natural invalidando la aplicación directa de los modelos hidrológicos para este fin. En esta investigación se analizan y proponen metodologías específicas para las diferentes casuísticas presentes en la evaluación de recursos hídricos: en sistemas naturales, sistemas regulados con altos índices de explotación y sistemas que presenten una fuerte influencia de la componente subterránea. La propuesta demanda el uso acoplado de modelos precipitación-escorrentía (MPE); por un lado, con un modelo de simulación de la gestión (MSG), y por el otro, con un modelo distribuido para la simulación de acuíferos. Este planteamiento permite cuantificar los recursos disponibles en la cuenca tomando en cuenta las interacciones que suceden entre los elementos del sistema, permitiendo que procesos como el de la restitución de caudales a régimen natural no sean estrictamente necesarios. Para su análisis fueron seleccionados tres casos de estudio representativos, uno por cada tipo de problema. Los sistemas no regulados están representados por nueve cuencas de cabecera distribuidas en el sistema de explotación del Duero y el Júcar, seleccionadas cuidadosamente en función sus características hidrológicas y la calidad de la información disponible. La propuesta desarrollada para los sistemas regulados se aplicó al sistema de explotación del Júcar caracterizado por presentar una gran capacidad de regulación y altos índices de explotación. Finalmente, uno de los casos más complejos donde la componente subterránea juega un papel fundamental en la evaluación de los recursos hídricos es la cabecera del Guadiana, donde hasta la actualidad se siguen sufriendo las consecuencias de una mala gestión y un total desconocimiento de las interacciones que suceden en el sistema. Como una de las aportaciones destacadas de esta investigación, se presenta el desarrollo de una aplicación informática para la calibración de MPE, compatible con las herramientas utilizadas en la evaluación de recursos hídricos en cualquiera de los casos presentados. En síntesis, esta tesis doctoral recoge una propuesta científico-técnica completa para enfrentar el problema de la evaluación de recursos hídricos a través de la modelación hidrológica, abordando todo el abanico de posibles problemáticas presentes en los sistemas de recursos hídricos. Además, propone un uso concatenado de técnicas informáticas que permiten aplicar las metodologías propuestas y los modelos de simulación implementados, todo esto incluido dentro de un Sistema Soporte a la Decisión (AQUATOOL).[EN] Water resources assessment is a key to the sustainable solution of problems that society faces everyday related to water availability. In order to distribute the available resources in a region and manage them properly, given their erratic spatial and temporal distribution, it is necessary first to quantify them and then to define action plans. Hence, water resources assessment is considered as the starting point for water planning and management, and the basis for the analysis of the impact of phenomena such as droughts and climate change. For all these reasons, water resources assessment must be a reliable instrument that provides strength in decision-making. If the basis is not sufficiently robust, the decisions taken based on it will not be reliable either. The main approach to water resources assessment is through hydrological models, since they allow the analysis of the water cycle on a basin scale with mathematical expressions. Hydrological modeling has been used for other purposes besides water resources assessment, being the most commonly used forecasting and flood control, whose methodology and case studies are very extensive in the literature. Nevertheless, faced with the problem of water resources assessment, the literature references are often scarce and even more so when the systems are complex and have suffered alterations of anthropic origin that modify their natural state, invalidating the direct application of hydrological models for this purpose. This research analyses and proposes specific methodologies for the different case studies in water resources assessment: natural systems, regulated systems with high exploitation rates and systems with strong groundwater component influence. The proposal requests the coupled use of rainfall-runoff models (RRM). On one side, with a management simulation model, and on the other side with a distributed model for the simulation of aquifers. This approach allows quantifying the available resources in the basin by taking into account the interactions that occur between the elements of the system, allowing processes as that of the restitution of flows to natural regime are not strictly necessary. Three representative case studies were selected for analysis, one for each type of problem. The non-regulated systems are represented by nine headwater basins distributed in the Duero and Jucar exploitation system, carefully selected according to their hydrological characteristics and the quality of the available information. The proposal developed for the regulated systems was applied to the Júcar exploitation water system, which is characterized by a great capacity for regulation and high exploitation rates. Finally, one of the most complex cases where the groundwater component plays a key role in the evaluation of water resources is the headwaters of the Guadiana basin, where to this day the consequences of poor management and a total lack of knowledge of the interactions that occur in the system persist. a computer application for the calibration of RRM, compatible with the tools used in the water resources assessment in any of the cases presented. In summary, this PhD thesis includes a complete scientific-technical proposal to face the problem of water resources assessment through hydrological modelling, addressing the whole range of possible problems present in water resources systems. Furthermore, it proposes a combined use of computer techniques that allow the application of the proposed methodologies and the implemented simulation models, all this included within a Decision Support System (AQUATOOL).[CA] L'avaluació dels recursos hídrics és una peça clau per a la solució sostenible de problemes que la societat afronta dia amb dia relacionats amb la disponibilitat de l'aigua. Per a distribuir els recursos disponibles en una regió i gestionar-los correctament, donada la seua distribució tant espacial com temporalment erràtica, és necessari primer quantificar-los i posteriorment definir plans d'actuació. És així, que l'avaluació de recursos hídrics és considerada com el punt de partida per a la planificació i la gestió de l'aigua, i la base per a l'anàlisi de l'impacte de fenòmens com les sequeres i el canvi climàtic. Per tot l'anterior, l'avaluació de recursos hídrics ha de ser un instrument confiable que done fortalesa en la presa de decisions; ja que, si la base no és prou robusta, les decisions preses a partir d'ella tampoc seran fiables. El principal instrument utilitzat per a l'avaluació de recursos hídrics són els models hidrològics, ja que permeten l'anàlisi del cicle de l'aigua a escala de conca a través d'expressions matemàtiques. La modelació hidrològica ha sigut utilitzada amb altres propòsits a més de l'avaluació de recursos hídrics, el més recorregut: la predicció i control de crescudes, la metodologia i estudis de casos de la qual són molt extensos en la literatura. No obstant això, davant del problema de l'avaluació de recursos hídrics, les referències en la literatura solen ser escasses i més encara, quan els sistemes són complexos i han patit alteracions d'origen antròpic que modifiquen el seu estat natural invalidant l'aplicació directa dels models hidrològics per a este fi. En esta investigació s'analitzen i proposen metodologies específiques per a les diferents casuístiques presents en l'avaluació de recursos hídrics: en sistemes naturals, en sistemes regulats amb alts índexs d'explotació i sistemes que presenten una forta influència de la component subterrània. La proposta demanda l'ús acoblat de models precipitació-escolament (MPE) ; d'una banda, amb un model de simulació de la gestió, i per l'altre, amb un model distribuït per a la simulació d'aqüífers. Este plantejament permet quantificar els recursos disponibles en la conca tenint en compte les interaccions que hi ha entre els elements del sistema, permetent que processos com el de la restitució de cabals a règim natural no siguen estrictament necessaris. Per a la seua anàlisi van ser seleccionats tres casos d'estudi representatius, u per cada tipus de problema. Els sistemes no regulats estan representats per nou conques de capçalera distribuïdes en el sistema d'explotació del Duero i el Xúquer, seleccionades cuidadosament en funció les seues característiques hidrològiques i la qualitat de la informació disponible. La proposta desenvolupada per als sistemes regulats es va aplicar al sistema d'explotació del Xúquer caracteritzat per presentar una gran capacitat de regulació i alts índexs d'explotació. Finalment, un dels casos més complexos on la component subterrània juga un paper fonamental en l'avaluació dels recursos hídrics és la capçalera del Guadiana, on fins a l'actualitat es continuen patint conseqüències degut a una mala gestió i un total desconeixement de les interaccions que es donen en el sistema. Com una de les aportacions destacades d'esta investigació, es presenta el desenvolupament d'una aplicació informàtica per a la calibració de MPE, compatible amb les ferramentes emprades en l'avaluació de recursos hídrics en qualsevol dels casos presentats. En síntesi, esta tesi doctoral arreplega una proposta cientificotècnica completa per a afrontar el problema de l'avaluació de recursos hídrics a través de la modelació hidrològica, abordant totes les possibles problemàtiques presents en els sistemes de recursos hídrics. A més, proposa un ús concatenat de tècniques informàtiques que permeten aplicar les metodologies proposades i els models de simulació implementats, tot açò inclòs dins d'un Sistema de Suport a la Decisió (AQUATOOL).Al Consejo Nacional de Ciencia y Tecnología de México (CONACyT) y a la Secretaría de Innovación, Ciencia y Desarrollo Tecnológico del Estado de Michoacán (SICDET) por el financiamiento otorgado para la realización de mis estudios de doctorado.García Romero, L. (2020). Propuesta y análisis de metodologías para la evaluación de recursos hídricos mediante modelos precipitación-escorrentía [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/153150TESI
    corecore