89 research outputs found

    Low-frequency local field potentials in primate motor cortex and their application to neural interfaces

    Get PDF
    PhD ThesisFor patients with spinal cord injury and paralysis, there are currently very limited options for clinical therapy. Brain-machine interfaces (BMIs) are neuroprosthetic devices that are being developed to record from the motor cortex in such patients, bypass the spinal lesion, and use decoded signals to control an effector, such as a prosthetic limb. The ideal BMI would be durable, reliable, totally predictable, fully-implantable, and have generous battery life. Current, state-of-the-art BMIs are limited in all of these domains; partly because the typical signals used—neuronal action potentials, or ‘spikes’—are very susceptible to micro-movement of recording electrodes. Recording spikes from the same neurons over many months is therefore difficult, and decoder behaviour may be unpredictable from day-today. Spikes also need to be digitized at high frequencies (~104 Hz) and heavily processed. As a result, devices are energy-hungry and difficult to miniaturise. Low-frequency local field potentials (lf-LFPs; < 5 Hz) are an alternative cortical signal. They are more stable and can be captured and processed at much lower frequencies (~101 Hz). Here we investigate rhythmical lf-LFP activity, related to the firing of local cortical neurons, during isometric wrist movements in Rhesus macaques. Multichannel spike-related slow potentials (SRSPs) can be used to accurately decode the firing rates of individual motor cortical neurons, and subjects can control a BMI task using this synthetic signal, as if they were controlling the actual firing rate. Lf-LFP–based firing rate estimates are stable over time – even once actual spike recordings have been lost. Furthermore, the dynamics of lf-LFPs are distinctive enough, that an unsupervised approach can be used to train a decoder to extract movement-related features for use in biofeedback BMIs. Novel electrode designs may help us optimise the recording of these signals, and facilitate progress towards a new generation of robust, implantable BMIs for patients.Research Studentship from the MRC, and Andy Jackson’s laboratory (hence this work) is supported by the Wellcome Trust

    A contingency multi-microphone noise reduction strategy based on linearly constrained multi-channel wiener filtering

    Get PDF
    © 2016 IEEE. The Minimum Variance Distortionless Response (MVDR) beamformer is a popular multi-microphone noise reduction and speech enhancement strategy that can be implemented either as a fixedconstraint MVDR beamformer, with a pre-defined Relative Transfer Function (RTF) or based on a Multi-channel Wiener Filter (MWF) estimate. However, each implementation is not fully robust within a dynamic acoustic environment. For instance, performance degradations exist for the fixed-constraint MVDR beamformer when the source is not in the constraint direction and also for the MWF when the estimated RTF is poor. In this paper, we propose a contingency noise reduction strategy that uses a Linearly Constrained MWF (LCMWF) to combine the positive aspects of both implementations. We proceed to derive the LC-MWF in relation to the MVDR beamformer implementations and demonstrate through simulations that the LC-MWF is indeed an intermediary solution that encompasses a wider range of acoustic conditions.status: publishe

    Exploring Animal Behavior Through Sound: Volume 1

    Get PDF
    This open-access book empowers its readers to explore the acoustic world of animals. By listening to the sounds of nature, we can study animal behavior, distribution, and demographics; their habitat characteristics and needs; and the effects of noise. Sound recording is an efficient and affordable tool, independent of daylight and weather; and recorders may be left in place for many months at a time, continuously collecting data on animals and their environment. This book builds the skills and knowledge necessary to collect and interpret acoustic data from terrestrial and marine environments. Beginning with a history of sound recording, the chapters provide an overview of off-the-shelf recording equipment and analysis tools (including automated signal detectors and statistical methods); audiometric methods; acoustic terminology, quantities, and units; sound propagation in air and under water; soundscapes of terrestrial and marine habitats; animal acoustic and vibrational communication; echolocation; and the effects of noise. This book will be useful to students and researchers of animal ecology who wish to add acoustics to their toolbox, as well as to environmental managers in industry and government

    Cognitive-developmental learning for a humanoid robot : a caregiver's gift

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 319-341).(cont.) which are then applied to developmentally acquire new object representations. The humanoid robot therefore sees the world through the caregiver's eyes. Building an artificial humanoid robot's brain, even at an infant's cognitive level, has been a long quest which still lies only in the realm of our imagination. Our efforts towards such a dimly imaginable task are developed according to two alternate and complementary views: cognitive and developmental.The goal of this work is to build a cognitive system for the humanoid robot, Cog, that exploits human caregivers as catalysts to perceive and learn about actions, objects, scenes, people, and the robot itself. This thesis addresses a broad spectrum of machine learning problems across several categorization levels. Actions by embodied agents are used to automatically generate training data for the learning mechanisms, so that the robot develops categorization autonomously. Taking inspiration from the human brain, a framework of algorithms and methodologies was implemented to emulate different cognitive capabilities on the humanoid robot Cog. This framework is effectively applied to a collection of AI, computer vision, and signal processing problems. Cognitive capabilities of the humanoid robot are developmentally created, starting from infant-like abilities for detecting, segmenting, and recognizing percepts over multiple sensing modalities. Human caregivers provide a helping hand for communicating such information to the robot. This is done by actions that create meaningful events (by changing the world in which the robot is situated) thus inducing the "compliant perception" of objects from these human-robot interactions. Self-exploration of the world extends the robot's knowledge concerning object properties. This thesis argues for enculturating humanoid robots using infant development as a metaphor for building a humanoid robot's cognitive abilities. A human caregiver redesigns a humanoid's brain by teaching the humanoid robot as she would teach a child, using children's learning aids such as books, drawing boards, or other cognitive artifacts. Multi-modal object properties are learned using these tools and inserted into several recognition schemes,by Artur Miguel Do Amaral Arsenio.Ph.D

    Exploring Animal Behavior Through Sound: Volume 1

    Get PDF
    This open-access book empowers its readers to explore the acoustic world of animals. By listening to the sounds of nature, we can study animal behavior, distribution, and demographics; their habitat characteristics and needs; and the effects of noise. Sound recording is an efficient and affordable tool, independent of daylight and weather; and recorders may be left in place for many months at a time, continuously collecting data on animals and their environment. This book builds the skills and knowledge necessary to collect and interpret acoustic data from terrestrial and marine environments. Beginning with a history of sound recording, the chapters provide an overview of off-the-shelf recording equipment and analysis tools (including automated signal detectors and statistical methods); audiometric methods; acoustic terminology, quantities, and units; sound propagation in air and under water; soundscapes of terrestrial and marine habitats; animal acoustic and vibrational communication; echolocation; and the effects of noise. This book will be useful to students and researchers of animal ecology who wish to add acoustics to their toolbox, as well as to environmental managers in industry and government

    Multi-standard context-aware cognitive radio : sensing and classification mechanisms

    Get PDF
    [no abstract
    • 

    corecore