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Abstract 

For patients with spinal cord injury and paralysis, there are currently very limited options for 

clinical therapy. Brain-machine interfaces (BMIs) are neuroprosthetic devices that are being 

developed to record from the motor cortex in such patients, bypass the spinal lesion, and use 

decoded signals to control an effector, such as a prosthetic limb. 

The ideal BMI would be durable, reliable, totally predictable, fully-implantable, and have 

generous battery life. Current, state-of-the-art BMIs are limited in all of these domains; partly 

because the typical signals used—neuronal action potentials, or ‘spikes’—are very susceptible 

to micro-movement of recording electrodes. Recording spikes from the same neurons over 

many months is therefore difficult, and decoder behaviour may be unpredictable from day-to-

day. Spikes also need to be digitized at high frequencies (~104 Hz) and heavily processed. As 

a result, devices are energy-hungry and difficult to miniaturise. Low-frequency local field 

potentials (lf-LFPs; < 5 Hz) are an alternative cortical signal. They are more stable and can be 

captured and processed at much lower frequencies (~101 Hz). 

Here we investigate rhythmical lf-LFP activity, related to the firing of local cortical neurons, 

during isometric wrist movements in Rhesus macaques. Multichannel spike-related slow 

potentials (SRSPs) can be used to accurately decode the firing rates of individual motor 

cortical neurons, and subjects can control a BMI task using this synthetic signal, as if they 

were controlling the actual firing rate. Lf-LFP–based firing rate estimates are stable over time 

– even once actual spike recordings have been lost. Furthermore, the dynamics of lf-LFPs are 

distinctive enough, that an unsupervised approach can be used to train a decoder to extract 

movement-related features for use in biofeedback BMIs. Novel electrode designs may help us 

optimise the recording of these signals, and facilitate progress towards a new generation of 

robust, implantable BMIs for patients.  
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Chapter 1. General Introduction 

In which I propose and explain the motivation for using local field potentials as control 

signals for motor brain machine interfaces. 

1.1 Neural interfaces 

Neural interfaces are neuroprosthetic devices that interact directly with the nervous system. 

They have an electronic pathway by which biological control signals are recorded, usually 

from the central nervous system (CNS), then processed and transformed into an output signal 

that can be used to produce action in the environment, via an effector. 

Brain-machine interfaces (BMIs) and brain-computer interfaces (BCIs) are a class of neural 

interface whose input signals come from the brain, and whose output signals control 

‘machines’ (e.g. robotic arms) or computers (e.g. a cursor), respectively. The term neural 

interface is broader, and includes devices which produce action via other types of effector: for 

example, by stimulation of the CNS or muscles. Given the significant overlap between 

contemporary ‘machines’ and ‘computers’, the terms BMI and BCI are often used 

interchangeably, so in this thesis, I will use the term BMI for consistency. In discussions of 

broader application of the technology I will use the term neural interface where appropriate. 

This thesis focusses mainly on motor BMIs, which allow control of an external effector—e.g. 

a computer cursor or a robotic arm—using signals recorded directly from the CNS (typically 

from the motor cortex). This is in contrast to sensory neural interfaces (e.g. retinal implants), 

which use stimulation (usually electrical) to deliver afferent sensory information from the 

environment directly to the CNS. 

1.1.1 Motivation 

1.1.1.1 The clinical context 

Neural interfaces offer considerable promise for restoring functional arm movement to 

patients with a number of clinical pathologies, including spinal cord or brainstem injury, 
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cerebrovascular events (stroke), multiple sclerosis and motor neuron disease (Daly and 

Wolpaw 2008). 

In such diseases, if a ‘disconnect’ exists (at any point in the descending pathway) between a 

healthy, functioning cortex and the muscles, a chronic neural interface could theoretically be 

used to ‘bypass’ the lesion and control an external device, or re-animate a paralyzed limb by 

stimulating the muscles (Pfurtscheller et al. 2003; Moritz et al. 2008; Ethier et al. 2012) or 

spinal cord (Zimmermann et al. 2011) (Figure 1-1). 

 

Figure 1-1  A neuroprosthetic approach to spinal cord injury. 
Schematic of an invasive BMI approach to treating spinal cord injury. Signals recorded from the brain can 

be used as control signals, either to reanimate the limb through spinal cord stimulation or muscle 
stimulation, or to control a variety of artificial effectors. 

— Adapted from Jackson & Zimmermann (2012) Nature Rev. Neurology 8 (Nature Publishing Group). 

Amongst these devastating pathologies, spinal cord injury is perhaps the most likely to be 

amenable to treatment with neural interfaces in the near future. Roughly three people per day 

in the UK and Ireland—mostly young adults—suffer a paralysing spinal cord injury (Spinal 

Research 2017); most commonly due to a traumatic injury, such as a road-traffic accident 

(WHO 2013). Over half of those patients will suffer partial or complete tetraplegia, as well as 

other life-changing symptoms, such as incontinence and sexual dysfunction (NSCISC 2017). 

Of all of these symptoms, according to patients with tetraplegia, the highest priority for 

recovery is arm and hand function (Andersen, Burdick, et al. 2004). 
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1.1.1.2 Therapeutic approaches 

Restoring function in a paralysed upper limb is currently a significant therapeutic challenge. 

There is no cure, and treatment options are few: limited mainly to physiotherapy and other 

rehabilitative interventions to preserve range-of-motion. However, in many patients with 

traumatic spinal cord transection, brain function is preserved. This means that they can still 

have the intention to move their limbs, and their primary motor cortex (M1) often still 

produces signals that would normally be associated with movement (Kokotilo et al. 2009), but 

these signals are unable to traverse the spinal cord lesion and reach the motoneurons and 

muscles. Such patients are also usually fully cognitively intact and aware of their 

circumstances, and often young: all factors which make this condition particularly devastating 

and important to treat, both for individuals and for society. 

There are currently two main scientific proposals for curing spinal cord transection: 

i) stem-cell therapy, and 

ii) neuroprosthetic therapy. 

Whilst stem-cell therapy (or other biological regenerative method) may eventually prove to be 

the ‘Holy Grail’ of curative therapy for spinal injury, it is a field in its infancy. It is by no 

means clear that stem-cells will ever be able to functionally re-connect a damaged spinal cord 

(Antonic et al. 2013); even less so, a damaged corticospinal tract – a specialised motor 

pathway which is essential to human hand dexterity (Lemon et al. 2004). It is important to 

note here, that in patients who have suffered incomplete spinal cord injury, the corticospinal 

tract may be damaged, but other pathways (e.g. the rubrospinal and reticulospinal tracts) may 

still be able to transmit signals past the lesion. In such patients, there is a particularly 

important role for targeted rehabilitative physiotherapy, as these ‘accessory’ tracts may be 

able to provide a substrate for considerable recovery of function (Baker 2011). 

1.1.1.3 Types of neural interface 

In comparison to cell-based therapy, the field of neuroprosthetics is surprisingly mature. Two 

main types of neural interface device exist: invasive and non-invasive. Non-invasive neural 

interfaces use recording methods that don’t require a device to be implanted in the CNS to 

record signals. For example, electroencephalography (EEG) captures signals from the brain at 

the scalp surface. Non-invasive devices have the advantage that the CNS is not damaged by 
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implantation, the skin remains intact—massively reducing the risk of infection—and no 

transcutaneous connectors or cables are required. However, brain signals are attenuated and 

spatially low-pass filtered by the skull and soft tissues, introducing artificial correlation 

between electrodes, and making source localisation very difficult (Srinivasan et al, 1998). 

Despite these limitations, there are already a huge number of motor BMI experiments 

employing EEG for controlling computers (McFarland et al. 2008), wheelchairs (Galán et al. 

2008), robotic exoskeletons (Bhagat et al. 2016), and more. 

Invasive neural interfaces are also surprisingly common. Indeed, there are already hundreds-

of-thousands of people walking around with surgically-implanted neural interfaces, in the 

form of cochlear implants, which are a type of sensory neural interface that converts 

environmental information (sound) into electrical neural signals. 

More relevant to this thesis, several volunteer patients in the USA have already received 

implantations of experimental BMI devices into their motor cortex, with which they can 

control robotic arms using only their brain activity (e.g. Simeral et al. 2011; Hochberg et al. 

2012). Some patients even have hybrid sensorimotor BMIs, with electrodes in both motor and 

somatosensory cortices, which can provide both motor efference and sensory afference 

between the brain and a robotic limb (Flesher et al. 2016). 

1.1.1.4 Limitations of the status quo 

Despite these amazing advances, there are three main bottlenecks that need to be addressed 

before invasive BMIs become clinically viable and widely available to patients: 

i) miniaturisation and subcutaneous implantation; 

ii) energy consumption and battery life; and 

iii) stability and longevity of the biological control signals 

Current experimental motor BMI devices, using cortical implants, are highly susceptible to 

infection. The sheer size of the connectors and processing equipment required, means that the 

implants must have a transcutaneous component. Transcutaneous, foreign, non-biological 

materials are notoriously prone to infection, because they breach the natural skin-barrier 

and—however biocompatible the material—never undergo true integration with the 

surrounding skin and soft tissues. Extra-oral transcutaneous implants fail in 53% to 100% of 

cases – depending on a variety of factors (Pendegrass et al. 2007). The ideal solution to this 
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‘transcutaneous dilemma’ would be for the whole device to be implanted subcutaneously 

(including electrodes, connectors, cabling, processing unit, power supply and radio-

communications), so that once the skin wounds are healed, no part of the device is exposed to 

the external environment, and the risk of infection is greatly reduced. 

Currently, the size of electronics required for the complexity of such devices is a major 

limitation to miniaturisation, although this is likely to change with new technologies from the 

consumer mobile electronic device industry. Even then, however, there is still no current 

energy storage solution (e.g. electrochemical cell/battery) that can provide sufficient energy 

density to enable BMIs to be powered subcutaneously for a clinically-acceptable amount of 

time (decades, or at least years). 

One possible solution to the issue of energy storage is to use a device which is powered 

inductively, using an electromagnetic radio-frequency (RF) transmitting coil (outside the 

body) and a receiving coil (under the skin). This system could either power the device directly 

or (more likely) recharge an implanted battery. However, inductive power transfer introduces 

numerous bioengineering challenges to the system. Firstly, the efficiency of inductive transfer 

is highly dependent on the orientation of the receiver coil, and very sensitive to the distance 

between the coils. The subcutaneous receiver coil can migrate surprisingly quickly (F. de 

Carvalho, personal communication), and render the power transfer insufficient to power the 

device (Amar et al. 2015). Secondly, the ability of a resonant circuit to retain energy increases 

with the frequency of RF transmission, but higher frequencies are more absorbed by 

subcutaneous tissues. Because of concerns about tissue damage caused by heating, tissue 

absorption of RF transmissions is tightly regulated, particularly in medical devices, by 

stringent specific absorption rate (SAR) limits set by regulators (Abiri et al. 2017). Thirdly, 

inductive power (by definition) requires implantation of AC circuits, as well as AC-DC 

rectifiers and regulators to ensure a ‘clean’ DC supply (e.g. at 3.3V) to the digital elements of 

the implanted device. Not only do these components generate heat, they also are potential 

sources of electromagnetic interference, which can contaminate the recording of tiny neural 

potentials or the operation of digital components (Sun et al. 2013). 

The final major bottleneck of implanted BMIs (even if miniaturisation and power 

consumption/storage issues could be solved) is that there are still fundamental problems with 

the instability of signals that can be recorded from the brain using existing electrode 

technology. 
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In this thesis: 

I will argue that the use of low-frequency cortical local field potentials (LFPs) as signals for 

controlling motor BMIs, may offer an elegant, low-level solution to all three of these 

bottlenecks, and thus present a new direction for the development of clinical motor BMIs. 

1.1.2 Invasive motor BMIs: current trends 

To be clinically viable and justifiable, invasive BMIs for motor rehabilitation need to work 

with high precision (movements are accurate), low variability (movements are repeatable and 

predictable) and sufficient dimensionality (enough different movements, or ‘degrees of 

freedom’, can be controlled simultaneously). Devices should also have an appropriate 

longevity—ideally decades—to avoid device failure or repeated surgeries (Lebedev & 

Nicolelis 2006; Schwartz et al. 2006; Green & Kalaska 2011; Jackson & Fetz 2011). 

In the existing literature, the neural signals typically used for invasive motor BMIs are the 

‘spiking’ activity (action potential events) of neurons recorded from the motor cortex; most 

commonly the firing rates of multiple M1 neurons recorded simultaneously. There has been 

enormous progress in the use of these signals in BMIs over the last 20 years. This progress 

has only been possible because of experiments performed in non-human primates (NHPs); in 

particular, Rhesus macaque monkeys (Macaca mulatta). These primate models are essential 

for this field of study, because only Old World primates (such as the humans, other great 

apes, and macaques) have specialised corticospinal tracts, with dedicated monosynaptic 

connections between cortical neurons and motoneurons, that mediate the level of manual and 

digital dexterity that is fundamental to the function of the human forelimb (Lemon et al. 

2004). 

Models of varying mathematical complexity have been used to describe the relationship of 

motor cortical firing rates to a variety of kinematic forelimb movement parameters in these 

NHP models of human movement. Most commonly, these models are based on the apparent, 

and well-documented, cosine tuning of motor cortical neurons to movement direction 

(Georgopoulos et al., 1982). Based on these observed relationships, an electronic ‘decoder’ 

can be trained to estimate movement parameters from firing rates in realtime, and 

considerable success has been achieved in controlling multi-dimensional artificial effectors 

(Wessberg et al. 2000; Serruya et al. 2002; Taylor et al. 2002; Hochberg et al. 2006). 
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Such techniques are commonly called ‘biomimetic’ decoding approaches: they use observed 

relationships between cortical signals and natural arm movement kinematics, and attempt to 

decode and mimic this relationship when using these signals for controlling artificial effectors 

(Fagg et al. 2007). 

1.1.3 Limitations of spike-controlled biomimetic BMIs 

Spike-based biomimetic BMIs have achieved considerable success. Once they have been 

trained using a training dataset, they tend to be quick and intuitive for a subject to use 

(Serruya et al. 2002). However, they are still slow and jerky when compared to natural 

movements (Velliste et al. 2008), and they have several other limitations, which can be 

broadly divided into two categories: 

a) the limitations of using spikes, and 

b) the limitations of using biomimesis. 

1.1.3.1 Limitations of using neuronal spiking for BMI control 

There are three main limitations of using neuronal spiking for BMI control. The reader will 

observe how these relate to the ‘bottlenecks’ already described on page 4. 

i) Stability: Neuronal spiking activity recorded using extracellular electrodes tends to be 

unstable over time. Extracellular spike recordings are highly dependent on very close 

proximity (maximum ~300 µm; Henze et al. 2000) of the recording site to a healthy neuron. 

The micro-movement that unavoidably occurs at the brain-electrode interface, during normal 

daily activity, often causes spike waveform morphology to change, signal-to-noise ratios 

(SNRs) to decrease, or cells to be lost completely (Perge et al. 2013). Electrodes themselves 

can also become damaged or de-insulated (Barrese et al. 2013). Obtaining long-term stable 

recordings of the same single neurons therefore remains a considerable challenge at present 

(Bensmaia & Miller 2013). 

In addition, the foreign-body reaction that the brain mounts against chronically-implanted 

electrodes leads to inflammation and reactive gliosis (Polikov et al. 2005). This gliosis can 

produce a neuron-poor zone around the electrode shank as well as increasing contact 

impedances (Andersen, Burdick, et al. 2004; Leach et al., 2010). These factors, as well as 
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neuronal death (Biran et al. 2005) lead to a gradual reduction in the number of neurons that 

can be recorded, over months to years (Suner et al. 2005). 

ii) Frequency content: Spiking activity contains very high frequency components (up to 

~10 kHz), and therefore digital spike recordings need to be sampled at very high frequencies 

(usually > 20 kHz). This places major limitations on implanted chronic devices, because the 

development of the low-power components required for sampling and transmitting 

multichannel data at such rates is still in its infancy (Kipke et al. 2008). 

iii) Processing power: Identifying single-unit spiking activity through thresholding, feature-

extraction and clustering is time-consuming and highly non-linear, making it computationally 

demanding and relatively complex to implement in hardware. 

1.1.3.2 Limitations of the biomimetic approach to BMIs 

There are five main limitations of using a biomimetic approach to BMIs: 

i) In paralysed patients who are unable to produce any movement, it is difficult to train 

biomimetic decoders. It is admittedly not impossible; considerable success has been achieved 

in controlling computer cursors or robotic arms by training decoders whilst subjects are asked 

to make imagined movements (Hochberg et al. 2012). However, it is extremely difficult to 

accurately characterise the natural movement that the subject is imagining, therefore decoders 

trained in such a way are often unintuitive, and are not truly biomimetic: they require a period 

of learning. 

ii) Decoders trained biomimetically may behave erratically with only slight changes in 

signal quality, and may need to be ‘retrained’ or refined every time they are used. 

iii) Each decoder is highly dependent on an individual subject’s recording configuration 

and the choice of task data used to train the decoder. With current electrode technology, the 

decoders used are not generalisable between subjects, because the probability of finding a 

sample of neurons (from the millions of neurons in the motor cortex) that behave in a 

sufficiently similar way between two different subjects, is basically zero. Also, the 

performance of a decoder with a particular task may be almost entirely dependent on one or 

two neurons from the neuronal ensemble. As a result, biomimetic BMIs do not tend to 

generalise well between different tasks (Aflalo and Graziano 2006) or different individuals (or 

for that matter, between different species). 
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iv) The signals and algorithms used for biomimetic BMIs are often selected to be intuitive 

for subjects to use initially, but that does not necessarily mean that it is easy for subjects to 

learn how to improve their performance, especially if the signal-task relationship is also 

unstable. It may be preferable to choose signals that are less intuitive, but more stable, and 

easier for the subject to learn with salient feedback. 

v) Biomimetic decoders are often based on ‘black-box’ decoder algorithms. This means 

that they are engineered to model a desired movement parameter from a selection of input 

signals in the ‘best’ way possible, according to mathematical optimisation algorithm, without 

necessarily being informed by knowledge of the underlying cortical physiology. As such, it 

can be difficult to ask scientific questions of the data from biomimetic BMI experiments 

about cortical function and plasticity. 

1.1.4 Biofeedback BMIs as an alternative to biomimetic BMIs 

An alternative to the biomimetic approach is called the ‘biofeedback’ BMI. This relies on the 

finding that subjects are able to learn to modulate an arbitrary neural signal, given 

appropriate, salient sensory feedback. 

Early experiments showed that biofeedback was possible for the firing rates of single neurons 

(Fetz 1969), and it has subsequently been demonstrated that subjects can dissociate the firing 

rates of multiple single cortical neurons (e.g. Ganguly & Carmena 2009). It appears not to be 

necessary that the chosen cells are directionally tuned, or even that they are in the motor 

cortex (Moritz & Fetz 2011). 

Biofeedback BMIs can therefore (within reason) be ‘abstract’ rather than intuitive: the 

relationship between neural signal and BMI output does not need to be naturalistic, as long as 

the feedback is salient enough for the brain to learn the relationship. 

An analogy is useful here. A trowel is a tool that makes digging soil faster, more efficient and 

safer than using one’s bare hand. Using a trowel is simple and intuitive; it mimics the hand 

itself, and the neural and muscular activities that produce the desired effect are naturalistic: 

they map very closely to the activity seen without the trowel. The trowel is thus a biomimetic 

tool. In comparison, a JCB (mechanical excavator with a backhoe) is a tool that achieves the 

same task, but the hand movements that produce the effect (pushing levers) are non-

naturalistic and are mapped in a highly abstract way to the effector. Controlling a backhoe 
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thus requires learning a new skill, but the feedback is salient, and once the mapping is 

learned, the effect is extremely powerful (arguably more powerful than the naturalistic 

approach). The JCB can therefore be thought of as a biofeedback tool. 

1.1.4.1 Advantages of biofeedback BMIs 

There are three key advantages of a biofeedback BMI over a biomimetic BMI. 

i) Rather than being designed for intuitiveness, BMIs can be designed for ease of 

learning. In this way, biofeedback BMIs can be thought of as a ‘tool’ that the brain finds easy 

to learn, and can offer enhanced function. This is as opposed to a biomimetic BMI, which is 

trying to replace function (a ‘prosthesis’) in a naturalistic (but perhaps limited) way (Jackson 

& Fetz, 2011). 

ii) They do not rely on a recorded neural signal being naturally tuned to a particular 

movement. Signals can instead be chosen on other merits, e.g. stability of recording 

(Andersen, Musallam, et al. 2004). Inputs could also be chosen on the basis that they reflect 

some more distributed, but abstract, feature of cortical movement representation. These 

(hypothetical) ‘features’ could form the basis of a BMI that would be less dependent on the 

precise tuning of individual neurons (and probably therefore less intuitive), but hopefully 

more generalisable between tasks and subjects. 

iii) By choosing the control signal, and linking the brain directly to the external effector 

(‘closing the loop’ using feedback), abstract biofeedback BMIs can offer an interesting and 

more direct insight into the way that the motor cortex learns to use new tools, independent of 

the confounding effects (e.g. filtering, resonance, delay) of the spinal cord, neuromuscular 

junction, muscles and skeleton. 

1.2 Local field potentials 

The local field potential (LFP) is the low-pass filtered portion (typically below 300 Hz) of the 

high-bandwidth electrical signal recorded from the brain by penetrating electrodes (as 

opposed to surface electrodes). The LFP from a particular electrode is thought to represent a 

temporal and spatial integration of excitatory and inhibitory postsynaptic potentials from a 

volume of brain tissue around the recording site. Because such potentials are largely 
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generated in the dendrites, the LFP is often considered to represent the synaptic ‘input’ of the 

recorded group of neurons (Logothetis 2003; Buzsáki et al. 2012). 

In the neocortex, the synaptic activity of pyramidal cells dominates the LFP signal. This is 

because of the elongated morphology of these cells (which makes them good open-field 

dipole generators), their extensive dendritic system, and their regimented arrangement 

(predominantly perpendicular to the cortical surface) meaning that their individual dipoles are 

likely to spatially summate (rather than cancel) to produce large amplitude LFP contributions. 

It is also important to note that there are undoubtedly several other contributions to the LFP 

signal other than synaptic potentials, including spike after-potentials, calcium transient 

currents and voltage-dependent membrane oscillations (Logothetis 2003; Buzsáki et al. 2012). 

Whilst extracellular spiking activity is almost universally accepted to be detectable within a 

relatively small radius around a recording site (~100 µm), there is considerable debate as to 

the volume of tissue over which LFP signals are integrated; or to put it another way, the 

spatial ‘spread’ of the LFP signal from its source. Some recent studies suggest that the radius 

of spatial integration is small, around 200–400 µm (Katzner et al. 2009; Xing et al. 2009), but 

a larger body of evidence supports the idea that signals spread from their sources, by volume 

conduction, over many millimetres, if not centimetres, and that an LFP recording includes a 

mixture of many such signals (Kreiman et al. 2006; Nauhaus et al. 2008; Kajikawa and 

Schroeder 2011). 

1.2.1 Using LFPs as control signals for BMIs 

In view of the limitations of neural spiking as a control signal (particularly the stability 

problem), there is increasing interest in the use of LFPs for invasive BMIs. LFPs have a 

number of prima facie advantages over spikes as control signals. 

1.2.1.1 Advantages of LFP signals for BMIs 

i) Rather just sampling from a single neuron (whose behaviour may be highly 

unrepresentative of the wider population), LFPs reflect the summation of postsynaptic 

potentials over at least a few hundred micrometres from the recording site (Berens et al. 2008; 

Katzner et al. 2009; Xing et al. 2009; Kajikawa & Schroeder 2011; Buzsáki et al. 2012; 

Einevoll et al. 2013). 
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ii) Because LFPs represent a more spatially distributed signal that is dependent on a 

much larger population of neurons, they may be more robust to microscopic electrode 

movements and encapsulation of electrodes (Andersen, Musallam, et al. 2004; Flint et al. 

2013), and kinematic information can be retrieved even from electrodes without clear spike 

activity (Flint, Lindberg et al. 2012; Wang et al. 2014). 

iii) Because they are temporally ‘slower’ than spikes, LFPs can be digitized at sampling 

rates at least two orders of magnitude lower than spikes (102–103 Hz vs. 104–105 Hz) without 

violating the Nyquist limit. This also enables them to be transmitted wirelessly much more 

easily. 

iv) Lower electronic sampling, processing and transmission rates may allow lower power 

consumption. This in turn facilitates much smaller devices, longer battery life and wireless 

communication. If battery life, in particular, could be extended by decreasing consumption, 

rather than increasing energy storage capacity, then implantable clinical devices become 

much more achievable using existing electronic technology. 

1.2.1.2 Disadvantages of LFP signals for BMIs 

Despite many decades of research, the origin of field potentials is generally less well 

understood than the origin of spikes. This may be because the physiology of the action 

potential is very well understood and extensively studied, and spike events are an intuitive 

manifestation of action potentials; whereas LFPs represent a complex (and much debated) 

mixture of signals, generated by the network activity of neurons at a huge range of scales. 

Furthermore, with spiking, there is an ubiquitously accepted method of separating signal 

(spikes) from background noise: through high-pass filtering, thresholding and spike sorting. 

And the relationship of multichannel firing rates to a huge range of behaviours (motor, 

sensory and cognitive) is very extensively studied. It is also known that the firing rates of 

single (e.g. Fetz 1969) and multiple (e.g. Ganguly et al. 2011) neurons can be subject to 

operant conditioning in closed-loop BMIs, meaning that the brain can learn to improve motor 

BMI ‘skill’, given salient feedback (Jackson & Fetz 2011; Carmena 2013). 

In contrast, the separation of signal from noise in LFPs is much more challenging, because 

thresholding is not meaningful, and even the identification of ‘what is signal and what is 

noise’ is not trivial. Moreover, even given a clean, multichannel LFP signal, it is not clear 
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exactly which features of this signal (for example, amplitude, phase, current-source density, 

power in various frequency bands, higher-order multichannel features) are best for BMI 

control, and particularly, which are amenable to learning through biofeedback. 

1.2.1.3 Use of LFPs for BMIs 

A number of groups have found that LFPs can be successfully used to control BMI devices. 

Some experience has been gained using the EEG, which can be thought of as a non-invasive 

version of the LFP, recorded at the scalp surface. Forearm kinematics can be decoded from 

EEG (Waldert et al. 2008; Bradberry et al. 2010), and multichannel EEG has been used in 

human subjects for controlling computer cursors (Fabiani et al. 2004) and wheelchairs (Galán 

et al. 2008). 

Using recordings at the surface of the brain itself—via electrocorticography (ECoG) and 

epidural field recordings—has also been fruitful (Levine et al. 2000; Leuthardt et al. 2004; 

Slutzky et al. 2011). However, studies in monkeys have demonstrated that more information 

about movement kinematics can be decoded from the LFP than from planar surface 

recordings (Mehring et al. 2004; Flint, Lindberg et al. 2012). It is not yet clear whether this is 

simply because recordings at depth have a ‘cleaner’ signal (higher signal-to-noise ratio and 

less filtering by the extra-cerebral tissues), or whether there is additional information 

available when by combining multichannel LFP signals recorded at varying depths in the 

cortex (e.g. by sampling from different cortical layers). 

1.2.2 LFPs during movement, and the rationale for studying low-frequency 

local field potentials (lf-LFPs) 

LFPs are traditionally classified into frequency bands, which inherit their labels from the 

historical EEG nomenclature. In this thesis, we focus on the low-frequency LFP (lf-LFP), 

which we define as those LFP components below 5 Hz; corresponding approximately to the 

traditional ‘delta’ band (0.5–4 Hz) and lower (0.025–0.5 Hz) bands (Penttonen & Buzsáki 

2003). 

Goal-directed planning and movement in primary motor and premotor cortices in primates (at 

least in visuomotor tasks) is associated with peaks in the LFP power spectrum in three main 

frequency bands (O’Leary & Hatsopoulos 2006): 
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a) ‘slow’ (< 5 Hz), here referred to as the lf-LFP, and also sometimes referred to as the 

local motor potential (LMP); 

b) ‘intermediate’ (16–30 Hz), commonly referred to as ‘beta’-band activity; and 

c) ‘high’ (30–200 Hz), commonly referred to as ‘gamma’-band activity; often split into 

‘low gamma’ (30–60 Hz) and ‘high gamma’ (60–200 Hz). 

Modulation of activity in all three bands is evident when motor cortical field potentials 

(typically LFPs from monkeys, or EEG from humans) are aligned to specific movement 

events during visuomotor tasks. For example (Figure 1-2), Rickert and colleagues (2005) 

calculated the average LFP amplitude spectrogram over many trials, by alignment and 

averaging relative to the onset of unimanual centre-out movements. 

 

Figure 1-2  LFP activity in the frequency domain, aligned to movement onset, averaged over many trials 
a) Time-resolved, absolute amplitude spectrum (arbitrary units) of average LFP activity recorded from a 

single electrode implanted in macaque motor cortex, shown relative to movement onset (time zero). 
b) Time-resolved amplitude spectrum, normalized to baseline amplitude. 

— Reproduced from Figure 5a,b in Rickert et al (2005), J. Neurosci. 25 (Society for Neuroscience). 

1.2.2.1 Beta-band LFP activity 

Beta-band activity in the motor cortex generally has the highest amplitude prior to movement 

onset (O’Leary & Hatsopoulos 2006). Indeed, has been consistently shown that beta-band 

oscillations (reflecting synchrony) in the motor cortex tend to occur during periods of static 

posture—for example, just prior to movement, and during steady grip—and tend to disappear 

during periods of movement (Baker et al 1999), as is clearly seen in Figure 1-2a. 
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1.2.2.2 Gamma-band LFP activity 

Gamma-band activity in the motor cortex (particularly high gamma), is associated with the 

onset and execution of movement. In the sensory cortices, specific gamma oscillations have 

been documented in association with particular stimuli (e.g. auditory, Brosch et al 2002; 

visual, Hermes et al 2015); in association cortices, gamma oscillations have been associated 

with sensory ‘binding’ and working memory (Tseng et al 2016); and in hippocampus, gamma 

oscillations are thought to have a functional role in memory encoding and retrieval (Colgin & 

Moser 2010). However, in the motor cortex, there much less evidence of oscillatory gamma 

‘peaks’; rather, there is broadband power across the gamma range during goal-directed 

movement. There is therefore considerable debate as to whether gamma activity has a 

functional role in the motor cortex, or whether it actually represents contamination due to 

simultaneous multi-unit spiking (Waldert et al 2013; Ray & Maunsell 2015). 

As well as debate over the functional role of gamma oscillations in the motor cortex, there are 

also considerable technical issues with capturing and processing gamma band signals, in order 

to use them to produce a BMI control signal. Firstly, gamma band signals are extremely small 

in amplitude compared to lower-frequency LFP bands, as can be seen in the non-normalized 

amplitude spectrum in Figure 1-2a. The power distribution of LFP signals broadly follows a 

1/f n relationship to frequency, f. That is to say, higher-frequency LFP signals naturally have 

much lower power than lower-frequency LFP signals. Recording gamma band signals 

therefore requires amplifiers capable of greater gain. Their small signal size also makes 

higher-frequency LFP signals considerably more susceptible to noise, leading to lower signal-

to-noise ratios, and greater susceptibility to changes in electrode impedance. 

1.2.2.3 Low-frequency (lf)-LFP activity 

In contrast to beta and gamma-band LFPs, low-frequency LFPs (lf-LFPs) have considerable 

merits as candidate signals for BMI control. Firstly, they are large-amplitude, and their peak 

activity is clearly associated with goal-directed movement (e.g. Figure 1-2b). Secondly, and 

perhaps more importantly, an increasing number of studies are finding that lf-LFPs show very 

strong directional tuning, and that these low frequency bands perform better than any other 

for decoding kinematic parameters from motor cortical LFP (Mehring et al. 2004; Rickert et 

al. 2005; O'Leary & Hatsopoulos 2006; Asher et al. 2007; Waldert et al. 2008; Bansal et al. 

2011; Flint, Lindberg et al. 2012). Thirdly, lf-LFPs exemplify the technical advantages of 
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LFPs for BMI control outlined in Section 1.2.1, above. In particular, their very low frequency 

means that they can be sampled, processed and transmitted at extremely low data rates, which 

should enable a dramatic reduction in power consumption (thus battery size), and thus 

potentially enable the future development of a miniaturised, ultra-low power device, which 

could be implanted subcutaneously. 

1.2.3 Do lower signal frequencies actually permit lower power consumption? 

Before proceeding, it is important to explore and validate, from an engineering perspective, 

this assertion that lower sampling, processing and transmission rates may enable BMI devices 

based on lf-LFPs to operate with lower power consumption. 

In its most basic form, a typical data acquisition and processing device (such as a BMI) 

incorporates the following stages in its design. Each stage requires a certain amount of power, 

which contributes to the overall power consumption of the device: 

a) Amplification; 

b) Analogue filtering (most importantly, anti-aliasing with a low-pass filter cut-off below 

the Nyquist frequency); 

c) Analogue-to-digital conversion (ADC), that is ‘sampling’; 

d) Digital signal processing (DSP); and 

e) Output. 

In each stage, power consumption is typically divided into ‘static’ (baseline) consumption, 

which is a required overhead, regardless of activity, and ‘dynamic’ consumption, which is 

dependent on the demand placed on the device by the user. Here (and in this thesis in general) 

I do not directly consider the power consumption at stage ‘e’ (output) of a device, as this will 

vary enormously depending on the selected application and output modality (e.g. 

wired/wireless transmission versus electrical stimulation; see Figure 1-1). 

1.2.3.1 Power consumption of data acquisition 

Stages ‘a’ to ‘c’ represent data acquisition, which are most commonly performed together, 

within commercially-available specialised integrated circuits (ICs; ‘chips’), which are 

optimised to provide reliable and robust performance at low power draw. An excellent 

example of such a chip is the Intan RHD2132 Digital Electrophysiology Interface chip (Intan 
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Technologies, LLC, Los Angeles, CA, USA), which is widely used (including within our 

laboratory) as the ‘front-end’ (first data-acquisition stage) of many low-power, miniaturised 

data acquisition devices.  

Intan provide dynamic power dissipation data for the RHD2132 (Intan, 2013), as follows 

(where supply voltage to the chip is a constant 3.3V, so power is proportional to current): 

a)/b) Amplification/analogue filtering 

“Each amplifier consumes current in proportion to its upper cutoff frequency, 

approximately 7.6 µA/kHz per amplifier.” (Intan, 2013) 

c) ADC 

“Baseline ADC current: Each ADC pulls 510 µA of quiescent current to power 

various voltage references and bias current generators. 

“ADC and MUX [multiplexer] dynamic current: The ADC/MUX assembly consumes 

additional current in proportion to the total sampling rate, approximately 

2.14 µA/(kS/s).” (Intan, 2013) 

 

Intan also provide data for static power consumption, and provide a worked example of power 

consumption when the device is operating as a wideband neural recording headstage, 

recording 32 channels at 20 kS/s (upper cutoff 10 kHz, allowing recording of spikes). These 

data can be seen in the left-hand column of  

Table 1-1 (adapted as per legend). In the right-hand column, I perform the same calculation 

for a putative device operating at a sampling rate of 200 S/s (upper cutoff 100 Hz), which is 

the minimum cutoff frequency of the RHD2132. 
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Component i) 10 kHz ‘wide-band’ device 
(32 channels) 

ii) 100 Hz ‘low-frequency’ 
device (32 channels) 

Total sampling rate 
(including oversampling and 
reference channels) 

35 × 20 kS/s 
= 700 kS/s 

35 × 200 S/s 
= 7 kS/s 

a)/b) Amplification/filtering    
Baseline amplifier array 
current 

200 µA 200 µA 

Amplifiers 32 × 7.6 µA/kHz × 10 kHz Fc 
= 2432 µA 

32 × 7.6 µA/kHz × 10 Hz 
= 24.32 µA 

c) ADC   
Baseline ADC current 510 µA 510 µA 
ADC/MUX 2.14 µA/(kS/s) × 700 kS/s 

= 1498 µA 
2.14 µA/(kS/s) × 7 kS/s 
= 14.98 µA 

Other static consumption   
LVDS I/O Off (assume SPI to nearby 

microcontroller) 
Off (assume SPI to nearby 
microcontroller) 

Impedance measurement 120 uA 120 µA 
Temperature sensor 70 µA 70 µA 
Supply voltage, auxiliary 
inputs 

4 × 10 µA 
= 40 µA 

4 × 10 µA 
= 40 µA 

TOTALS   
Total supply current 4.87 mA 0.979 mA 
Total power dissipation 4.87 mA × 3.3 V 

= 16.1 mW 
0.979 mA × 3.3 V 
= 3.23 mW 

 
Table 1-1 Comparative power consumption between a wide-band (<10 kHz) data acquisition device and a 
low-frequency (< 100 Hz) device 
Values are taken from the RHD2132 data-sheet (Intan, 2013). ‘LVDS I/O’, low-voltage differential 

signalling input/output. This is ‘off’ as it is assumed that the default standard serial peripheral interface 
bus (SPI) is used to communicate with a microcontroller. Two-fold oversampling is used in each case, 
to enable a fair comparison. 

Reducing the sampling rate of the RHD2132 from 20 kS/s to 200 S/s achieves approximately 

a 5-fold reduction in power consumption, which would represent a very meaningful reduction 

for a battery-powered medical device. The limitation preventing a more significant reduction 

is the static consumption (‘overhead’) of the RHD2132, of 3.1 mW (which represents 96% of 

power dissipation in the low-frequency scenario). 

However, a sampling rate of 200 S/s (per channel) is the lowest possible sampling rate that 

the RHD2132 can achieve. Also, the RHD2132 is also designed to be a versatile and multi-

functional device, with a wide range of user-defined settings, and it is therefore not optimised 

for very low frequency operation. It is very likely that a purpose-built device, designed to 

filter, sample and process lf-LFPs—for instance, filtering below 5 Hz and sampling at 

20 S/s—could operate with significantly lower static (and dynamic) consumption. 

Whilst a number of ADC architectures are available, ‘algorithmic’ successive approximation 

register (SAR) ADCs are considered the most efficient (Dlugosz & Iniewski 2006) for ultra-

low power scenarios (including being used in the RHD2132). Static consumption in ultra-low 

frequency SAR ADCs is a recognised issue in the biomedical engineering field, and comes 
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primarily from control logic overheads and current leakage (Zhang 2014). The former of these 

can be reduced in ultra-low frequency devices by maximising the simplicity of the ADC, to 

achieve the required sampling rate and resolution without the unnecessary and complex 

supplementary circuit logic (e.g. digital error correction) required for higher specifications. 

Current leakage can then also be mitigated by reducing the supply voltage to the ADC to the 

absolute minimum (e.g. 0.4V rather than 3.3V). Such approaches have been demonstrated to 

reduce the power dissipation of SAR ADCs to the tens-of-nanowatt (10−8 W) range (e.g. 

Zhang 2014). 

1.2.3.2 Power consumption of data processing 

Whist the nature of the data acquisition stages of a low-power device based on lf-LFPs can be 

reasonably well assumed, the data processing architecture of such a device (stage ‘d’) is less 

clear at this point. It is therefore harder to estimate the potential power reduction that could be 

achieved by using lower frequencies. However, educated assumptions about power savings 

can be made by looking at an existing chip technology: namely field-programmable gate 

arrays (FPGAs). 

FPGAs are integrated circuits which can be configured after manufacture, and are commonly 

used in a variety of digital signal processing (DSP) contexts, where hardware-level speed and 

efficiency is needed, but there is a requirement to be able to program certain parameters (e.g. 

filter coefficients). This is a very similar set of requirements to those of a low-frequency 

lf-LFP–based device. 

Like acquisition hardware, FPGAs have both static and dynamic power dissipation. It is 

widely accepted that dynamic power consumption (Pd) of an FPGA is directly proportional to 

the processing frequency (‘switching’ frequency, S) of the chip (Arora 2016): 

𝑃" = 𝐶𝑉&𝑆 ( 1.1 ) 

 

where C is the load capacitance and V is the operating voltage. Hence, 1000-fold reduction in 

switching frequency should lead to a proportional reduction in dynamic power consumption. 

Like with ADCs, at low frequencies, the static consumption of an FPGA is likely to heavily 

dominate the overall power consumption. However, also like ADCs, purpose-designed 
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architecture (e.g. a custom-designed application-specific integrated circuit [ASIC], optimised 

for ultra-low frequencies) is likely to be able to also reduce static consumption considerably. 

 

1.3 Chapter summary 

• The use of spike signals for BMI-control is limited by spike instability, high-

frequency signal management and complex processing. 

• The use of LFP signals permits lower-frequency signal management, and potentially 

better stability. 

• Biofeedback BMIs allow signal features to be chosen based on stability, ease of 

processing and ease of learning. Control strategies can be abstract, and we can rely on 

the ability of the brain to learn the required signal-effector mappings. 

• This thesis focuses on the lf-LFP, which is defined as the LFP signal low-pass filtered 

at 5 Hz. The lf-LFP has considerable merits as a BMI input signal, compared to other 

LFP frequency bands. 

• Dynamic power consumption of hardware essentially scales proportionally to signal 

frequency. It is likely that static power consumption can also be reduced through 

simplification of architecture. Ultra-low power consumption and miniaturisation could 

therefore be major benefits of a BMI device based on lf-LFPs, rather than on spikes or 

higher-frequency LFP bands. 
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Chapter 2. General Methods 

In which I introduce the primate model and brain-machine interface task, and our 

methods for measuring and recording electrical signals from primate motor cortex. 

2.1 Subjects and behaviour 

2.1.1 Non-human primate subjects 

Five female monkeys (Macaca mullata) in total were used for different aspects of this study: 

Monkey A, Monkey D, Monkey R, Monkey S, and Monkey U (all aged approximately 5.5 

years at the start of their respective experimental recording periods). Subjects were trained to 

sit in a primate chair, and voluntarily accept neck and arm restraint, and immobilisation of the 

left hand within a static manipulandum, but were not head-fixed. All animal procedures were 

carried out under appropriate UK Home Office licenses in accordance with the Animals 

(Scientific Procedures) Act 1986 (2013 revision), and were approved by the Local Research 

Ethics Committee of Newcastle University. 

2.1.2 Wrist torque-controlled task 

We trained subjects to perform a task in which two-dimensional (2-D) isometric left-wrist 

torque (measured by a static six-axis force/torque manipulandum; ATI Industrial Automation, 

Apex NC, USA) controlled the 2-D position of a circular cursor on a screen placed ~50 cm in 

front of the subject (Figure 2-1, right). We refer to this here as the ‘torque task’. 

Each trial was initiated by the cursor entering a central circular ‘home’ region, reflecting zero 

torque (relaxation). A peripheral circular target appeared at one of eight positions spaced 

equally around a circumference centred on the home position. After a variable ‘cue’ period 

(between 1.2 and 2.4 s)—during which subjects had to remain in the home region—they were 

required to move the cursor to overlap the target for a fixed ‘hold’ period (0.6 s). If 

successful, subjects heard a reward tone, and were given a small piece of fruit reward by a 

researcher. There was no time limit for an individual trial. Around 300–500 trials were 

performed per day in a single session. 
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Figure 2-1  Illustration of the experimental setup and four main tasks performed by the monkeys 
Unless otherwise stated, neural recordings were made from the right cortical hemisphere, and behaviour 

was recorded at the left wrist. 
a) 2-D wrist torque-controlled task: torque recorded from the left wrist via a manipulandum and mapped to 

x and y co-ordinates of a 2-D task with 8 peripheral targets. 
b) 1-D ‘cell-control’ task: Firing rates calculated in real time, indicated by ①, and mapped 2-to-1 to up and 

down directions of a 1-D task with four targets. 
c) 1-D ‘LFP-control’ task: As per b, but with firing rate estimates calculated in real time from lf-LFPs, 

indicated by ②. 
d) 1-D ‘AV-control’ task: “AV” is an abbreviation for areal velocity. It is a feature extracted from the 

dynamics of the multichannel lf-LFP, indicated by ③. This experiment is explained in detail in the 
Methods of Chapter 5. 

2.1.3 Brain-machine interface tasks 

Following surgical implantation of electrodes in the right cortical hemisphere, subjects also 

performed one of three different types of biofeedback BMI task, in which 1-D screen cursor 

position was controlled by the normalized amplitude of signals derived from neural 

recordings, to acquire 1-D targets (Figure 2-1, left). A prototypical day’s recording consisted 

of 50 trials of the torque task followed by 250–450 trials of a BMI task.  

There were three main types of BMI task: ‘cell-control’, ‘LFP-control’ and ‘AV-control’. 

Monkey A performed only the ‘cell-control’ task. Monkey D first performed a series of ‘cell-

control’ sessions followed, after an intervening period of 6 months, by the ‘LFP-control’ task, 

based on a different sample of neurons, followed by the ‘AV-control’ task. Monkey R 

performed only the ‘LFP-control’ task. Monkey S performed the ‘torque task’ as well as a 

unique bimanual task described in Chapter 5. Monkey U only performed the ‘torque task’ 

during this experimental period. 
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2.1.3.1 ‘Cell-control’ BMI task. 

In this task, 1-D cursor position was controlled by actual firing rates of neurons. In general, 

for BMI tasks we tried to choose neurons with large amplitude, clean spikes, but did not 

otherwise select based on task-related modulation of firing rate. Moreover, the axis of 1-D 

cursor movement under brain control was chosen at random so as to have no consistent 

relationship with the preferred direction of neurons. 

Two neurons were discriminated during the ‘torque task’. The smoothed instantaneous firing 

rate (x) of each neuron was calculated in realtime by convolution of spike times with a 

rectangular window (width 400 ms). Because the firing rates of different units were 

modulated over different ranges, we applied linear scaling to normalise firing rates to screen 

co-ordinates, based on the distribution of the firing rates obtained during the torque task. Each 

firing rate was mapped to normalised screen co-ordinates such that the 5th/95th centiles of this 

distribution corresponded to ±50 % (in screen co-ordinates, where 100 % represents the 

screen edge). 

Targets appeared at four positions: −70 %, −35 %, 35 % and 70 %. Within a day’s 

experiment, for blocks of 100 trials each, one-dimensional cursor position, c, was controlled 

by the firing rate of one cell, x1(norm) or by the summed, (x1(norm) + x2(norm))/√2, or differential, 

(x1(norm) − x2(norm))/√2, firing rates of the two neurons, where the factor of 1/√2 was used to 

make all targets equidistant from the origin in the 2-D normalised neural space. 

2.1.3.2 ‘LFP-control’ BMI task 

In this task, the 1-D cursor position was controlled by the smoothed estimated firing rates of 

neurons. Each day, we built a model using data from the torque task that was then used to 

estimate simultaneously the firing rates of two neurons from lf-LFP data in realtime. 

The two estimated firing rates were smoothed online using an exponential decay filter with a 

decay constant λ = 0.25 s. Cursor position was then controlled by either the smoothed 

estimated firing rate of one neuron or by the difference between two smoothed firing rate 

estimates. Each firing rate estimate was mapped to normalised screen co-ordinates using the 

median and 5th/95th centiles of its distribution (as described for the ‘cell-control’ task). 
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Targets appeared at four positions: −70 %, −35 %, 35 % and 70 %. During one-cell control, 

the cursor position, c, was equal to the scaled estimated firing rate, x̂1(norm). During two-cell 

control, c = (x̂1(norm) − x̂2(norm))/√2. 

2.1.3.3 ‘AV-control’ BMI task 

In this task, cursor position was controlled by signals calculated directly from multichannel 

lf-LFP, without use of spike recordings. To do this, we used dynamical features of the 

multichannel lf-LFP. AV is an acronym for ‘areal velocity’. The methodology and results of 

this approach are the subject of Chapter 5, and are detailed there. 

2.2 Electrode design and construction 

For Chapters 3 to 5 we used only moveable tungsten microwire electrode arrays. These are 

detailed in the following text. The development of a new type of hybrid array for recording 

lf-LFPs is the subject of Chapter 6, and details are given there. 

2.2.1 Moveable tungsten microwire array 

Each array consisted of 12 tungsten microwires (50 µm diameter, impedance 100–200 kΩ at 

1 kHz; Advent Research Materials, UK), passing through parallel polyimide guide tubes in 

two rows of six, aligned to the central or arcuate sulcus, with spacing of ~200 µm within rows 

and ~2 mm between rows. The arrays were made by hand, according to the design and 

methods given by Jackson and Fetz (2007), using nylon connector blocks (ITT Cannon, 

Irivine CA, USA), gold pins (ITT Cannon), 50 µm tungsten microwires, polyimide guide 

tubes (Cole-Parmer, London, UK) two-part silicone adhesive (Silastic®, Dow Corning, 

Auburn MI, USA) and two-part dental cement (see below). Figure 2-2 is a reproduction of 

Figure 1 from Jackson & Fetz (2007), because understanding of the construction of the array 

is important to Chapter 5 of this thesis. 
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Figure 2-2  Construction of the moveable tungsten microwire array used in this study. 
(a) Guide tubes were aligned on parallel tungsten rods and fixed with dental cement. Two rows of 6 tubes 

were positioned on each side of a piece of card to produce a 6 × 2 array (see expanded end view). 
(b) Guide tubes were splayed at one end and more cement was applied. 
(c) Weighted microwires hung parallel along one side of the connector. Epoxy was applied to electrically 

insulate the contacts and fix the wires. 
(d) Connector block was rotated and Silastic was applied to the wires for strain relief. 
(e) Finished implant. Wires ran in loops from the connector block to the guide-tube array. Guide tubes 

were filled with antibiotic ointment and sealed at both ends with Silastic. 

— Figure and legend reproduced from Jackson & Fetz (2007), Journal of Neurophysiology 98 Figure1a–e, 
p. 3111 (American Physiological Society) 

The implant was made in two stages. Individual components were first constructed and 

autoclave sterilised. The final implant was then constructed under sterile conditions, just prior 

to the surgery, and kept under sterile conditions until implantation. 

Individual microwires could be moved to acquire new neuron recordings. Depending on the 

experiment, we left the microwires in place for many months at a time, or moved them as 

often as twice-per-week to obtain new signals. 
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2.3 Surgical methods 

Chronic electrodes were implanted in primary motor cortex (M1) and ventral premotor cortex 

(PMv). PMv was targeted, in addition to M1, two enable between-area, as well as within-area 

comparison of spike-LFP and LFP-LFP relationships. PMv is particularly useful for this, 

because it demonstrates both direct (corticomotoneuronal) and indirect (via M1) control of 

forelimb muscles (Boudrias et al 2009). 

2.3.1 Surgical planning 

Structural magnetic resonance imaging (MRI) scans were performed on all subjects and 

imported into MATLAB (Mathworks, Natick MA, USA). Digital MRI images were rotated 

(using MATLAB function MRIrotate.m, S. Baker, Newcastle University) and a 3-D model of 

brain surface and bony cranium was generated from slices (using MATLAB function 

ROInator.m, J. B. Zimmermann, Newcastle University). 

2-D projections (in MATLAB) and 3-D images (in Blender software; Blender Foundation, 

Amsterdam, Netherlands) were used to locate the precise coordinates in each subject of M1 

(antero-posterior ~11 mm, medio-lateral ~15 mm) and PMv (AP ~20 mm, ML ~20 mm) in 

the right cortical hemisphere. Figure 2-3 illustrates the surface anatomy of the macaque 

motor cortex, with approximate implant locations indicated. Please note that the illustration 

shows a view of the left hemisphere. We implanted our arrays in the right hemisphere, but the 

surface anatomy of the right motor cortex is an exact mirror of the left. 

3-D rendering software and ‘3-D–printed’ acrylic skull models (Shapeways, Eindhoven, The 

Netherlands) were used to plan the location of all connectors and screws on the animal’s 

skull, and also to customise the size and shape of a titanium transcutaneous implant to each 

individual animal’s skull (Figure 2-4). 

This titanium cranial implant was required to protect the electrode arrays and connectors from 

damage, and was sized and designed such that a battery-powered ‘Neurochip-2’ device 

(Zanos et al. 2011) could be installed if desired, for home-cage recordings. The customisation 

to skull shape was performed to minimise the footprint of the implant, and thus reduce the 

likelihood of peri-implant infection. Grade 5 titanium (Ti-6Al-4V) was used for areas in 

contact with living tissue, in order to maximise biocompatibility of the implant. The titanium 
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implant was degreased, cleaned with enzymatic cleaner, sonicated and autoclave sterilised 

prior to implantation. 

 

 

Figure 2-3  Illustration of a left lateral view of the macaque brain. (Actual size.) 
Nomenclature in the original source figure follows the convention of labelling ‘frontal’ (F) and ‘parietal’ 

(P) cortical areas. Relevant labels: F1 (brown), primary motor cortex; F5 (light blue), ventral premotor 
cortex; C (black line), central sulcus; AS (blue line), superior arcuate sulcus; AI (red line), inferior 
arcuate sulcus; S (black line), spur of the arcuate sulcus. Scale bar: 10 mm. 

The label ‘M1’ indicates the approximate target for electrode implantation in the forearm/hand area of 
primary motor cortex, just anterior (rostral) to the central sulcus. 

The label ‘PMv’ indicates the approximate target for electrode implantation in the forearm/hand area of 
ventral premotor cortex, just posterior (occipital) to the arcuate sulcus, and caudal to (below) the spur 
of the arcuate sulcus. 

— Figure adapted from Geyer et al. (2000) Anat. Embryol. 202 (Springer-Verlag) 

 

 

Figure 2-4  Photographs of example customised titanium implant 
(a) Right side view and (b) top view of a customised titanium implant for Animal S, prior to cleaning and 

autoclave sterilisation. The implant was profiled at front, back and sides to match the 3-D acrylic skull 
model of each animal. 
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2.3.2 Surgical procedures 

Surgery was performed in two stages: a first-stage surgery in which electromyography (EMG) 

electrodes were implanted, followed by a one-month period of recovery, followed by a 

second-stage surgery in which cortical electrodes and the titanium trans-cutaneous cranial 

implant were implanted. Two stages were used to minimise the length of anaesthetic periods, 

thereby to optimise recovery and reduce infection, but also to allow the animal a chance for 

acclimatisation and rehabilitation between surgeries. 

All surgeries were performed under sterile conditions and under general anaesthesia induced 

with propofol (2–4 mg kg−1) and maintained with sevofluorane (minimum alveolar 

concentration 1.8–1.9 %) and alfentanil infusion (0.2 μg kg−1 min−1). Ventilation was 

supported, and expired carbon dioxide concentration and peripheral oxy-/deoxy-haemoglobin 

ratio were monitored. An intra-arterial line and urethral catheter were inserted to monitor 

circulatory status, and intravenous fluid support was provided (Hartmann’s saline, 5–

10 ml kg−1 h−1), while body temperature was maintained between 36.5 and 37.5 °C 

throughout. Animals received peri-operative methylprednisolone (5.4 mg kg−1 h−1) and 

cefotaxime (250 mg, 2-hourly), as well as post-operative antibiotics (ceftiofur 3 mg kg−1), 

analgesia (meloxicam 0.2 mg kg−1) and steroids (methylprednisolone). 

2.3.3 EMG electrode implantation 

Bipolar EMG electrodes, made from braided stainless-steel wire, with or without Dacron 

patches (Microprobes for Life Sciences, Gaithersburg MD, USA), depending on the animal, 

were implanted to record the activity of 6–10 forelimb muscles in the arms and hands. Wires 

were tunnelled sub-cutaneously to a connector mounted on the subject’s head. A ground wire 

with connector was connected to a skull screw on the subject’s head. 

2.3.4 Cortical electrode implantation and transcutaneous titanium implant 

fixation 

Guided by the prior surgical planning, we made individual craniotomies over primary motor 

cortex (M1) and ventral premotor cortex (PMv) of the right hemisphere. After dural resection, 

we placed a custom-made moveable microwire array (Figure 2-5a) and subdural surface 
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reference wire (de-insulated 50 µm tungsten microwire) over each area. The craniotomy was 

sealed with cyanoacrylate glue, sterile compressed sponge (Gelfoam, Pfizer, Sandwich, UK) 

and gentamicin-impregnated antimicrobial dental acrylic (Gent-C-ment) (Figure 2-5b). It 

should be noted here that, unlike the other subjects, Monkey S received bilateral M1 implants, 

for reasons that are described in Chapter 5. 

 

Figure 2-5  Implantation of the cortical electrode array at the craniotomy site. 
(a) Implant as it was fixed to the skull during surgery. Microwires can be seen entering the brain through a 

craniotomy. 
(b) Cross section showing microwires penetrating the pia mater anterior to the central sulcus (CS) through 

a craniotomy and dural opening. Pia mater was bonded to the edge of the craniotomy with 
cyanoacrylate glue and the craniotomy was sealed with Gelfoam and dental cement. 

— Figure and legend reproduced from Jackson & Fetz (2007), Journal of Neurophysiology 98 Figure1f,g, 
p. 3111 (American Physiological Society) 

During the same anaesthetic, skull screws were placed at mechanically advantageous 

locations in the skull, and the periosteum was sealed with a thin layer of Super-Bond C&B 

dental adhesive acrylic (Sun Medical, Moriyama City, Japan). The titanium cranial implant 

was then located on the skull, and fixed to the head using dental acrylic (Simplex Rapid, 

Kemdent, Swindon, UK). The skin and soft tissue margins were drawn together around the 

titanium implant using absorbable sutures, and the animal given post-operative care, as 

described above. 

Animals recovered and returned to training for 1–2 weeks before the microwires were 

lowered into the cortex. Each microwire was advanced until clear spiking activity was heard. 
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Then, depending on the experiment, microwires were moved as often as two times per week, 

or left for many weeks recording the same signals. 

2.4 Electrophysiological recordings 

Two different recording systems were used to acquire data for this thesis. Both recording 

systems were used with Monkeys A and D. Only the ‘TDT system’, described in the next 

section, was used with Monkeys R, S and U. 

2.4.1 TDT RZ2-based recording system 

Unless otherwise stated, data were acquired using a Tucker Davis Technologies (TDT) RZ2 

digital signal processor and acquisition system (TDT, Alachua FL, USA). Cortical signals 

were acquired by a digitizing pre-amplifier (48.8 kHz; frequency response 3 dB for 0.35 Hz–

7.5 kHz, 6 dB for 0.2 Hz–8.5 kHz) from 24 microwire electrodes, relative to a subdural 

reference. Neuronal spiking activity was extracted by digitally band-pass filtering the raw 

signal (1–8 kHz) and thresholding. We classified single-unit spikes in a semi-supervised 

fashion using the TDT online principal component-based feature extraction and clustering 

software suite. In realtime BMI experiments, the lf-LFP was extracted from the raw signal 

online, by low-pass filtering at 5 Hz (digital biquad filter), before downsampling to 48.8 Hz. 

2.4.2 CED Power-1401–based recording system 

Where specifically indicated, data were acquired using a system based around a CED Power-

1401 acquisition system (Cambridge Electronic Design, Cambridge, UK). Signals were 

amplified and filtered into LFP and spike bands using two MPA8I headstages and a PGA1632 

amplifier (Multichannel Systems, Reutlingen, Germany). LFP signals were amplified (gain 

5000) and band-pass filtered (1 Hz to 300 Hz) before being sampled (1000 Hz) by the Power-

1401. Spike activity was amplified (gain 10000), band-pass filtered (300 Hz to 8 kHz) and 

sampled (18.5 kHz), after which single-unit spikes were classified, in a supervised fashion, 

using the template-based online spike sorter of the Power-1401. 
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2.4.3 EMG and task recording 

EMG signals were amplified (gain 1000) using a differential alternating-current (AC) 

amplifier (A-M Systems, Sequim WA, USA) and band-pass filtered (10 Hz to 1 kHz with a 

50 Hz notch filter) before being sampled by the TDT-RZ2 or Power-1401 (2 kHz). Torque 

produced at the manipulandum and a variety of task events were acquired using a NI-USB-

6229 (National Instruments, Austin TX, USA) and sampled by the TDT-RZ2 or Power-1401 

(100 Hz). 

2.5 Signal pre-processing and offline analysis 

All offline analysis was performed in MATLAB. Channels were excluded from further analysis 

if visual inspection of the LFP signals indicated that the electrodes or their insulation were 

damaged (flat signals, consistent wideband noise or large artefacts). If not already extracted 

online, we extracted lf-LFP signals offline by low-pass filtering LFPs at 5 Hz (zero-phase 5th-

order Butterworth filter, MATLAB), followed by downsampling to 48.8 Hz. 

2.6 Statistical analysis 

Statistical analysis was performed in MATLAB and SPSS (IBM Corporation, Armonk NY, 

USA), and is described in detail in each of the individual chapters. 

2.7 Chapter summary 

• Macaque subjects were implanted with moveable tungsten microwire electrodes in the 

right cortical hemisphere, in M1 and PMv. 

• Awake, behaving recordings of neuronal spiking, LFP, EMG and torque were taken as 

the animals performed a centre-out, isometric wrist torque-controlled task, as well as 

several different BMI tasks, controlled either by neuronal firing rates, or by firing rate 

estimates derived from lf-LFP activity. 

• A third type of BMI task, controlled by dynamical features in the multichannel lf-LFP, 

is introduced and described fully in Chapter 5. 
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Chapter 3. Spike-LFP relationships in motor 

cortex for use in BMI applications 

In which I introduce low-frequency LFP phenomena associated with movement-related 

activity in primate motor cortex, and the concept of the spike-related slow potential 

(SRSP). 

3.1 Introduction 

In Chapter 1, I introduced the LFP, and the lf-LFP specifically. I also introduced its merits as 

a motor BMI input signal. Here we explore the properties and utility of the lf-LFP in more 

detail; in particular, its relationship to cortical neuronal spiking. 

3.1.1 The low-frequency LFP (lf-LFP) during movement 

Historically (particularly based on early EEG studies), low-frequency LFP bands (< 5 Hz) 

have become associated with periods of behavioural inactivity in mammals, such as slow-

wave sleep (Chauvette et al. 2011). During such periods, wide areas of cortex (and other non-

cortical areas) become highly synchronized at low frequencies, and this is reflected by very 

high-amplitude, low-frequency features (‘slow-waves’) in the LFP/EEG, and highly 

correlated spiking (Steriade et al. 2001). Until recently though, there been relatively little 

focus on the lf-LFP during alert brain states, such as goal-directed movement. However, as 

already presented in Section 1.2.2, a number of recent studies have demonstrated that these 

low-frequency components contain a wealth of information about movement kinematics. 

Physiologically speaking, the fact that kinematics can be decoded from the lf-LFP, with non-

redundant information available from electrodes spaced as close as 350 µm (Mehring et al. 

2004; Rickert et al. 2005), is at odds with the concept that the lf-LFP signal only reflects 

widespread cortical synchrony. This fact supports the alternative hypothesis: that low-

frequency activity in the motor cortex is at least in part generated at small spatial scales 

(within cortical area, so on the scale of millimetres) by the correlated activity of local 

populations of neurons, which for convenience, we refer to here as ‘ensembles’. 
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According to such a hypothesis, each of these cortical ensembles may have its own behaviour 

during movement—reflecting some aspect of local cortical processing—whilst there could be 

only partial correlation between ensembles. Since lf-LFPs likely integrate over large spatial 

scales, any particular lf-LFP recording would therefore contain a mixture of multiple signals 

from relatively independent ‘sources’ (both local and distant), each transmitted by volume 

conduction to the electrode. 

3.1.2 Using the lf-LFP as a biofeedback BMI control signal 

Unlike spiking activity, where firing rate modulation is relatively well-understood, it is 

unclear which specific features of the LFP can be brought under volitional control and would 

thus be applicable for closed-loop BMI applications. This is a particular problem for the 

lf-LFP, whose importance in relation to movement kinematics has only been appreciated 

relatively recently. 

Some studies have suggested that LFP power may be a feature that is useful for closed-loop 

BMI. Power in the low-gamma range (30–50 Hz in cited study) can certainly be modulated 

under a biofeedback BMI paradigm (Engelhard et al. 2013) and the power of broader 

frequency bands has been shown to be modulated under a closed-loop biomimetic BMI 

paradigm (So et al. 2014). However, the majority of studies exploring the use of LFPs in 

closed-loop BMIs take a ‘black-box’ approach to generating biomimetic, kinematic decoders; 

for example, using Weiner filter cascades (Flint, Wright, et al. 2012; Flint et al. 2013; Scheid 

et al. 2013) or Kalman filters (Stavisky et al. 2015). Such supervised machine learning-based 

methods require no a priori understanding of the physiological characteristics of the lf-LFP to 

perform feature selection. Unfortunately, this is likely to hinder the applications of the lf-LFP 

signal beyond biomimetic decoding of kinematics. 

Going beyond simple kinematic decoding of brain signals is likely to be important for the 

development of better BMIs. For example, it is known that acquisition of BMI skill is often 

associated with profound changes in the tuning of neurons contributing to the decoder (Taylor 

et al. 2002; Carmena et al. 2003; Ganguly et al. 2011). Although such changes can be reduced 

by recalibrating decoding algorithms online, neuroplasticity may nevertheless be beneficial 

for the retention of BMI skill, as well as resistance to interference from other tasks (Fan et al. 

2014). These tuning changes indicate that the specific neuromotor mappings that subserve 

natural movements are unnecessary for learned BMI control (Jackson & Fetz 2011), and 
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likely reflect the ease with which the activity of individual neurons can be modulated under 

biofeedback paradigms (Fetz 1969; Hwang et al. 2013). 

Based on these desirable properties of spike-based BMIs, we reasoned that, if we could 

identify lf-LFP components with a strong and consistent relationship to the firing rates of 

local neurons, then these should also be amenable to operant conditioning and therefore 

provide useful features for biomimetic BMIs. In addition, by using spike-related features in 

the lf-LFP (rather than firing rates directly), we would also be able to exploit the desirable 

properties of the lf-LFP: specifically, that it can be sampled on a time-scale comparable to 

kinematics (tens of Hertz), rather than on the time-scale of action potentials (tens of 

kilohertz). 

3.1.3 Modelling multichannel spike-LFP and LFP-spike relationships 

The correlation between single neurons and individual LFPs has been previously investigated 

using a range of techniques (Rasch et al. 2008; Rasch et al. 2009; Nauhaus et al. 2009; Okun 

et al. 2010; Zanos et al. 2012; Einevoll et al. 2013). However, to date there have been 

surprisingly few studies of the extent to which neural firing rates can be estimated from 

multiple LFPs and vice versa, perhaps in part due to the persisting assumption that multiple 

LFPs convey largely redundant information arising from the synchronous activity of many 

neurons (Berens et al. 2008; O'Leary & Hatsopoulos 2006; Hwang & Andersen 2013). 

In the monkey visual cortex, a single LFP channel has been estimated by linear summation of 

multiple potentials associated with spike activity (Rasch et al. 2009; Nauhaus et al. 2009). 

Moreover, Rasch and colleagues (2008) found that in anaesthetised (but not awake) animals, 

the firing rate of a single neuron could be predicted from a single channel of LFP (Rasch et al. 

2008). However, this study did not examine whether performance could be improved by using 

multiple LFPs. In the motor cortex, Bansal and colleagues (2011) have used multiple LFPs to 

decode the summed spiking activity of all neurons recorded on an electrode array (Bansal et 

al. 2011), but did not investigate the possibility of predicting the firing rates of individual 

neurons. 

In Section 3.1.1, we hypothesised that each lf-LFP consists of a mixture of signals, coming 

from multiple sources within the cortex. If we use the common analogy of the ‘cocktail party 

problem’ (Cherry 1953), we can think of each lf-LFP signal as a ‘microphone’ signal, picking 
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up a mixture of sources (‘voices’) from a volume of tissue (‘room’), as well as a considerable 

amount of correlated and uncorrelated noise (e.g. the pickup of movement artefacts and 

thermal Johnson-Nyquist noise, respectively). However, because each lf-LFP signal records a 

slightly different mixture of these sources, we can use source-separation techniques to infer 

the sources (finding a solution to the so-called ‘inverse problem’). 

Our approach in this Chapter was to assume that the sources salient to movement generation 

are associated with concurrently-recorded spike activity from local ensembles. We therefore 

studied the relationship between the spiking of neurons and the multichannel lf-LFP. 

Specifically, we investigated whether we could estimate the firing rate of individual neurons 

from the multichannel lf-LFP, with a view to using this signal (the estimated firing rate) as a 

biofeedback BMI control signal. 

3.2 Aims 

This Chapter therefore has three main aims: 

Aim 1: To study the relationship between neuronal spiking and the multichannel 

lf-LFP in primary motor (M1) and ventral premotor (PMv) cortex. 

Aim 2: To estimate the firing rate of individual neurons based on using source-

separation techniques on the multichannel lf-LFP. 

Aim 3: To quantify the performance of firing rate estimation, and compare the 

properties of firing rate estimates to actual firing rates. 
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3.3 Methods and Results 

3.3.1 Experimental setup 

Three subjects (monkeys D, R and A) performed the 2-D centre-out isometric wrist torque 

task described in Section 2.1.2. We recorded LFPs and spike activity using moveable 

microwire arrays implanted in the right M1 and PMv cortices, as described in Section 2.4. 

3.3.2 Spike-triggered averaging of the LFP 

Event-triggered averaging is a common approach in neuroscience for examining the temporal 

relationship between a point process (such as the spike times of a neuron, or the times of a 

behavioural event) and a waveform signal (such as an LFP recording or behavioural 

response). The spike-triggered average (STA) LFP, C(τ), is the average value of the LFP 

waveform, y(t), in a time base, τ, around when a spike is fired, over the duration (0 → T) of 

the recording (Dayan & Abbott 2005). 

The STA-LFP represents the average LFP taken at the times of spike occurrences, and with 

proper normalization (division by the total number of spikes), is equivalent to the cross-

correlation between the LFP and the spike train (Ito 2015) – a property that will become 

important later. 

Working in the digital domain, where time, t, in the recording is discretised (according to the 

sampling interval), and signal amplitude is also discretised (according to the sampling depth): 

for a spike occurring at time ti, we define a time window, ti + τ, around that spike (where τ can 

be negative and positive) and use that window to capture a segment of the waveform signal, 

y(ti + τ). We then sum these waveform segments over all n spikes in the recording, 

i = 1, 2, … , n, and normalise by dividing by the total n. (Method illustrated in Figure 3-1). 
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Figure 3-1  Schematic of the spike-triggered averaging approach. 
Iterative spike-triggered averaging approach, as described in the text. 

 — Figure adapted from Dayan & Abbott (2005) Figure 1.8 in Theoretical Neuroscience (MIT Press). 

Thus, 

𝐶(𝜏) =
1
𝑛	. 	𝑦(𝑡1 + 𝜏)

3

145

 ( 3.1 ) 

 

The method shown in Equation 3.1 was used for calculation of spike-triggered averages in 

Figure 3-2, using an iterative approach in MATLAB, typically with a window width of 

−2 < τ < 2. 

Normalisation by the total number of spikes (n) makes the STA equivalent to the cross-

correlation between the waveform signal, y(t), and the spike density function (instantaneous 

firing rate), x(t). Therefore, (assuming sufficient data length and sampling rate), the STA is 

commonly approximated in the literature as an integral (that is, using continuous notation), in 

the form: 

𝐶(𝜏) =
1
𝑛7 𝑥(𝑡)𝑦(𝑡 + 𝜏)	d𝑡,

;

<
 ( 3.2 ) 
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for the range –2 < τ < 2. In this thesis, unless otherwise stated, x(t) was approximated by 

binning spikes into time bins with a width corresponding to the sampling interval of the 

corresponding LFP. 

For clarity, for the remainder of this document, I will be expressing all functions relating to 

signal processing using this continuous (rather than discrete) notation. 

3.3.3 The spike-related slow potential (SRSP) 

 

Figure 3-2  Spike triggered average of the LFP and variation in amplitude of the STA lf-LFP with cortical 
area. 
(a) Representative spike raster of a single neuron (top) and representative LFP signal (bottom) recorded in 

M1 of Monkey D. 
(b) STA of LFP calculated using an iterative (discrete) approach, separated into full-bandwidth (top) low- 

(middle) and high-frequency (bottom) bands. 
(c) Mean peak-to-peak amplitude of STA of low-frequency LFP recorded on the same electrode as a 

neuron, other electrodes in the same cortical area (M1 or PMv) and electrodes in the other cortical area. 
Error bars show ± standard error of the mean [s.e.m.] (n = 46 neurons per monkey). 

Spike-triggered averages (STAs) of the full-bandwidth LFP in our datasets (e.g. Figure 3-2b, 

top) typically exhibited beta-band (~20 Hz) phase-locking (revealed clearly by high-pass 

filtering > 5 Hz; e.g. Figure 3-2b, bottom), as well as large and consistent low-frequency 

features, revealed clearly by low-pass filtering < 5 Hz; e.g. Figure 3-2b, middle). We coined 

the term ‘spike-related slow-potentials’ (SRSPs) to refer to these low-frequency features, 

because they were spike-related (rather than event-related), and slow (low-frequency). 

SRSPs were consistently observed in the STA-LFP, almost regardless of the choice of neuron, 

LFP channel or cortical area. However, we did find that there was considerable variation in 

the amplitude of the SRSP, and that this was systematically related to the relative locations of 
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the electrodes capturing the neuronal spiking and the LFP. The SRSP amplitude was typically 

largest in the LFP recorded from the same electrode as the spikes used to construct the 

average (Figure 3-2c). However, robust SRSPs were also observed in recordings from other 

electrodes within the same cortical area and—although smaller in amplitude—from the other 

cortical area (Figure 3-2c). Surprisingly, this suggested that the LFP contains a mixture of 

slow components reflecting the activity of both neighbouring and distant neural activity. 

3.3.4 Estimating low-frequency LFPs from neuronal firing rates 

To test this, we modelled the lf-LFP as a linear sum of contributions from the spike trains of 

multiple neurons. To achieve this, each spike train (firing rate) was convolved with a filter 

kernel that resembled the STA between that neuron and the lf-LFP of interest. As already 

discussed in Section 3.3.2, the normalised STA-LFP is equivalent to the cross-correlation 

between the firing rate and the LFP. However, with multiple inputs (firing rates), one also 

needs to consider the contribution of correlation between neurons. Therefore, rather than 

using the SRSP as a filter kernel directly, we used a system identification approach, to 

generate a filter kernel for each neuron, which resembled an SRSP waveform, but took 

account of the above subtlety. 

To do this, the spike events of P neurons at time t (e.g. Figure 3-3a) were binned with the 

same sampling interval as the lf-LFP, demeaned and assigned to the P-dimensional vector 

x(t). lf-LFP vectors of Q recording channels were demeaned and assigned to the 

Q-dimensional vector y(t). We then used a ‘multiple-input, multiple-output’ (MIMO) model 

defined by the equation: 

𝐲(𝑡) = 7 𝐇(𝜏). 𝐱(𝑡 + 𝜏)d𝜏
AB

AC
, ( 3.3 ) 

 

where H(τ) is an unknown Q-by-P matrix of finite impulse response (FIR) filter kernels, that 

are a function of the time interval, τ, relative to spike occurrence. For offline lf-LFP 

estimation, we used 𝜏5 = −2.0	s and 𝜏& = 2.0	s. We used 75% of the duration of each torque 

tracking dataset as ‘training data’ for this model. 
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Figure 3-3  Estimating lf-LFPs from firing rates. 
(a) Spike rasters for eight M1 (blue) and seven PMv neurons (red). 
(b) SRSPs for each neuron within a single M1 (left) or PMv lf-LFP (right). ▴ Indicates time of spike. 
(c) lf-LFPs estimated using a linear model applied to validation data. Significance thresholds (p < 0.05, 

two-tailed; non-parametric bootstrap) for the indicated r-values were 0.07 and 0.11 for the M1 and PMv 
LFP, respectively. Data from monkey D. 

We solved for the filter kernel matrix, H(τ), of this system (Figure 3-3b) using the 

correlation-based approach of Perreault and colleagues, which is a computationally efficient 

approximation to least-squares regression under reasonable assumptions (Perreault et al. 

1999; Westwick et al. 2006). Conceptually, an individual filter kernel element, hpq(τ), from 

this matrix is very similar to the SRSP (and looks similar when plotted against τ), but it 

excludes contributions from the auto- and cross-correlation structure within multichannel 

firing rates. 

Next, using these filter kernels, we produced lf-LFP estimates, ŷ(t), from firing rate data 

according to the same model with: 

𝐲H(𝑡) = 7 𝐇(𝜏). 𝐱IJK
AB

AC
(𝑡 + 𝜏)d𝜏 ( 3.4 ) 



 42 

 

where xval(t) is firing rate data from validation data comprising the final 25% of the recording. 

The performance of the model was quantified by the Pearson’s correlation coefficient, r, 

between the estimated lf-LFP, ŷq(t), and the actual lf-LFP, yq(t). Using this method, we were 

reliably able to estimate lf-LFPs recorded from both M1 and PMv, with r-values on validation 

data of around 0.5 (e.g. Figure 3-3c). 

3.3.4.1 Performance with increasing numbers of neurons 

To determine how the quality of lf-LFP fit depended on the size of the neuronal sample, we 

estimated every lf-LFP channel in each cortical area (n = 10–12 LFPs, depending on subject 

and cortical area) using 120 random draws of P neurons (with replacement) increasing from 

one, up to the number of neurons available (Monkey D, max. 20 neurons; Monkey R, max. 15 

neurons). 

We found that the quality of fit (r) increased monotonically as more neurons were included 

(Figure 3-4). The majority of useful information obtained from those recorded within the 

same cortical area as the estimated lf-LFP. But additional information was also obtained by 

including lf-LFPs from the other cortical area. 
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Figure 3-4  Neuron dropping curves for lf-LFP estimation 
(a) Average correlation coefficient (r) over validation data for M1 lf-LFPs in monkey D, estimated using 

an increasing number of neurons in M1 (blue), PMv (red) or both areas combined (black). Error bars 
show ± s.e.m. (n=11 lf-LFPs). 

(b) Same for M1 lf-LFPs in monkey R (n=10). 
(c) Same for PMv lf-LFPs in monkey D (n=11). 
(d) Same for PMv lf-LFPs in monkey R (n=12). 
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Figure 3-5 (Top; black box)  Conceptual illustration of experiment in which microwires were advanced 
Two single neurons were recorded over thirty-six days from static microwires in M1 of Monkey D. Lf-LFP 

recordings were concurrently recorded from a static microwire located nearby in M1, and from two 
further M1 microwires whose depths were advanced manually by approximately 0.5 mm every 3 to 4 
days under sedation. The relative locations of the electrodes in this figure are not meant to be 
interpreted literally. The figure merely illustrates the concept of the experiment. 

 
Figure 3-6 (Bottom)  Polarity inversion of SRSPs with increasing cortical depth. 

 (a–b) The polarity and shape of the SRSP from the static lf-LFP electrode remained highly consistent over 
time (with some minor variation in SRSP amplitude). 

(c–d, f–g) In contrast, the SRSP on the advanced electrodes gradually increased in amplitude with depth, 
before abruptly inverting polarity, then subsequently reducing in amplitude. Black arrows (▴) indicate 
time of triggering spike. Simultaneous spike recording from the advanced electrodes confirmed that the 
polarity inversion occurred within the cortical grey matter. 

(e,h) For example, spike shapes are shown from both advanced electrodes at position 7 (~ 3.5 mm depth, 
position corresponding to yellow line in the above panels); scale bars indicate 0.25 ms and 10 μV. 
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3.3.4.2 The local nature of the SRSP: polarity inversion with depth 

The nature of the SRSP (i.e. the filter kernels in the model) is fundamental to the results seen 

in the previous section. The results suggest that the SRSP reveals a signal component in the 

lf-LFP that is associated with the firing of a local cortical neuron. That is not to say that the 

signal in the lf-LFP is due to the activity of a single cell (the SRSP is much too large for that), 

but that there is an ensemble of neurons, represented by the recorded neuron, whose activity is 

making a relatively unique contribution to a particular lf-LFP signal. 

To explicitly test the local nature of the SRSP, we performed an experiment in which, each 

day, we manually changed the depth of M1 electrodes on which we were recording lf-LFP 

signals, and analysed the changes in shape of the SRSPs, triggered by neurons from the same 

cortical area. The concept and details of this experiment are described in Figure 3-5 and the 

results are described in Figure 3-6 (and associated figure legends). 

Most importantly, we found that the polarity of the SRSP inverted as we passed through the 

cortical grey matter. This strongly supports the hypothesis that the SRSP is being locally 

generated by a dipole source associated with the ensemble of neurons, of which the recorded 

neuron is a part. Polarity inversion occurs as the LFP electrode passes the depth equivalent to 

the zero-potential line of the dipole, where field potential inverts. 

3.3.4.3 SRSPs of individual neurons to multiple lf-LFPs 

We next used the SRSP to study the relationship between the spike train of each neuron and 

multiple LFP signals. To clarify: the reader should note that previously (e.g. Figure 3-3), we 

have been discussing the relationship between an individual lf-LFP and multiple neurons. We 

are now inverting this logic, and discussing the relationship between an individual neuron 

(whose spikes are used as ‘trigger events’ for the SRSP) and multiple lf-LFPs. 
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Figure 3-7  Principal component decomposition of the SRSP 
(a) SRSPs of a single M1 neuron with multiple lf-LFPs from M1 (green) and PMv (purple) in Monkey D. 

Black trace shows the lf-LFP recorded on the same channel as the trigger neuron. ▴ indicates time of 
spike. 

(b) First three principal components (PCs) of the SRSPs. 
(c) Reconstruction of the SRSPs in a using only the first three PCs. 
(d) Scatter plot showing the weightings of PC 1 and PC 2 used for this reconstruction. 

We found that the SRSP associated with an individual neuron varied in both shape and 

polarity across different lf-LFP electrodes, particularly within the same cortical area as the 

trigger neuron (Figure 3-7a), despite the fact that lf-LFPs themselves appeared broadly 

similar. However, this variation could be explained by only a few principal components (PCs) 

(Figure 3-7b,c), suggesting that the contribution of a particular neuron to the multichannel 

lf-LFP comprised a limited number sources with distinct spatio-temporal profiles. The 

weightings of PCs in such reconstructions were particularly variable in size and polarity 

within a cortical area, and much less variable across cortical areas (Figure 3-7d), supporting 

the hypothesis that the sources in question are generated by the activity of local ensembles of 

neurons. 

3.3.5 Estimating single-neuron firing rates from multiple lf-LFPs 

On the basis of this, we developed a method to estimate these sources from the lf-LFP, and 

then used deconvolution to recover the firing rate of single neurons. To exclude the unlikely 
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possibility of action potential waveforms passing our low-pass filter, the lf-LFP recorded from 

the same electrode as the neuron was not used for its firing rate estimation. 

3.3.5.1 Model design 

In theory, we could apply the MIMO approach described in Equation 3.3 (Section 3.3.4; page 

40) to solve directly the inverse problem of estimating firing rates from LFPs, simply by 

inverting the inputs and outputs. However, due to strong correlations between LFP inputs, we 

found that models fitted to the high-dimensional data suffered from instability and generalised 

poorly. Therefore, we reduced the dimensionality of the LFP data used as input to the MIMO 

model. 

A common way to achieve this is by applying PC analysis to the LFP signals. However, the 

components of the LFP that are most informative about an individual neuron may not be those 

that capture the greatest overall variance. Instead we used a five-stage approach, guided by 

the biophysically reasonable assumption that the SRSP associated with each neuron is 

composed of a discrete number of components, as evidenced by our previous data (Figure 

3-7). 

(1) We built a forward MIMO model (as per Equation 3.3) with P neuronal firing rates, x(t), 

as inputs, and Q lf-LFPs, y(t), as outputs, to generate the Q-by-P matrix of filter kernels, H(τ). 

Typically, we estimated two neuronal firing rates simultaneously (Figure 3-8a–c) and 

therefore the lf-LFPs from both of those electrode channels were excluded from the model. 

For offline firing rate estimation, we used τ1 = −2.0 s and τ2 = 2.0 s. 

(2) We performed PC analysis on the filter kernels (Figure 3-8d). This was motivated by the 

observation that the variability of the SRSP across LFP channels could be captured by a small 

number of components, implying that only a discrete number of sources within the LFP are 

informative of the spiking of a given neuron. The first six SRSP-PCs were used for the 

remainder of the analysis, yielding h′p(τ), a vector of six filter kernels where the subscript 

indicates that these are appropriate for estimating cell p. 

(3) At this stage, it would be possible to project the LFP directly onto the six SRSP-PC axes 

to achieve dimensionality reduction. However, such an approach would be suboptimal since, 

while these projections maximize the information about a given neuron, they do not minimize 

uncorrelated noise (which would not appear in the SRSP). Instead, for each neuron we first 
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obtained a ‘source estimate’ vector, sp(t), (Figure 3-8e) by convolving the firing rate xp(t) 

with the SRSP-PC kernels: 

𝐬M(𝑡) = 7 𝐡′M
AB

AC
(𝜏). 𝑥M(𝑡 + 𝜏)𝑑𝜏 ( 3.5 ) 

 

(4) We then found the projection of the LFP data that best approximated this source estimate. 

Linear regression was performed between the source estimates, sp(t), and the Q lf-LFPs, y(t), 

yielding a Q-by-6 ‘weighting matrix’ Mp (Figure 3-8h), which could be used to transform 

lf-LFP data into a six-dimensional ‘source projection’ vector, y′p(t), that best fitted the six 

source estimates of neuron p (Figure 3-8f). 

(5) For each neuron, we calculated an ‘inverse filter’ kernel vector, κp(τ), to deconvolve the 

source projections for neuron p and produce an estimated firing rate (Figure 3-8g). To do this 

we fitted a new model, with source projections, y′p(t), as inputs and the low-pass-filtered 

(5 Hz; zero-phase 5th-order Butterworth) actual firing rate, xp(t), as an output: 

𝑥M(𝑡) = 7 𝛋M
AB

AC
(𝜏). 𝐲′M(𝑡 + 𝜏)𝑑𝜏 ( 3.6 ) 

 

We found that the stability of this model (an inverse Wiener-Kolmogorov filter) could be 

improved by adding low-amplitude Gaussian noise (mean = 0; standard deviation 

[s.d.] = R𝐲MS RTTTTT 100⁄ ) to each source projection before fitting, which is equivalent to adding a 

regularization term to penalize the sum-square of the filter kernels. 

An ‘lf-LFP decoder’ for neuron p thus consisted of two elements: (i) the lf-LFP weighting 

matrix, Mp; and (ii) the inverse filter kernels, κp(τ). Both were stored for later use in either 

online or offline firing rate estimation. 

To test the model, validation lf-LFP data, yval, (either 25% of the recording, or data from 

another behavioural task/another day) were transformed by the weighting matrix, Mp, and 

deconvolved using the inverse kernels to produce a firing rate estimate (Figure 3-8i) for a 

particular neuron: 

𝑥HM(𝑡) = 7 𝛋M
AB

AC
(𝜏).𝐌M. 𝐲IJK(𝑡 + 𝜏)𝑑𝜏 ( 3.7 ) 
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Figure 3-8 Method for estimating firing rates from lf-LFPs. 
Schematic illustration of the steps used to estimate the firing rates of two neurons. Green box represents 

training data. Blue boxes are the two elements of the linear model. Red box represents validating the 
model. 

(a) Example rasters of an M1 neuron and PMv neuron. Binned firing rates (x1 and x2) were calculated and 
used for the succeeding steps. 

(b) Four of the 20 lf-LFPs (y) used in the model (22 in total, minus those recorded on the same channels as 
the estimated neurons). 

(c) SRSP kernels (h1 and h2) for each neuron. 
(d) SRSP-PC kernels (h'1 and h'2; first three shown). 
(e) ‘Source estimates’ (s1 and s2) for each SRSP-PC. 
(f) ‘Source projections’ (y'1 and y'2) of the lf-LFP that best fit the source estimates. 
(g) Inverse filter kernels (κ1 and κ2) for each neuron. 
(h) Weighting matrices (M1 and M2) for generating the lf-LFP source projections for each neuron. 
(i) Firing rate estimates (x̂1 and x̂2) for each neuron based on deconvolution of source projections, 

compared against low-pass filtered actual firing rates. 
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3.3.5.2 Assessing model performance 

The quality of firing rate estimation was quantified for each neuron using the Pearson 

correlation coefficient, r, between the low-pass-filtered actual firing rate, xp(t), and the 

estimated firing rate, x̂p(t), over the validation data. Since successive samples of lf-LFPs or 

firing rates are not independent, the statistical significance of r-values (between estimated and 

actual data) cannot be inferred from parametric assumptions. Therefore, we estimated the 

distribution of r-values under the null hypothesis of no relationship by shifting (with circular 

wrapping) the actual and estimated data by all possible time-lags > 5 s. The reported r-value 

was considered significant (p < 0.05, two-tailed) if it fell above the 97.5th centile of the 

resulting distribution. 

 

Figure 3-9  Representative performance of firing rate estimation from lf-LFPs 
(a) Example lf-LFPs (top) and spike rasters (bottom) recorded from monkey D. 
(b) SRSPs across 20 lf-LFPs associated with a single M1 (left) and PMv (right) neuron. 
(c) Source projections for each neuron, representing the lf-LFP mixture that best estimates the contribution 

of each SRSP-PC. 
(d) Firing rates estimated by deconvolution of source projections. R-values are those from testing on 

validation data. 
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Figure 3-9 shows a representative validation performance using 20 LFPs (Figure 3-9a, top) 

to estimate the firing rate of single neurons (Figure 3-9a, bottom) in M1 and PMv. The LFPs 

on the same channels as the neurons of interest were excluded from the model. As expected, 

M1 neurons had dominant SRSPs in M1 LFPs, and PMv neurons had dominant SRSPs in 

PMv LFPs (Figure 3-9b). 

For each neuron, PCA was performed across all SRSPs, and the resulting SRSP-PCs (not 

shown) were convolved with the spike trains to generate ‘source estimates’ (not shown), 

which in turn were used to calculate the appropriate lf-LFP weightings (M1 and M2, not 

shown) needed to calculate lf-LFP source projections (Figure 3-9c). These weightings, and 

the derived inverse filter kernels (κ1 and κ2, not shown) could then be used to calculate firing 

rate estimates from LFP signals, either offline on validation data (e.g. Figure 3-9d), or online 

in near-real time. 

Comparing our lf-LFP–based firing rate estimates to actual firing rates, on validation data, we 

saw typical r-values in the range 0.2–0.7, which was surprisingly good, considering that 

(a) estimations were performed on instantaneous firing rates (which are inherently very 

noisy), with no task or behavioural alignment, and (b) we excluded the LFP from the 

electrode on which the neuron of interest was recorded. Statistical significance of such 

estimates was calculated as described in Section 3.3.5.2, and the r-values of the example M1 

and PMv neuron estimates in Figure 3-9d (0.49 and 0.52, respectively) were associated with 

significance thresholds of 0.11 and 0.10, respectively (p < 0.05, two-tailed; non-parametric 

bootstrap). 

3.3.5.3 Performance with increasing numbers of lf-LFPs 

To determine how the quality of firing rate fit depended on size of the lf-LFP sample, every 

neuron’s firing rate was estimated using 120 random draws of Q lf-LFPs, increasing from 

three up to the number of channels available (excluding that recorded on the same electrode 

as the neuron of interest) and applying dimensionality reduction based on three SRSP-PCs 

(Figure 3-10). 
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Figure 3-10  LFP- and PC-dropping curves for firing rate estimation. 
(a) Average correlation coefficient over validation data for M1 neuron firing rates in monkey D, estimated 

from increasing numbers of lf-LFPs from M1 (green), PMv (purple) or both areas combined (black). 
Dimensionality reduction was performed using three SRSP-PCs. Open squares show the result when 
the lf-LFP on the same electrode as the estimated neuron was also included. Error bars show ± s.e.m. 
(n = 13 neurons). 

(b) Same for M1 neurons in monkey R (n = 6). 
(c) Same for PMv neurons in monkey D (n = 7). 
(d) Same for PMv neurons in monkey R (n = 9). 
(e) Performance when estimating firing rates of all neurons in monkey D using increasing numbers of 

SRSP-PCs (orange), compared with a model based on PCs of lf-LFPs (black). All 22 LFPs were used 
(but with exclusion of the lf-LFP on the same electrode as each estimated neuron). Error bars show 
± s.e.m. (n=20 neurons). 

(f) Same for all neurons in monkey R (n = 15). 
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The quality of firing rate estimation increased with the number of lf-LFPs included in the 

model, with the most useful being within the same cortical area as the estimated neuron 

(Figure 3-10a–d). Firing rate estimation was only marginally improved by further inclusion 

of the lf-LFP recorded on the same electrode as the estimated neuron (Figure 3-10a–d, open 

squares). In each of the panels in Figure 3-10, error bars show the standard error of the mean 

(s.e.m.) across different channels, and are therefore are not artificially reduced by the large 

number of permutations averaged to estimate the mean for each channel. 

We also wanted to determine how the quality of firing rate estimation depended on the 

number of SRSP-PCs. To do this, every neuron’s firing rate was estimated using all lf-LFPs 

(excluding that recorded on the same electrode as the neuron of interest) projected into a 

source estimate space with dimensionality increasing from one up to the number of channels 

available (that is, no dimensionality reduction). The quality of fit was compared against 

models based on increasing numbers of lf-LFP–PCs from one up to the number of channels 

available. 

Estimation based on SRSP components out-performed models fitted directly to the PCs of 

the lf-LFPs (Figure 3-10e,f). Moreover, validation performance was optimal when only a 

limited number of sources were included – suggesting that each SRSP contains about three to 

four distinct components. 

3.3.5.4 Task-relationship of estimated firing rates 

Finally, we looked at the task-related behaviour of the firing rate estimate, and how this 

compared to the behaviour of the actual neuron. To do this, we began by calculating an event-

triggered mean of the actual/estimated firing rate, aligned to the end of the hold period of the 

torque-tracking task. By averaging out the trial-to-trial variability in firing rates, it became 

even more clear how remarkably well we could estimate firing rates using only information 

derived from lf-LFPs (Figure 3-11a). 

In effect, the single-trial firing rate of a neuron is itself a noisy estimate of the underlying task 

relationship of the neuron. (Hence why neuroscientists conventionally average over many 

trials to determine firing profiles.) And our lf-LFP–based estimate of firing rate is able to 

capture this task-relationship just as well as the actual firing rate. For example, for the neuron 

shown in Figure 3-11a, the r-value between actual and estimated trial-averaged firing rates 
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was 0.97, implying that we were capturing around 94% of the movement-related variation in 

the neural signal. We explore these task relationships further in Chapter 4. 

 

Figure 3-11  Task-relationship of actual and estimated firing rates. 
(a) Mean firing rate across trials of an example M1 neuron (from Monkey D) aligned to the end of the 

‘hold’ period of the torque task (55 trials). Blue line shows the trial-averaged actual firing rate (lowpass 
filtered at 5 Hz). Red line shows the trial-averaged LFP-based estimate for the same neuron. 

(b) Polar plot of actual and estimated firing rates for different target positions (average of 1 s prior to the 
end of the hold period, with baseline firing rate subtracted). Also shown is the ‘preferred direction’, 
calculated as the vector sum of the tuning profile. 

Finally, we separated trial-aligned responses to each of the eight peripheral targets in the 

torque-task, and found that the actual directional tuning profile and ‘preferred direction’ of the 

neuron of interest could be satisfactorily retrieved from lf-LFP–based firing rate estimates 

(Figure 3-11b). 

3.4 Discussion 

Overall in this chapter, we have presented results demonstrating that single-neuron firing rates 

can be estimated from multichannel lf-LFP recordings in motor cortex using simple linear 

models. LFP-based estimates capture around 25% of the variance of instantaneous firing rates 

of individual neurons, but considerably more of the variance of trial-averaged firing rates. 

Cortical lf-LFPs recorded by multi-electrode arrays are often assumed to contain only 

redundant information arising from the activity of large neuronal populations; perhaps 

because of the association of low-frequency activity with slow-wave sleep, during which 
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neurons become highly synchronized across wide areas of cortex and subcortical structures. 

Here we show that, if you look at them in the right way, multichannel lf-LFPs in monkey 

motor cortex actually each contain a slightly different mixture of distinctive slow potentials 

that reflect the activity of local neuronal populations, as well as neuronal populations in 

neighbouring areas of cortex. These findings are in agreement with a number of recent studies 

(Einevoll et al. 2007; Nauhaus et al. 2012; Rasch et al. 2009). However, to our knowledge, 

this is the first demonstration that the different mixtures contained within multiple lf-LFPs can 

be separated for estimation of single neuron firing rates*. 

Rasch and colleagues (2008; 2009) studied spike LFP relations in primary visual cortex (V1) 

of anaesthetised macaques during spontaneous activity and visual stimulation, and found STA 

features very similar to our SRSPs (Figure 3-12). Using these, they generated a linear model 

similar to ours to estimate an lf-LFP from neuronal spiking on the same channel (Rasch et al. 

2009), with comparable results to ours. They also found these features to be robust, and had 

some success extrapolating their filters across electrodes, across cortical areas (visual to 

temporal) and even across subjects, supporting the idea that these features are widespread. 

However, they did not combine multiple neuronal contributions linearly in their lf-LFP 

estimations. 

 

Figure 3-12  Examples of SRSP-like phenomena in macaque V1, documented by Rasch et al. 
(a) Spike-LFP relationships in V1 of an anaesthetised monkey during movie stimulation. 

— Reproduction: Figure 2A from Rasch et al. (2008), J. Neurophysiol. (American Physiological Society). 
(b) A Wiener-Kolmogorov filter used for linear estimation of an LFP from a neuronal spike train during 

spontaneous activity in V1 of an anaesthetised monkey.  
— Reproduction of part of Figure 2A from Rasch et al. (2009), J. Neurosci. (Society for Neuroscience). 

                                                
* Note: These findings have been published as Hall, Nazarpour & Jackson (2014) 
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The same group also used LFP to estimate single-unit firing (Rasch et al. 2008), and found 

that a linear model performed 90% as well as a non-linear model. They found that the lf-LFP 

(both phase and power) was valuable for estimating firing rates, and (like in our SRSPs), the 

spike-related features were most informative between –50 and +500 ms around the spike 

time. They found that the same relationships held for both spontaneous and stimulus-driven 

activity. They noted that variance in their model performance was high between electrodes, 

and suggested that this may be due to electrode locations and depths, but they did not 

combine multichannel data in their estimations and, to our knowledge, the work presented 

here by us is the first time this has been tried. 

Given that LFPs are population signals, the accuracy with which it is possible to resolve 

individual neurons is surprising, especially since neural synchrony inevitably confounds the 

inference of causal effects from STAs. The use of linear models, incorporating multiple 

recorded cells, can only partially mitigate this problem. Clearly, given its large amplitude and 

slow time course, the SRSP attributed by the model to each recorded cell must contain 

contributions from unrecorded (but correlated) neurons in the local network. The effects of 

correlation in the neural space are explored further in Chapter 4. 

The origin and spatial extent of the LFP remains a subject of debate, with estimates ranging 

from a few hundred micrometres (Katzner et al. 2009; Xing et al. 2009) to several millimetres 

(Kajikawa & Schroeder 2011). Here, we observed robust SRSPs varying in shape and polarity 

within lf-LFPs recorded on different electrodes throughout the same cortical area as the 

trigger neuron. We can largely rule out recording artefacts (for example, room noise, head 

movements and electromyogram contamination) being a cause of these phenomena, since the 

SRSP reversed polarity within the grey matter and lf-LFPs were most informative of the firing 

rates of neurons within the same cortical area. Although we cannot discount the presence in 

our LFP recordings of artefacts uncorrelated with spiking activity, these would only reduce 

the accuracy with which we could estimate firing rates. 

Unfortunately, using our moveable tungsten microwire arrays, we do not have a measure of 

the relative spatial location of our recording sites in the cortex (other than coarsely based on 

their implantation site), or of cortical depth of our recording sites (other than by coarsely 

advancing electrodes). We were also not able to perform post mortem tract reconstruction, 

because the multiple insertions and retractions of the moveable tungsten microwires mean that 

there are multiple, crossing paths present in post mortem tissue. Therefore, we cannot say for 
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sure whether the spatial extent of the SRSP reflects volume conduction of local sources, or 

synchronization of broader neuronal populations within each cortical area (Canolty et al. 

2010), or the effect of a ‘traveling wave’ of activity across the cortex (e.g. Nauhaus et al. 

2012). 

Speculatively, we suggest that our data are most consistent with the first hypothesis: that (at 

least low-frequency) LFP is conducted over many millimetres or centimetres, likely by 

volume conduction. This is because neurons in one cortical area (e.g. M1) were correlated 

with features in the SRSP on LFP electrodes in the other cortical area (around 10 mm away). 

These signals from the ‘remote’ cortical area were much more stereotyped than those from the 

local cortical area, but nevertheless provided information that was non-redundant with respect 

to other ‘remote’ electrodes. 

We are unable to provide further scientific insight here into the spatial properties of the 

lf-LFP, nor into the depth profile of the SRSP and SRSP-PCs, without a geometrically-

arranged recording array. Chapter 6 of this thesis describes some of our early work in 

designing and recording from such an array, in order to address these limitations. 

It is important to note the similarities of our SRSPs to spike-LFP relationships reported in 

macaque visual cortex (Rasch et al. 2008; Rasch et al. 2009) and rat somatosensory and 

prefrontal cortex (Okun et al. 2010), which suggest that the SRSP may reflect a ubiquitous 

feature of cortical organization rather than a unique property of motor cortex. 

A possible mechanism that could account for low-frequency SRSP components occurring 

several hundred milliseconds after spike activity is gamma-aminobutyric acid type-B receptor 

(GABAB)-mediated recurrent inhibition (Destexhe et al. 2001; Carracedo et al. 2013); since 

the slow kinetics of the G-protein-coupled receptor give rise to extracellular potentials that 

can be delayed substantially relative to cell activity (Dine et al. 2014). Other possible 

mechanisms intrinsic to the cortex include slow hyperpolarization-activated Ih currents, which 

contribute to low-frequency resonances in cortical neurons (Hutcheon et al. 1996). 

Alternatively, reciprocal connections with the thalamus form feedback loops that are thought 

to contribute to delta-frequency oscillations (Destexhe 1998). Whilst we cannot rule out an 

extra-cortical feedback loop, our results are more suggestive of intra-cortical mechanisms, 

since one might expect extra-cortical loops to have more global, synchronising effects, rather 

than local effects on small ensembles of neurons. 
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In fact, our finding that the SRSP contains 3–4 distinct components suggests that multiple 

processes likely contribute. Because different electrodes record different mixtures of these 

components, we are able to extract information about firing rates that may not be present in 

global measures such as overall LFP power in broad frequency bands. Moreover, information 

in LFPs is highly layer-dependent (Einevoll et al. 2007; Markowitz et al. 2011), and variation 

in electrode depth within our recording array appears beneficial for extracting non-redundant 

spike-related features from multiple LFP channels. This may additionally help explain why 

decoding of LFPs typically outperforms surface recordings from the brain or scalp. 

Large regression models can suffer from over-fitting and instability, especially when inputs 

are highly correlated – as in the case with multiple LFPs (Hwang & Andersen 2013). 

However, the distinct SRSP components associated with each neuron allowed us to develop a 

biophysically-principled approach to dimensionality reduction, which improved model 

validation and out-performed PC regression. The assumption of a linear relationship 

between lf-LFP and spike activity is likely suboptimal, although (as noted above) evidence 

from the primary visual cortex suggests that nonlinear approaches may yield only marginal 

improvements (Rasch et al. 2008). 

Experiments in the anaesthetised visual cortex suggest there may be distinct information 

contained in the lf-LFP compared with gamma-band LFPs and spikes (Belitski et al. 2008), 

and that inclusion of these higher frequencies improves prediction of spiking (Rasch et al. 

2008). LFP spectra in the awake motor cortex are characterized by strong activity in the beta-

band, but this is typically suppressed during movement, when spiking activity shows the 

greatest modulation. This motivated our use of the low-frequency band for firing rate 

estimation. Nevertheless, it is possible that the inclusion of higher frequency bands could 

further improve performance, albeit at the cost of increased computational complexity. 

The instability of single-unit recordings is currently a major challenge for invasive 

neuroprostheses, but the wide spatial extent of the SRSP that we have seen here—across 

electrodes within the same cortical area, and with evidence of spread to neighbouring cortical 

areas—suggests the lf-LFP may be less sensitive to micro-motion than extracellular spike 

recordings. This may make lf-LFP–based estimates of firing rate a particularly suitable signal 

for chronic, implanted BMIs. Moreover, the ability to infer firing rates from lf-LFP would be 

generally applicable for any neuroprosthetic application requiring long-term monitoring of 

neural activity. 
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3.5 Chapter summary 

• The spike-related slow potential (SRSP) is a consistent feature seen in recordings from 

macaque motor cortex (and also other cortical areas). 

• The SRSP contains a mixture of spike-related signals from multiple sources. Multiple 

electrodes sample different mixtures of these sources. 

• Based on this, we can decode the firing rate of individual neurons from multichannel 

lf-LFP recordings with surprising accuracy, even though the channels on which the 

predicted units are recorded are not included in the decoder. 

• The ability to infer firing rates from lf-LFP is potentially applicable to any neural 

interface application requiring long-term monitoring of neural activity, including 

chronic, implantable motor BMIs. 
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Chapter 4.  Stability, dimensionality and 

generalisation of LFP-based firing rate 

estimates, and their use in biofeedback BMIs 

In which we investigate the stability of LFP-based firing rate estimates over time, their 

dimensionality compared to actual firing rate data, their generalisation across a range of 

behavioural tasks, and finally, their use in an LFP-controlled biofeedback BMI task. 

4.1 Introduction 

4.1.1 Stability of LFP-based firing rate estimates 

As already introduced in Chapter 1, one of the most crucial challenges of invasive BMIs is 

that current implantable electrode technologies do not have the lifespan required for clinical 

use (many years or decades are required). Micro-motion of electrodes leads to daily changes 

in the shape and number of action potential recordings. In even the most refined experiments 

in human subjects, this generally necessitates recalibration of spike-based decoders at the 

beginning of every experimental session (e.g. Hochberg et al. 2012). This can typically only 

be done using powerful lab-based equipment, which is not only time-consuming, but 

impractical for any neuroprosthetic designed to be used day-to-day by patients, for activities 

of daily living. 

An increasingly accepted solution in the literature is to not even try to isolate single units, and 

simply use unsorted threshold crossings from each electrode (so-called “multi-unit spikes”; 

e.g. Flint et al. 2016). However, electrode de-insulation, inflammation and gliosis, and 

neuronal death still lead to a gradual reduction in the number of neurons that can be recorded. 

In Chapter 3 of this thesis, we introduced a potentially parsimonious solution to the problem 

of neuron stability. We can estimate the firing rate of single neurons (at least on the same 

time-scale as movement kinematics) using only low-frequency field potentials, recorded on 

other electrodes. LFPs are theoretically easier to record stably over long time-periods than 
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spikes, because they are less dependent on precise proximity to single neurons, and they 

originate from ensembles of neurons (rather than from one neuron) (Andersen et al. 2004). 

LFPs have long been postulated as a more stable alternative to spikes (Pesaran et al. 2002). 

Certainly, long-term recordings in monkeys suggest that movement-related information can 

be decoded from the LFP signal, even in the absence of clear spike activity (Flint, Lindberg et 

al. 2012; Stavisky et al. 2015). Experiments with ECoG have suggested that field recordings 

are comparable in performance to single-unit activity for decoding forearm movements, and 

with far superior stability, out to 250 days (Chao et al. 2010). But surprisingly few studies 

have studied closed-loop BMIs controlled solely by LFPs. 

Hwang and Andersen (2009) used LFPs from posterior parietal cortex in a closed-loop BMI, 

but only as a binary gating signal. It has also been shown that gamma band LFP oscillations 

can be volitionally controlled in a biofeedback BMI paradigm (Engelhard et al. 2013). More 

recently, 2D continuous LFP-based BMI control has been demonstrated, using an adaptive 

controller (So et al. 2014). However, to my knowledge, only one group has explicitly 

demonstrated the stability of a motor cortical LFP-based closed-loop BMI: showing stable 

performance over 210 days using a decoder trained from a single recording session, with no 

retraining (Flint, Wright & Slutzky, 2012; Flint et al. 2013). The performance of the subjects 

remained constant or improved slightly over the seven months of the study. More recently, the 

same group published a closed-loop study concluding that LFPs were significantly more 

stable than even multi-unit spikes. Particularly informative, and particularly stable, were high-

gamma power and the local motor potential (LMP), which reflects the lf-LFP time domain 

signal (Flint et al. 2016). 

In this Chapter, we aim to quantify the stability of our LFP-based firing-rate decoders over 

many weeks. This is challenging, because our performance measure assumes that the actual 

firing rate of the selected neuron is being accurately captured by discriminated spike 

crossings. However, this may not be true over long periods of time, as the spike recording is 

likely to change as a result of the problems outlined above. Unfortunately, it is therefore 

impossible in this type of experiment to know the absolute ‘ground truth’ firing rate of the 

neuron for the purposes of quantifying model performance. In this chapter, we therefore also 

quantify stability in terms of the task-related behaviour of the firing rate estimate over time. 
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4.1.2 Dimensionality analysis of firing rate estimates 

As mentioned in Chapter 1, there is a common assumption that lf-LFP activity reflects 

synchronisation of wide areas of cortex, and that therefore recording multiple channels of 

lf-LFP will yield multiple redundant signals. Also, because the lf-LFP power can be an order 

of magnitude larger than the LFP power in the gamma band, and because simulations show 

that low-frequency LFP components have a much larger spatial reach than higher frequencies 

(Łęski et al. 2013), there is also a common assumption that the lf-LFP reflects the activity of 

relatively large populations of cells. 

Both of these assumptions would lead one to the prediction that redundancy of Q channels of 

lf-LFP should be very high, compared to the same number of channels of spike recording, 

because large-scale correlation and averaging of activity across thousands of neurons would 

mean that signals would all covary according to a very small number of explanatory, or 

‘latent’ variables (Cunningham & Yu 2014). In contrast to these predictions—and therefore in 

disagreement with these assumptions—we showed in Chapter 3 that by looking for lf-LFP 

features associated with neural spiking, we could reveal a rich mixture of multiple spike-

related sources within the multichannel lf-LFP. 

However, in Chapter 3, we only considered the scenario where we were estimating, at most, 

two neurons: one from M1 and one from PMv. Rather than estimating the unique firing rate 

profile of each neuron, we may actually have been estimating only two latent (hidden) 

variables within the neural space, which described correlated firing within M1 and PMv, 

respectively. To address this concern, in this Chapter, we demonstrate the offline estimation, 

using a single MIMO model, of the firing rate of all neurons recorded simultaneously on our 

electrodes. We also further investigate our ability to estimate ranked dimensions of the neural 

space, in order to exclude the possibility that we are simply estimating latent components 

reflecting correlated population activity. 

4.1.3 Generalisation and transferability of firing rate estimation 

4.1.3.1 Generalisation 

Here, we use the term generalisation as a statistical concept, meaning the ability of a model to 

estimate output values for previously unseen data. For example, in our results to this point, we 
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have used generalisation as a test of model performance, by training our decoders on 75% of a 

recording, but using the remaining 25% of the recording as ‘unseen data’ for validation. 

However, this only represents generalisation of the lf-LFP–spike model within the same 

recording, which is the most lenient scenario. One could imagine that the LFP features 

(SRSPs), on which our method relied, might be based on particular patterns of neural firing 

and correlation seen specifically during the isometric torque task data on which the decoders 

were trained, and may not generalise to more naturalistic, and less stereotyped, movements. In 

this Chapter, we therefore test the performance of our firing rate decoders on data from 

different behavioural scenarios. 

4.1.3.2 Transferability 

Transferability of a research finding is the extension of that finding outside of the original 

sample, to the wider population, or different population. I have deliberately avoided the word 

‘generalisability’ here (even though this may be a more correct term), and used the term 

transferability, to avoid confusion with the term generalisation (which is reserved above). In 

this Chapter, we investigate how transferable our findings are across different types of 

neuronal firing pattern. Specifically: 

i) Does firing rate estimation perform equally well in M1 and PMv? 

ii) Does firing rate estimation only work for neurons with very fast or very slow firing 

rates? 

iii) Can we only estimate neurons whose activity is associated with overt movement? 

None of these questions are a direct test of transferability (that would require additional 

experiments that are outside the scope of this thesis), but they provide evidence for or against 

the argument that SRSPs (and firing rate estimates dependent thereon) are a general property 

of motor cortical neurons and the method is therefore transferable to other scenarios. 

4.1.4 Biofeedback BMI using LFP-based firing rate estimates 

In Chapter 3, we presented evidence that offline LFP-based firing rate estimates produce an 

accurate prediction of actual firing rates, on a single-trial basis. In the first section of this 

chapter, we will demonstrate that these estimates are remarkably stable. Finally, as an extreme 

test of the specificity of lf-LFP–spike relationships to particular neurons, we wanted to use 
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firing rate estimates as control signals in a realtime biofeedback BMI task, whilst monitoring 

the actual firing rates of those neurons, to see whether our models were specific enough to 

allow the subjects to separate the activity of the selected neurons from that of other 

neighbouring neurons. 

4.2 Aims 

This Chapter therefore has four main aims: 

Aim 1: To study the stability of LFP-based firing rate estimates over time. 

Aim 2: To study the latent dimensionality of LFP-based firing rate estimates, 

compared to the latent dimensionality of the actual neural space. 

Aim 3: To study the generalization of lf-LFP–based models across different 

behavioural scenarios. 

Aim 4: To test the specificity of lf-LFP–spike relationships, using a realtime 

biofeedback BMI task, controlled by estimated firing rates of neurons. 

4.3 Methods and Results 

4.3.1 Stability of LFP-based firing rate estimates 

4.3.1.1 Methods 

To assess the stability of the relationship between lf-LFPs and firing rates, we recorded the 

same ensemble of neurons over a prolonged period (Monkey D: P = 20 neurons, Q = 22 

lf-LFPs; over 45 days. Monkey R: P = 8 neurons, Q = 22 lf-LFPs, over 23 days). Each day, 

we performed a torque task experiment (50 trials), as described in Section 2.1.2. 

On day zero, we used the method described in Section 3.3.5.1 to build a single model 

(decoder) to simultaneously estimate the firing rates of P neurons using Q lf-LFPs. Unlike 

previously, where we excluded lf-LFPs on the electrodes with neurons of interest, we were 

unable to do this here, because otherwise there would be insufficient lf-LFPs available. 
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Therefore all 22 lf-LFPs were included in the model. We then tested the performance of this 

decoder on data from the torque task experiment on each of the successive days. 

For comparison to this static decoder (‘Original model’, unchanged throughout the duration of 

the experiment) we also refitted the decoder each day (‘Updated model’) and validated it 

within-day. 

4.3.1.2 Results 

Models fitted to data recorded on day zero were able to estimate firing rates of almost all 

neurons simultaneously from validation lf-LFP data recorded during that session. (Day zero: 

Monkey D, 20/20 neurons estimated above significance threshold, mean r-value 0.47, range 

0.23–0.74; Monkey R, 7/8 neurons; mean r-value 0.27, range 0.03–0.56) (Figure 4-1a,b, data 

at day zero).  

We then used the same model parameters to predict cell activity on subsequent days. 

Performance of the model using parameters from day zero was stable for most neurons 

throughout the recording period. (Last day: Monkey D, 20/20 neurons; mean r-value 0.31, 

range 0.06–0.57; Monkey R, 5/8 neurons; mean 0.16, range −0.11 to 0.51). Remarkably, 

performance was only slightly improved by fitting new parameters on each day (Figure 

4-1c,d). 

4.3.2 Stability of trial-averaged LFP-based firing rate estimates 

Whist the performance values in the previous figure may not seem very impressive on first 

glance (r-values of ~0.75 at best, corresponding to around 56% of variance explained), one 

needs to consider that these estimates are being done on a single-trial basis, with no 

averaging. As discussed in Section 3.3.5.4 (page 53), single-trial firing rates are extremely 

noisy estimates of the underlying task relationship of the neuron. In fact, one could argue that 

we are asking even more of our decoder than single-trial performance, because we are not 

excluding data from the inter-trial periods of the task (e.g. returning to the home target), when 

neural behaviour may be even less consistent and predictable. 

Next, therefore, we examined how well the trial-averaged (event-aligned) modulation of 

single-neuron firing rates (aligned to the end of the successful hold period) could be retrieved 

from LFP-based estimates. 
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Figure 4-1  Long-term stability and dimensionality of firing rate estimation. 
(a) Estimation of 20 neurons’ firing rates, using 22 lf-LFPs in monkey D, over 45 days, without model 

updating. Filled circles indicate significant estimates (p < 0.05, two-tailed; non-parametric bootstrap). 
Neurons are colour-coded according to quality of estimation on day 0. Black line shows an illustrative 
significance threshold (mean threshold of n=20 neurons; shading shows ± s.e.m), although each firing 
rate undergoes its own significance test. 

(b) Same for monkey R; 8 neurons, using 22 lf-LFPs, over 23 days. 
(c,d) Performance (mean correlation coefficient) of the original model (blue, fitted to data on day 0) versus 

an updated model (red, fitted to the data daily). Shading shows ± s.e.m. (monkey D, n = 20 neurons; 
monkey R, n = 8 neurons). 

4.3.2.1 Methods 

We used the same decoders, built on day zero, as we used for Figure 4-1a,b. On day zero, we 

calculated the trial-averaged firing rate profile (including all eight target directions) of the 

actual firing rate of each of the P neurons, aligned to the end of the successful hold period. 

We then calculated the trial averaged estimated firing rate profile of each neuron, and 

compared the two trial-averaged signals (actual and estimated) using Pearson’s correlation 

coefficient, r (just as in Section 3.3.5.4). Next, we used the same decoder (from day zero), to 

estimate firing rates on day 1 and on the final day of the experiment, and compared the trial-

aligned firing rate estimates on those days to the actual firing rate profile on day zero. In this 

way, we used the actual firing rate profile on day zero as the ‘ground truth’ for the true task-

related behaviour of the neuron over the duration of the experiment. 
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Figure 4-2  Actual and estimated trial-aligned firing rate profiles in Monkey D. 
(a) Each sub-panel shows data for one of the 20 neurons from the sessions shown in Figure 4-1a. 
Black trace, shows the mean trial-aligned actual firing rate profile averaged over 50 trials of the torque task 

(including all eight target directions) on day zero; 
Blue trace, shows trial-averaged estimated firing rate profile derived from lf-LFP for the same trials; 
Green trace, shows the trial-averaged estimated firing rate profile for trials performed one day later; 
Red trace, shows the trial-averaged estimated firing rate profile on day 45. 
Inset numbers indicate the correlation coefficient (r) between the actual firing rate profile on day 0 and the 

estimated firing rate profile on days 0, 1 and 45. 
(b) Red line, shows the mean (n = 20 neurons; shading indicates ± s.e.m.) of the correlation coefficient (r) 

between the trial-aligned actual firing rate profile on day zero and the trial-aligned LFP-based estimate 
of the firing rate profile on successive days. 

Blue line, shows the mean (± s.e.m.) correlation coefficient of the actual trial-aligned firing rate profile on 
day zero and the actual trial-aligned firing rate profile on successive days. 

Black line shows the mean (± s.e.m.) ‘chance’ correlation (see text). 
(c) Shows the same as panel b, but for trials separated according to target direction  
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Figure 4-3 Actual and estimated trial-aligned firing rate profiles in Monkey R. 
As per Figure 4-2, but for the neurons shown in Figure 4-1b, recorded in Monkey R over 23 days (n = 8 

neurons; shading indicates ± s.e.m.) 

 

Then, we used the same ground truth to compare changes over time in the task-related 

behaviour of the actual firing rate, to changes in task-related behaviour of the estimated firing 

rate. As a measure of chance, we calculated the correlation between the trial-aligned actual 

firing rate profile on day zero and the trial-aligned estimated firing rate profile of a different 

neuron on successive days (i.e. the correlation that would be expected by chance if the LFP-

based estimate did not capture firing rate modulations specific to the estimated neuron). 

Finally, we performed this same analysis, but separated the trials by target direction (~6 trials 

each for the 8 circumferential targets in the torque task). To do this, correlation coefficients 

were calculated across the concatenation of firing rate profiles for the individual targets. 

Performance here is expected to be significantly worse, because not only do firing rate 

estimates have to capture target-indifferent task-related activity, they also have to capture 

subtle variations in firing rate profile of each neuron between the eight different targets. 
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4.3.2.2 Results 

On day zero, the mean (± s.e.m.) correlation between the average firing rate of single neurons 

and the equivalent average of the LFP-based estimates was r = 0.93 ± 0.06 for monkey D and 

0.88 ± 0.14 for monkey R (Figure 4-2a and Figure 4-3a). These correlation coefficients are 

considerably higher than the r-values obtained for non-averaged data, suggesting that our 

method gave an unbiased estimate of task-related modulations of single neurons that 

converged towards the same trial-averaged profiles as the instantaneous firing rates. In these 

figures, it is clear that PMv neurons were commonly most modulated at the end of the trial, 

when the subject took food reward with the ipsilateral (right) hand. 

On subsequent days, despite slight variation in the animals’ behaviour, trial-averages of LFP-

based estimates continued to resemble the actual trial-averaged firing rates from day zero (r-

values on day 1: 0.86 ± 0.11 for monkey D and 0.59 ± 0.26 for monkey R; r-values on the last 

day: 0.74 ± 0.11 and 0.53 ± 0.27). Remarkably, trial-averaged LFP-based estimates were as 

similar to the day-zero profiles as were trial-averages of the actual firing rates on subsequent 

days (day 1: 0.81±0.13 for monkey D and 0.63±0.32 for monkey R; last day: 0.71±0.15 and 

0.44±0.32; Figure 4-2b and Figure 4-3b). 

It is important to note that variation in the monkey’s behaviour from one day to the next limits 

the accuracy with which trial-averaged profiles on subsequent days resemble day zero, but 

this affects both real and estimated firing rate data equally (e.g. the downwards spike on day 

24 in Monkey D, Figure 4-2b). In general, the LFP-based estimate performed at least as well 

as the actual firing rate throughout the recording, and was significantly greater than chance 

performance. 

Comparable results were obtained when we compiled trial-averaged profiles for each target 

direction separately, albeit with lower r-values for both actual and estimated firing rates as a 

consequence of averaging over fewer trials (Figure 4-2c and Figure 4-3c).  

Therefore, if we take as ‘ground truth’ the task-related modulation of a single neuron on day 

0, this could be recovered from the LFP-based firing rate estimates at least as accurately as 

from the actual firing rate of the same neuron across the extended recording period. This was 

true in both animals. 
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We were still able to recover trial-averaged profiles from the LFP-based estimates even for 

the last sessions in our data sets before electrodes were moved to find new neurons, obtaining 

r-values of 0.66 ± 0.14 for monkey D and 0.57 ± 0.34 for monkey R, at time points 

corresponding to days 116 and 63, respectively. It is not possible to provide comparable 

values for the actual firing rates in these sessions since spike waveforms recorded on the 

electrodes had changed and/or deteriorated to the extent that the original ensemble of neurons 

could no longer be identified. 

4.3.3 Dimensionality of LFP-based firing rate estimates 

Although we could estimate the firing rate of all the individual neurons with considerable 

accuracy, we considered the alternative explanation that the neural activity was all highly 

correlated. Accordingly, we could hypothesise that, rather than estimating the unique features 

of each neural firing rate pattern, we would effectively be estimating latent (hidden) variables 

within the neural space, which described correlated population activity. 

To examine whether subsets of highly-correlated cells were present in the data, we performed 

hierarchical cluster analysis on the neural space (using linkage.m from the MATLAB Statistics 

Toolbox). To measure the distance between clusters, we used the ‘correlation’ metric (one 

minus the sample correlation) and the ‘average’ method (unweighted average distance 

algorithm [UPGMA]). The resulting dendrogram was used to determine the order of cells in 

plots of the full pair-wise cross-correlation matrix between firing rates. In such plots, tightly-

correlated ensembles would appear as clusters of high correlation values close to the main 

diagonal.  

Although we found that the firing rates of neurons within the same cortical area exhibited 

higher correlation than between areas, we did not find clear evidence for smaller ensembles of 

tightly-correlated cells within each area (Figure 4-4a–f).  
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Figure 4-4  Clustering and PC analysis of the neural firing rate-space. 
(a) Dendrogram showing a hierarchical cluster tree based on correlations between the firing rates of 20 

neurons in Monkey D (Same data as in Figure 3-4a,c, Figure 3-10a,c,e and Figure 4-5a). 
(b) Same for 8 neurons in Monkey R (same data as in Figure 4-5b). (c) Same for another dataset in 

Monkey R with 15 neurons (same data as in Figure 3-4a,c and Figure 3-10a,c,e). Note that in all 
datasets, neurons within the same cortical area tend be located on neighbouring branches of the tree. 

(continued overleaf, bottom) 
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Figure 4-5  Firing rate estimation in principal component space. 
(a) Proportion of variance in actual firing rates of all neurons captured by each PC (green), and correlation 

coefficient on validation data for the projection of estimated firing rates onto the PCs of actual firing 
rates (blue) for Monkey D. 

(b) Same for Monkey R. 
Dashed line indicates p < 0.05 significance threshold (two-tailed; non-parametric bootstrap). 

[text] 

 

Figure 4-4  (continued from previous page) 
(d–f) Full correlation matrix for the same datasets, ordered according to the corresponding cluster tree. 
(g–i) Scatter plot of weightings for PC1 and PC2 of the high-dimensional neural space for the same 

datasets as shown in  
(j–l) Simulation showing the effect of artificially introducing noise into the actual spike recordings by 

mixing a proportion of spikes between spike trains. Dashed lines show the effect of retaining 50%, 25% 
or 10% of spikes in the simulation. The drop-off seen in our ability to estimate higher order PCs of the 
neural space from lf-LFPs (solid blue line; see also Figure 4-5a,b) is comparable to estimates based on 
retaining 25% of the actual spike trains for each neuron. Filled circles indicate significant estimates 
(p < 0.05, two-tailed; non-parametric bootstrap).  
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Nevertheless, we considered the possibility that multichannel lf-LFPs might contain 

information only about a limited number of latent variables, corresponding to correlated 

components of the population activity. In this case, LFP-based firing rate estimates would 

predict only a few dimensions of the observed neural space. 

To test this hypothesis, we calculated the PCs of the actual firing rates of all recorded neurons 

(low-pass filtered at 5 Hz), to find dimensions of the neural space that captured the greatest 

co-variation (Figure 4-5, green lines). 

Approximately half of the total firing rate variance in both animals was explained by the first 

two PCs (which generally captured broad co-activation of neurons within M1 or PMv, Figure 

4-4g–i), with the remainder distributed across the higher components. We then projected the 

LFP-based firing rate estimates of all neurons onto the same PC axes, and assessed their 

correlation with actual firing rates along each dimension using validation data (Figure 4-5, 

blue lines). 

The highest correlations were obtained for the first two PCs, consistent with a previous 

observation that the total spiking within an area can be decoded from lf-LFPs (Bansal et al. 

2011). However, we could also obtain statistically significant estimation of all but one of the 

higher PCs in each animal, suggesting fractionated components of the population activity 

were also contained within the LFP-based estimates. This was despite the fact that higher PCs 

captured less of the firing rate variability and would therefore be expected to have a lower 

signal-to-noise ratio. 

4.3.3.1 Simulation to introduce uniform artificial noise into spike trains 

There are two possible explanations for the drop-off in our ability to estimate higher neural 

PCs: 

i) LFP-based estimates are really only capturing a small number of latent variables 

within the neural space, or 

ii) Higher neural PCs have a lower amplitude, and as signal drops, the relative effect of 

noise increases: impacting the performance of LFP-based estimations of higher PCs. 

To try to indicate which of these may be the case, we performed a simulation in which we 

artificially introduced uniform noise into the actual firing rates of neurons, and studied the 
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correlation between actual and ‘noisy’ firing rates along each of the PC axes of the neural 

space. 

To do this, a proportion of spikes from each neuron were shuffled to spike trains of other 

neurons in the same recording. Whilst spikes from different neurons might not be independent 

(and therefore not represent random noise), we felt this shuffling was preferable to simply 

injecting synthetic noise, as it retained the overall statistical properties of the actual neural 

space. In effect, this simulated what might happen in a real experiment if spikes were 

misclassified to the wrong cell. 

Our method was as follows: Using a recording with a total of P neurons, we retained a 

proportion, σ , (either 50%, 25% or 10%) of spikes selected randomly for each neuron. We 

then inserted a proportion, (1−σ)/(P−1), of spikes from every other neuron into the spike train. 

This process was repeated for all P neurons, after which we calculated the low-pass-filtered 

(5 Hz as previously) and demeaned firing rates for each of the actual and ‘noisy’ spike trains. 

We then calculated the correlation coefficient (r) between actual and ‘noisy’ firing rates along 

each of the PC axes of the neural space. 

We found that the drop-off profile (with higher PCs) seen with our simulation of noise in the 

neural space (Figure 4-4j–l, dashed lines) was very comparable to the drop-off profile seen in 

our LFP-based estimation of the neural space (Figure 4-4j–l, solid dark blue line). This result 

was most consistent with explanation (ii) above. That is to say, our reduced ability to estimate 

higher PCs of the neural space using LFPs was likely because of a lower signal-to-noise ratio 

in higher components, rather than because our LFP-based estimations were limited to 

capturing a small number of latent variables. 

Specifically, we found that performance of the LFP-based firing rate estimate over the entire 

neural space was comparable to firing rates calculated from actual spike data, in which 25% 

of spikes were correctly classified. This is consistent with the mean r-values for single-neuron 

estimation (~0.5), suggesting on average 25% of the true firing rate variation of individual 

neurons was captured by LFP-based estimates. Note, however, that while we here simulated 

the effect of noise by adding spikes from other neurons, the actual noise in our firing rate 

estimates did not have any consistent task relationship, since trial-averaged profiles converged 

on the true task-modulation of the single neurons (e.g. Figure 4-2, page 68). 
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4.3.4 Generalisation and transferability of LFP-based estimation 

To test generalisation, we were interested to see whether the relationship between lf-LFPs and 

neural firing was preserved across tasks that required the generation of specific patterns of 

neural activity (rather than isometric torque) to successfully acquire targets. To do this, we 

explored how well models built on data recorded during the isometric torque task could be 

used to estimate firing rates during various biofeedback BMI tasks. We also used these data to 

test for transferability of the LFP-based firing rate estimation method.  

4.3.4.1 Methods 

For these experiments, we used the ‘cell control’ experimental paradigm described in Section 

2.1.3.1 (page 23), with the CED-based recording system (Section 2.4.2), in Monkeys D and 

A. Firstly, we performed a typical 50-trial torque tracking task. We trained a decoder from 

this data for estimating the firing rates of two neurons from up to 13 lf-LFPs (16 recording 

channels, minus one broken channel, and two channels on which the neurons-of-interest were 

recorded). 

During the next phase of the experiment, the position of a one-dimensional (1-D) cursor was 

controlled in realtime by either: 

i) the firing rate of one arbitrarily chosen cell, 

ii) the summed firing rates of two cells or 

iii) the difference in firing rates of two cells, as per Section 2.1.3.1. 

4.3.4.2 Results: Generalisation 

Firstly, it is noteworthy that in general, firing rate estimates based on data from the CED 

system performed less well than those with the TDT-based system. This was primarily 

because fewer lf-LFPs were available with the CED-based system, but also because the 1 Hz 

high-pass filtering of the LFPs recorded with the CED-based system removed some 

informative frequencies. 
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Figure 4-6  Generalisation of lf-LFP–based firing rate estimate across ‘cell-control’ BMI tasks. 
(a) Performance (r) of firing rate estimate using a model built on the torque task data (green, ‘Torque-

trained’) tested on validation data from three different ‘cell-control’ BMI tasks. Also shown is 
performance of model built on data from the same BMI condition as the validation data (orange, ‘BMI-
trained’). Data from Monkey D; 23 experiments with 2 neurons per experiment; n = 46 neurons (31 M1 
neurons and 15 PMv neurons). 

(b) The same for Monkey A; 23 experiments with 2 neurons per experiment; n = 46 neurons (27 M1 and 
19 PMv neurons). 

Open circles indicate individual neurons whose firing rate estimate was non-significant by non-parametric 
bootstrap test (p < 0.05, two-tailed). 

†, p < .001 by one-way repeated-measures (rm-)ANOVA; *, p < 0.05 by two-way ANOVA; ***, p < .001 by 
two-way rm-ANOVA.   

We tested the generalisation of this model using data recorded during ‘cell-control’ tasks, 

during which the natural correlation between the two estimated neurons (and likely between 

many other recorded and unrecorded neurons) is explicitly disrupted by the requirements of 

the task. The results are presented in Figure 4-6a,b (green data) and the statistics are 

presented in Table 4-1.  
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 Monkey D Monkey A 

Torque Task 46/46 (100%) 41/46 (89%) 

Mean r ± s.e.m 0.251 ± 0.016 0.221 ± 0.023 

Cell 1 only 44/46 (96%) 34/46 (74%) 

Mean r ± s.e.m 0.175 ± 0.013 0.135 ± 0.018 

Cell 1 + Cell 2 44/46 (96%) 34/46 (74%) 

Mean r ± s.e.m 0.195 ± 0.016 0.113 ± 0.016 

Cell 1 − Cell 2 43/46 (96%) 35/46 (74%) 

Mean r ± s.e.m 0.180 ± 0.014 0.129 ± 0.018 

One-way rm-ANOVA 
Factor: test task 
type 
(torque, cell1_only, 
cell1+cell2, cell1–
cell2) 

F2.7,120.7 = 23.6 
p < 0.001 

F3,135 = 24.3 
p < 0.001 

Notes: — Shapiro-Wilk test 
for normality passed 
(p > 0.05). 
— Greenhouse-Geisser 
correction of DOF 
because Mauchly’s 
test of sphericity 
failed (p < 0.05) 

— Transformation: 
Y’ = ln(Y + 0.05) 
— Then Shapiro-Wilk 
test passed (p > 0.1) 
 

 
Table 4-1 Generalisation of lf-LFP–based firing rate decoders, trained on ‘torque task’ data and tested 

(validated) on data from ‘cell-control’ BMI tasks. 
Numbers in grey rows indicate fraction (and percentage) of neurons with significant validation 

performance. s.e.m., standard error of the mean; F, ANOVA F-statistic with DOF in subscript. 

In both animals, there was a modest (~30% on average) but significant drop (p < 0.001) in the 

performance of firing rate estimation across tasks, suggesting that decoders trained on torque 

tracking data have some difficulty generalising to BMI data. The result is still surprisingly 

good, considering the noticeable difference in the subjects’ behaviour during the cell-control 

BMI tasks. 

To test this possibility, we compared our ‘original’ torque-task–trained models with ‘updated’ 

models: trained using data from the same ‘cell control’ BMI task as the validation. The results 

are presented in Figure 4-6a,b, above (green data vs. orange data) and the statistics in Table 

4-2, below.  
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 Monkey D Monkey A 

 Original decoder 
(Torque-trained) 

Updated decoder 
(BMI-trained) 

Original decoder 
(Torque-trained) 

Updated decoder 
(BMI-trained) 

Cell 1 only     

Mean r ± s.e.m 0.175 ± 0.013 0.184 ± 0.012 0.135 ± 0.018 0.178 ± 0.021 

Cell 1 + Cell 2     

Mean r ± s.e.m 0.195 ± 0.016 0.209 ± 0.016 0.113 ± 0.016 0.169 ± 0.017 

Cell 1 − Cell 2     

Mean r ± s.e.m 0.180 ± 0.014 0.206 ± 0.015 0.129 ± 0.018 0.189 ± 0.019 

Two-way rm-ANOVA   

Factor: 
decoder type 
(original, 
updated) 

F1,45 = 5.31 
p = 0.026 

F1,45 = 65.3 
p < 0.001 

Factor: 
test task type 
(torque, 
cell1_only, 
cell1+cell2, 
cell1–cell2) 

F2,90 = 3.33 
p = 0.040 

F2,90 = 1.91 
p = 0.15 

Interaction: n.s. n.s. 

 
Table 4-2 Comparison of using the ‘original’ model (trained on torque task data) vs. using an ‘updated’ 

model (trained on data from the specific cell-control block). 
Abbreviations as per Table 4-1; n.s., not significant. 

These results demonstrated that an updated decoder was able to perform moderately but 

significantly better than the original decoder (5–13% improvement in Monkey D, p = 0.026; 

23–33% improvement in Monkey A, p < 0.001). This confirmed that there are some 

limitations to the ability of the torque-trained decoder to generalise to the different 

behavioural scenario of the cell-control task. Nevertheless, given the very abstract and non-

naturalistic nature of the cell-control BMI task, the ability of our LFP-based firing rate 

decoders to generalise across different behavioural scenarios is reassuring. 
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4.3.4.3 Transferability: Does cortical area in which the neuron is located affect 

performance of LFP-based firing rate estimation? 

 

Figure 4-7  Comparison of model performance for M1 vs. PMv neurons. 
Comparison of model performance (r) for M1 (blue) and PMv (red) neurons during the torque task in 

Monkey D (left) and Monkey A (right). n.s., not significant by two-way independent samples ANOVA 
(F < 1 and p > 0.05). Open circles indicate individual neurons whose firing rate estimate was not 
significant by non-parametric bootstrap test (p < 0.05, two-tailed). Data met all assumptions of two-
way independent samples ANOVA. 

Overall, we found no significant difference in our ability to estimate M1 and PMv neurons 

(two-way independent samples ANOVA, effect of Factor Area, F1,88 = 0.016, n.s.; effect of 

Factor Monkey, F1,88 = 0.181, n.s.), although a significant interaction was found between 

factor Monkey and factor Area (F1,88 = 6.78, p = 0.011), with M1 neurons estimated better in 

Monkey D and PMv neurons better in Monkey A (Figure 4-7). 
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4.3.4.4 Transferability: Does the underlying neuronal firing rate affect performance of 

LFP-based firing rate estimation? 

 

Figure 4-8  Model performance for neurons with different actual firing rates. 
Estimation performance (r) vs. mean actual firing rate for all 92 neurons (46 neurons from each subject). 

Dashed shows simple least-squares regression line, with correlation coefficient, rho and p-value of the 
regression. Open circles indicate individual neurons whose firing rate estimate was not significant by 
non-parametric bootstrap test (p < 0.05, two-tailed). 

We were able to estimate neurons with a very wide range of firing rates, although 

performance was positively correlated with mean firing rate (Figure 4-8; regression line, 

rho = 0.23, p = 0.03).  

4.3.4.5 Transferability: Is the performance of firing rate estimation dependent on the 

association of neuronal activity with movement? 

We considered the possibility that our SRSP-based method may be dependent on sensory 

afferent signals from the arm and hand, being generated secondary to movement. If this were 

the case, this would impact our ability to estimate neuronal firing rates in situations where 

sensory feedback was absent: the most obvious example being a paralysed patient who can 

display movement intention, but is not able to generate overt movement. To test this, we 

investigated whether our ability to estimate the firing rate of a neuron was dependent on that 

neuron’s association with wrist torque. 

Using data from the one-cell control task (Cell 1 only) from both subjects, we quantified the 

degree to which neuronal firing rate modulation was associated with movement of the wrist, 

across each of the four targets, using a ‘torque modulation index’ (TMI). This was calculated 
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from the gradient of the linear regression of average absolute torque (during the hold period) 

against target position (in screen coordinates). TMI was normalised by the torque-position 

gain during the torque control task. Thus, a TMI value of less than one indicated that, during 

cell control, the monkey modulated torque less to acquire targets than during the torque task, 

while a value of zero indicated no overall modulation of torque for the different BMI targets. 

 

Figure 4-9  Performance of firing rate estimation for cells that are modulated to a greater or lesser extent 
with movement (wrist torque), as quantified by a torque modulation index (TMI). 
(a) Performance (r) of firing rate estimation vs. TMI for the ‘Cell 1 only’ cell-control BMI task in Monkey 

D (n = 23 neurons). 
(b) Same for Monkey A (n = 23 neurons). Data are plotted separately for M1 (blue ‘+’) or PMv (red ‘×’) 

neurons. 
Dashed line shows least-squares regression through all points with correlation coefficient, rho, and p-value. 

We found a weak correlation (significant in one animal) between the TMI and the 

performance of our LFP-based firing rate estimate (Monkey D, correlation 

coefficient = 0.43, p = 0.04; Monkey A, correlation coefficient = 0.30, p = 0.16). However, 

LFP-based firing rate estimation performed well in many cases even when the behaviour 

involved minimal torque modulation (Figure 4-9). Obviously, using this method, we could 

not account for firing rate modulation associated with movements of other joints that we were 

not monitoring. 

Finally for this section, we studied one example PMv neuron from Monkey A in greater depth 

during the one-cell control task—whose firing rate modulation was not directly correlated 

with the production of torque—to explore whether there were any changes in the shape of the 

SRSP under different firing rate conditions. 
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Figure 4-10  SRSP (spike-related slow potential) during ‘cell-control’ BMI task. 
(a) Trial-averaged cursor position, aligned to end of hold period, during the 1-D ‘cell-control’ BMI task in 

which Monkey A controlled the firing rate of a single PMv neuron. 
(b) Spike raster and peri-event spike time histogram (PETH) of the controlling neuron. 
(c) Trial-aligned average of an lf-LFP on another PMv channel, labelled as the ‘event-related slow 

potential’ (ERSP). 
(d) Red, spike-related slow-potential (SRSP) of the lf-LFP for only those spikes shown above. Green, 

cross-correlation of the ERSP and PETH shown above. 
(e) Trial-aligned average wrist torque magnitude. 

In the example session shown in Figure 4-10, Monkey A performed 100 trials of the 1-D 

‘cell-control’ task (cursor position Figure 4-10b) by modulating the firing rate of a single 

PMv neuron (Figure 4-10b) to acquire 4 different targets while the isometric torque 

generated by the left wrist was monitored. Acquisition of the bottom target (reduced firing 

rate) was associated with wrist torque (Figure 4-10e), but the other targets were achieved 

without any consistent overt movement. 
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STAs of the lf-LFP (revealing the SRSP) from a second PMv electrode were compiled using 

only spikes within ± 3 s of the end of successful trials for each target (Figure 4-10d, red 

traces). Although noisy due to the small number of events, a positive lf-LFP peak followed 

the trigger spike in each case, even for those targets which were not associated with the 

generation of torque (middle and top targets). Indeed, the SRSP was remarkably consistent 

across targets with very different trial-averaged firing rate profiles (Figure 4-10b). 

This may seem counter-intuitive, especially since the trial-averaged lf-LFP does not show any 

obvious modulation for these targets (Figure 4-10c). Indeed, we can assess the SRSP that 

would be expected from task-related co-variation in firing rate and lf-LFP by calculating the 

cross-correlation between the trial-averaged firing rate and trial-averaged lf-LFP (Figure 

4-10d, green traces). The peaks in these correlations are about an order of magnitude smaller 

than the true STA, suggesting that the SRSP does not merely represent co-variation between 

signals that are time-locked to task events or wrist movements. Rather the SRSP includes 

correlations between firing rate and lf-LFP that vary trial-to-trial, and therefore do not survive 

averaging aligned to task events. 

4.3.5 Realtime biofeedback using LFP-based firing rate estimates 

So far, using offline analyses, we have demonstrated that firing rates can be estimated from 

lf-LFPs, that the multichannel lf-LFP captures the majority of the latent dimensionality of the 

neural space, that firing rate estimations capture a large proportion of the variance of task-

aligned firing rate modulation, that LFP-based models generalise reasonably well across 

different behavioural scenarios, and that LFP-based firing rate estimation is almost certainly 

not just an artefact of a specific, esoteric experimental setup. 

Finally for this chapter, we performed realtime biofeedback BMI experiments controlled by 

the estimated firing rates of neurons. Our hypothesis was that we would be able to drive 

changes in the actual activity of specific neurons, by providing only lf-LFP–based feedback of 

their firing rates to the subject. If true, this would provide a powerful demonstration that 

lf-LFP–based firing rate estimates are able to separate the activity of individual neurons from 

the general neuronal population. 
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4.3.5.1 Methods: Experimental setup and analysis of behaviour 

For online firing rate estimation during the ‘LFP-control’ BMI task, we trained a decoder to 

estimate the firing rate of one or two neurons, based on an initial 50 trials (~ 5 mins) of the 

torque-task. We used the same approach as offline (as described in Section 3.3.5.1), but with 

τ1 = −1.8 s and τ2 = 0.2 s, such that online firing rate estimation was delayed by 0.2 s relative 

to the realtime data. Again, we excluded lf-LFPs from those electrodes used to record the 

selected neurons. 

Once we had built our decoder for a particular day, we stored the lf-LFP weighting 

matrices, M1 and M2, and inverse filter kernels, κ1 and κ2. Then, using these parameters, the 

projection of lf-LFP signals into the source space and subsequent inverse filtering were 

implemented on hardware digital signal processors within the TDT-RZ2 using the TDT 

Realtime Processor Visual Design Studio (RPvdsEx) software. 

Monkeys then performed the 1-D biofeedback BMI task (in configurations Cell 1 only and 

Cell 1 − Cell 2) but rather than being controlled by the actual firing rates of one or two 

neurons, the cursor position was controlled by estimated firing rates. We called this 

experiment ‘LFP-control’ BMI, and further details of the experimental setup have already 

been given in Section 2.1.3.2. 

Generally, cursor position data (and thus firing rates) were analysed by aligning to the end of 

the successful hold period. Because a trial had no set length (and therefore continued until the 

animal successfully acquired the presented target), the end of the trial was chosen to enable 

direct comparison between firing rates in each of the various biofeedback contingencies. 

However, we also wanted to check that subjects were controlling the cursor position 

(modulating firing rates) in a goal-directed way, by excluding the null hypothesis that firing 

rates were modulated randomly and targets thereby acquired by chance. To do this, cursor 

position data were instead aligned to the ‘go’ cue (the point in the task at which subjects were 

cued to start making directed movement towards a peripheral target). The mean cursor 

position for each trial was then calculated over the first 1 second after the go cue. The sample 

of mean cursor positions for the top-most (70%) target were then compared to the sample for 

the bottom-most target (−70%) using the independent two-sample t-test (MATLAB function 

ttest2.m), with the null hypothesis of no difference. 
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Figure 4-11  Biofeedback BMI controlled by realtime LFP-based firing rate estimates. 
(a) Example lf–LFPs (4 shown of 18) as monkey D controlled a BMI cursor using the estimated firing rate 

of an M1 neuron. 
(b) Realtime estimated and actual firing rates and spike raster. 
(c) Cursor and target positions (shading indicates cursor and target width). 

 

Figure 4-12 Trial-averaged data for cursor position and actual/estimated firing rate. 
(a) Trial-averaged cursor position aligned to end of the successful hold period. 
(b) Trial-averaged estimated and actual firing rates of Cell 1 (the controlling M1 neuron). 
(c) Trial-averaged estimated and actual firing rates of Cell 2 (a non-controlling M1 neuron). 
(d–f) As in a–c, but now for a task controlled by the difference between estimated firing rates of Cell 1 and 

Cell 2. 
(g) Cross-correlation of the actual firing rates of Cell 1 and Cell 2 during the initial torque task and 

subsequent ‘LFP-control’ BMI tasks. 
(h) Mean cursor trajectories (across trials) aligned to the ‘go’ cue for the top (70%, red) and bottom 

(−70%, blue) targets for a representative experiment in Monkey D, where cursor position was 
controlled by the estimated firing rate of Cell 1 (as in panel a). Shading indicates ±SEM. Dashed lines 
indicate the centres of the respective targets. There was no time-out, so trial length depended on speed 
of target acquisition, with some trials taking longer than the four seconds shown here. 
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4.3.5.2 Results: Realtime control of firing rate estimates 

Monkeys were rapidly able to control the cursor position based on the estimated firing rate of 

a single neuron (or the differential firing rates [estimated] of two neurons). A section of 

electrophysiological and behavioural data from a typical LFP-control session (here involving 

one-‘cell’ control with an M1 neuron) is presented in Figure 4-11. It is important to note the 

sample of neurons used for these LFP-control experiments was completely new, so the 

subjects had not previously experienced control of these particular neurons in any other form 

of BMI task. 

Monkeys were able to both increase and decrease the estimated firing rates of single neurons 

(Figure 4-12a–c), but more importantly, they could achieve simultaneous independent control 

of two estimates when each moved the cursor in opposite directions (Figure 4-12d–f). It is 

important to emphasise at this point, that both neurons were being estimated in realtime, and 

simultaneously, from the same set of ~ 20 lf-LFPs (minus the two LFPs on the same 

electrodes as the selected neurons). 

Moreover, although we imposed no direct constraints on the activity of the underlying 

neurons, monkeys nevertheless performed the task by modulating the actual firing rates of the 

chosen neurons (Figure 4-12b,c,e,f), and the correlation between neurons changed in 

accordance with the imposed biofeedback contingency (Figure 4-12g). 

We found that both animals consistently found it easier to increase, rather than decrease 

estimated firing rates. (This was a finding we also noted in those experiments [above, Section 

4.3.4.2] where cursor position was controlled by actual firing rate [data not shown]). 

Correspondingly, we found that target-directed cursor movement for targets associated with 

increased estimated firing rate (‘top’ targets) was considerably more consistent and 

stereotyped (e.g. Figure 4-12h, red) than cursor movement for targets associated with 

decreased estimated firing rate (‘bottom’ targets; e.g. Figure 4-12h, blue), when aligned to 

the ‘go’ cue. Therefore, whilst it appears from Figure 4-12h that the subject is paradoxically 

making small upwards movements for the bottom target (blue), it is important to note that the 

trace shows the mean across trials of the first four seconds of 25 trials with this target. The 

downward movement of the cursor actually associated with trial success occurred with high 

temporal variability, and therefore a stereotypical behaviour was not captured in the mean in 

the same way as it was with the ‘top’ target. Nevertheless, cursor movement over the first 
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second following the go cue was significantly different between trials with the ‘top’ target and 

those with the ‘bottom’ target (p = 0.02; independent two-samples t-test; nup = 24, ndown = 25). 

The same result was seen in a representative experiment from Monkey R (p = 0.002; nup = 30, 

ndown = 30). It is also important to note that monkeys were not exposed to, or trained on, 

control of a particular neuron’s firing rate (either actual or estimated) prior to a particular 

day’s experiment. Each experiment therefore captured a period of operant conditioning, 

which necessarily required exploratory behaviour by the animal, especially at the beginning 

of the session. It’s likely that, given training with feedback from the same neuron over a 

number of days, subjects would be able to learn much more consistent and direct cursor 

movements, for both increases and decreases in (estimated) firing rate. 

4.3.5.3 Methods: Analysis of group data 

We defined a tuning index to quantify the modulation of firing rate with target position. The 

actual firing rate of each cell was normalized to zero mean and unity variance over the ‘LFP-

control’ BMI session. Firing rate profiles for each target were aligned to the end of successful 

trials and averaged separately for estimated and all other neurons. The task-modulation of 

firing rates was quantified using a tuning index, calculated for each neuron during the hold 

period of the task (adjusted for the 0.2 s delay in the firing rate estimation), according to: 

𝑇𝑢𝑛𝑖𝑛𝑔	𝑖𝑛𝑑𝑒𝑥 =
𝑥̅]^_ − 𝑥̅`^]]^a
𝑥̅]^_ + 𝑥̅`^]]^a

 ( 4.1 ) 

 

where x̅top and x̅bottom are the mean firing rates of the neuron during the (adjusted) hold period 

across all trials for the top target and bottom target, respectively. 

We analysed a total of 44 controlling (estimated) neurons, and 947 other neurons, across 44 

sessions (22 each in Monkeys D and R). The distribution of tuning indices of controlling 

(estimated) neurons was compared to all other neurons using the Mann-Whitney U-test, 

because data were not normally distributed (by the Shapiro-Wilk test). 
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4.3.5.4 Results: Group data 

 

Figure 4-13  Group data for actual firing rates of estimated neurons vs. all other neurons 
(a) Mean cursor position (top) across sessions where monkey D (22 sessions) or R (22 sessions) controlled 

the estimated firing rate of one neuron. Mean actual firing rates of controlling neurons (middle, n=44) 
and all other cells (bottom, n=947). 

(b) Tuning index (calculated within grey box in k) of the estimated neuron versus all other cells. 
↓, median; *** p < 0.001, by Mann-Whitney U test, because data did not pass normality assumptions 
(Shapiro-Wilk, p = 0.05). 

Across 44 sessions in two animals, we found that the estimated neurons were significantly 

more tuned than the other recorded neurons (median tuning index of estimated neurons, 0.42; 

other neurons, 0.10; U = 9,140, p < 0.001, two-tailed, by the Mann-Whitney U-test) (Figure 

4-13). 

4.4 Discussion 

Firstly, in this Chapter, we have demonstrated that linear models for estimation of single-

neuron firing rates from lf-LFPs are surprisingly stable in their performance over a number of 

weeks. In fact, with trial-averaged data, LFP-based estimates performed at least as well as 

actual firing rates in estimating ‘ground truth’ task-related neuronal behaviour. Remarkably, 

we were able to recover trial-averaged firing rate profiles out to 116 days (Monkey D) and 63 

days (Monkey R). At this point spike waveforms had deteriorated so much that we could no 

longer identify the original neurons, but in theory, our LFP-based estimates of neuronal 

behaviour could probably have continued for longer, if it wasn’t that we had moved the 

electrodes to perform a different experiment. 
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The stability of signals based on the lf-LFP that we have documented here is consistent with 

the existing literature. Flint and colleagues have documented the stability of lf-LFP out to 210 

days (Flint et al. 2013) and Chao and colleagues have similarly used ECoG out to 250 days 

(Chao et al. 2010). Furthermore, Flint and colleagues found that in a closed-loop BMI, 

movement-related lf-LFP signals (which they termed the LMP) were particularly informative, 

and more stable even than using multi-unit threshold crossings (Flint et al. 2016). 

Unfortunately, due to the limitations of the geometry of our arrays, we cannot comment 

specifically on the reason for this stability at the electrophysiological or cellular level. But the 

fact that our SRSP features seem to originate from multiple sources within a cortical area 

(likely each corresponding to ensembles of many thousands of neurons), supports the theory 

that the lf-LFP is less sensitive to micromotion than extracellular spike recordings. 

Additionally, it seems plausible, that while gliosis and inflammation may displace or kill a 

single neuron, the lf-LFP should be relatively robust (as long as the LFP signal can reach the 

recording site by volume conduction), because it is generated as a result of the membrane 

potentials of a very large number of cells. 

Future work in this area could explore the combination of spike-based signals and lf-LFPs via 

‘hybrid’ decoder approaches. We envisage a scenario in which, soon after electrode 

implantation—while clean spike recordings can be obtained from many neurons—model 

parameters that relate the firing rates of these neurons to lf-LFPs could be calculated. While 

neuronal recordings remain stable, actual firing rates could be used for BMI control, but 

lf-LFP–based models may then allow estimated firing rates to be used after spike recordings 

have substantially deteriorated. 

Alternatively, there is an increasing trend in the field towards using hybrid BMIs (spikes with 

LFP) as a matter of course (Flint et al. 2013; Gilja et al. 2015; Stavisky et al. 2015). LFP 

signals can be used to augment the performance achieved with spikes alone, and/or can be 

brought into use when spike signals are poor or absent. Understanding the relationship 

between neuronal spiking and the LFP in motor cortex will be critical to these endeavours, in 

order to inform which features of the LFP should be chosen. Whilst lf-LFP–based estimates of 

single neuron firing rate are one option, there may be more sophisticated models that can be 

discovered in the future through a better understanding of the generation of the LFP by 

cortical neural networks. 
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Secondly, we have shown that our LFP-based firing rate model is able to capture a large 

proportion of the structure present within the higher-dimensional neural space, rather than just 

capturing correlated components of population activity (reflecting widespread, synchronous 

activity, for example). When estimating the firing rates of 8–20 neurons simultaneously, we 

obtained significant prediction along all but one PC of the observed neural space. The quality 

of fit along each dimension could be simulated by adding noise uniformly across individual 

neurons, suggesting that the LFP-based estimates are not systematically biased to particular 

PCs. Moreover, when estimates of single neurons were used for realtime biofeedback, task-

related firing rate modulations were largely confined to the targeted neuron. 

Therefore, we conclude that the dimensionality of LFP-based estimates is comparable to the 

dimensionality of our multiple single-unit recordings. It remains to be seen whether this will 

stay true as the density of recording arrays increases. One possibility is that, as more of the 

network is sampled, the SRSP attributed to each recorded neuron will eventually converge on 

the true causal effect of its spiking. Alternatively, greater single-unit resolution may 

ultimately reveal tightly correlated ensembles beyond which SRSP-based separation becomes 

impossible. 

Questions over the dimensionality of neural activity have an interesting relation to the 

apparent paradox of extreme redundancy in the motor cortex. M1 in macaques constitutes 

about 2.2% of the surface area of the cortex, and weighs around 1.4 g, with a cell density of 

around 75 million neurons per gram (Young et al. 2013) – meaning that there are 

approximately 100 million (108) neurons in each macaque M1. 

The theoretical number of degrees of freedom (DOFs) in the primate forelimb is many orders 

of magnitude lower. A reasonable estimate is 30 in the human: assuming there are 7 DOFs in 

the shoulder, elbow and wrist, for positioning of the hand, and around 22 DOFs in the 

intrinsic motion of the hand and digits (Rouse & Schieber 2015). The number of DOFs in the 

macaque forelimb is lower still, because they have considerably less individuated control over 

fine hand movements. 

The effective number of independent DOFs of the primate forelimb is then considerably lower 

than this theoretical number, because 

a) natural movement almost never occurs in isolation at a single joint (Hager-Ross & 

Schieber 2000), and 
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b) there is considerable evidence for muscular ‘synergies’ in the motor system: 

underlying patterns of simultaneous activity at multiple muscles, likely organised in 

the spinal cord (Hart & Giszter 2013), which mediate common natural movements 

(Rouse & Schieber 2015). 

Therefore, we can see that there is considerable convergence in the motor system. From, in 

the order of, 107 neurons in the motor cortex encoding forelimb movement, to less than 102 

DOFs of movement in both forelimbs: this considerable redundancy in the motor cortex has 

long been a source of interest for motor neuroscience researchers. As we see in our data, 

neurons within a cortical area certainly tend to be correlated. But in one study in rodent motor 

cortex, it was found that 96% of neurons contributed redundant predictive information about 

behavioural performance to their neuronal ensemble (Nandakumar et al. 2005). 

Studies from the BMI field have shown that monkeys can use the firing rates of single 

neurons from M1 to control low-DOF BMIs (Fetz & Baker 1973). So, if each DOF of the 

forelimb could theoretically be encoded by the activity of, say, a single neuron, and there are 

less than 100 DOFs in forelimb movement, then why does the motor cortex require 10,000 

times this number of neurons (and therefore a huge amount more energy) to control the 

forelimbs?  

The answer is still a matter of investigation, but there is an emerging consensus that, rather 

than neurons encoding information independently, the motor cortex encodes information 

through the population activity of many thousands of neurons: in a high-dimensional space 

(the P-dimensional ‘neural space’), wherein each dimension corresponds to the activity of one 

neuron (Sadtler et al 2014). Having more neurons than controlled DOFs allows for what is 

termed an ‘active space’, of dimensionality D (wherein activity leads to movement 

generation) and a ‘null space’, of dimensionality M = P−D (wherein activity produces no 

output) (Rouse & Schieber 2015). 

Why this arrangement may exist is also an active question. One suggestion is simply that the 

null space acts as a repository for noise, allowing an ensemble of noisy neurons to encode 

their output more precisely in the active space, whilst their noise produces changes in the null 

space. A second possibility is that the null space permits preparatory activity to take place 

without producing movement (Churchland et al. 2010). A third possibility is that the null 

space permits more rapid adaptation of skills to new scenarios. There is evidence that 
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established patterns of activity take place within an ‘intrinsic manifold’ of the neural space—a 

‘preferred’ sub-space which is constrained by the existing neural circuitry (Sadtler et al. 

2014)—and that the null space (the ‘uncontrolled manifold’) allows for the exploration of 

new trajectories when adapting a previously learned skill for use in a new context (Kaufman 

et al. 2014). Fourth and finally, the null space and active space may not be fixed, and the brain 

may be able to switch between multiple simultaneous representations of movement depending 

on context (Rouse & Schieber 2015). 

Given that we have found that the dimensionality of LFP-based estimates is comparable to the 

dimensionality of our multiple single-unit recordings, it begs the question whether similar 

‘active’ and ‘null’ spaces may be a feature of the high-dimensional LFP space, as seems to be 

the case with the neural space. Interestingly, Flint and colleagues have recently shown that 

projections of LFP features into a subspace relevant to a BMI task are significantly more 

stable over time than are projections into a “task-null” space (Flint et al. 2016). Given that 

LFPs are, by their nature, generated by correlated ensembles of neurons, and ‘subspace’ 

theories of neural redundancy seem to rely on subtle variations in correlation between 

individual neurons, there would appear to be a contradiction here. It may be that, as proposed 

by Flint and colleagues, “the brain is capable of different levels of control on mesoscopic 

(LFPs) and single-neuron scales …” (Flint et al. 2016). More work is clearly needed in the 

future in this complex area. 

Thirdly, in this Chapter, we have shown that lf-LFP/SRSP-based models generalise 

reasonably well between different behavioural scenarios. We have also shown that our model 

works on both M1 and PMv neurons, on neurons with a wide range of firing rates, and on 

neurons whose activity is modulated to a greater or lesser extent by movement. 

These findings all bode well for the use of SRSP-based models in real-world BMIs. Models 

that are over-fitted to their specific training context generalise poorly to new scenarios. This is 

a very real concern in the field, given the current trend for simply trying to record more and 

more neurons in order to decode more kinematic parameters and control more DOFs. The 

‘curse of dimensionality’ (Bellman 1957) dictates that the amount of data required grows 

exponentially with the dimensionality, in order to avoid sparsity. Because correlated noise can 

lead to overfitting at the initial regression, it is not necessarily the case that endlessly 

increasing the number of recorded neurons in a biomimetic decoder will increase BMI 

performance (Rouse & Schieber 2015). 
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It may be that we should take a different approach. Unlike biomimetic decoding, the 

biofeedback learning problem is one that must be solved by the brain rather than the system 

engineer. Biofeedback control signals can be chosen based on their stability over time, or 

other desirable characteristics, rather than simply whether they can predict movement 

parameters in a training dataset. Therefore, we could choose to use a relatively small number 

of lf-LFP–based signals (such as estimated firing rates), on the basis of their stability and 

ability to generalise, and allow patients to learn how to use them, via biofeedback, to control a 

prosthetic which has relatively few DOFs, but is very reliable and predictable in its behaviour. 

We propose that such a neuroprosthetic might be life-changing for a paralysed patient, who 

might get more independence from being able to control the position of their own bed (very 

predictably, and at relatively low cost), for example, rather than being able to control a multi-

DOF robotic arm (which may not be very predictable, and may require recalibration every 

day). Likewise, the ability to infer firing rates from lf-LFPs is potentially applicable to any 

neuroprosthetic application requiring long-term monitoring of neural activity – not just motor 

BMIs. 

Critical to this vision, and finally for this Chapter, we have demonstrated realtime, closed-

loop control and operant conditioning of two neurons simultaneously, using biofeedback only 

of their estimated firing rates, derived solely from lf-LFP signals. The next step of 

demonstrating utility of these signals for BMIs, would be to show whether (or not) these 

realtime signals can truly transfer outside of the controlled experimental setup, into a more 

practical application, such as controlling a simple robotic effector, or even controlling 

electronic stimulation of the muscles or spinal cord, to ultimately enable re-animation of 

patients’ own limbs. 

4.5 Chapter summary 

• Low-frequency LFP-based (SRSP-based) models for estimating the firing rates of 

single neurons were stable over weeks to months. 

• LFP-based estimates captured around 25% of the variance of instantaneous firing rates 

and 75–85% of trial-averaged profiles, performing as well as the actual firing rates at 

reconstructing the task relationship of individual neurons on subsequent days. 

• The dimensionality of LFP-based firing rate estimates was comparable to the 

dimensionality of our multiple single-unit recordings. 
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• LFP-based firing rate models generalised reasonably well across different behavioural 

contingencies. 

• LFP-based firing rate estimates were sufficiently accurate and specific to permit 

operant conditioning of individual neuron firing rates using biofeedback based solely 

on lf-LFPs. 
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Chapter 5. Low-frequency cyclical cortical 

dynamics: exploring novel signals for BMIs 

In which I describe the presence of intrinsic cyclical dynamics in the primate motor cortex, 

the potential origin and significance of this dynamical activity, and the potential use of 

these cyclical dynamics for brain-machine interface devices. 

5.1 Introduction 

5.1.1 Motivation 

In previous chapters, I have already introduced the existing state-of-the-art BMI decoder 

system. To summarise, this is typically: 

A. Spike-based – This requires that consistent neuronal spiking can be recorded for the 

expected life-span of the implanted device.  

B. Biomimetic – This requires that recorded neural activity has a sufficiently naturalistic 

relationship to certain movement parameters that the device is intuitive to control. 

This is somewhat down to chance, especially when the input space (number of 

neurons) is so small, relative to the number of neurons involved in the generation of 

natural movement. 

C. Trained using labelled data – Training a ‘black-box’ to decode movement intention 

from neural activity requires a supervised machine-learning algorithm. That is to say, 

the training data-set needs to be ‘labelled’ with certain kinematic parameters, or task 

events, in order to extract the informative features from the neural data. This labelling 

is usually possible in experimental models, but in paralyzed patients, who may not be 

able to perform a task, this labelling can be extremely difficult. 

D. Unique (to a specific subset of recorded neurons and experimental scenario) – This, 

combined with the ‘black-box’ nature of most decoders, and their indifference to the 

underlying physiology of the cortex, means that a decoder model generated for one 

scenario is unlikely to generalise well to other scenarios. 
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So far, we have shown that lf-LFPs can be used to estimate firing rates, and that NHP subjects 

are able to control and condition these estimates in a biofeedback BMI. Many of the 

limitations caused by items ‘A’ and ‘B’ in the above list, can thus be addressed. By using 

lf-LFPs, we can propose a system in which a patient’s BMI decoder would need to be trained 

and calibrated only once (soon after implantation), rather than being recalibrated every day. 

Then, following a period in which the subject learns the biofeedback paradigm, control of the 

interface should be both intuitive and robust to neuron loss. However, estimation of firing 

rates using lf-LFPs is still dependent on the successful recording of spikes. It would be ideal 

to do-away with this step altogether: to remove the need for costly high-frequency recording, 

processing, and spike-sorting. 

Secondly, it would be ideal to address item ‘C’, by doing-away with using event-based 

labelling of training data. Firing rate estimation from lf-LFPs removes the necessity for 

kinematic labelling of data, but of course still requires labelled spike data, which come with 

the issues already discussed. Ideally, one could identify distinctive, physiologically-principled 

features from low-frequency activity in the cortex, which were consistently related to 

movement. Although these features might not be intuitive for the subject to control at first, 

they could be learned through biofeedback, assuming they provided salient feedback of 

movement-related neural activity and had good signal-to-noise ratio. Given that these low-

frequency features are likely generated by much larger volumes of cortex than spikes, there is 

also perhaps a greater likelihood that decoders based on such features would be stable over 

time, but also, have characteristics that would generalise between behavioural scenarios. 

In summary, an ‘ideal’ BMI would be based on robust and salient signals, that are easy to 

record and process (e.g. lf-LFPs) and ‘training’ the BMI decoder would be unsupervised (it 

would not require prior alignment to spike times or task events). As a fortunate by-product, 

such a device could also deal with three of the other bottlenecks of clinical device 

development: complexity, power consumption and size. Without the need to record or process 

spikes, the device could be based on much more simple electronics, and therefore have much 

lower power consumption and therefore longer battery life than current experimental devices. 

5.1.2 Multichannel lf-LFPs exhibit phase differences between channels 

In Chapter 3, we described the SRSP: essentially the spike-aligned lf-LFP. The SRSP has an 

underlying oscillatory structure, even if only for around one cycle (e.g. Figure 3-2b, page 39). 
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However, when looking across multiple LFP electrodes, it is clear that the phase of these 

oscillations varies across channels. Indeed, these phase-differences across channels are visible 

in the multichannel SRSP (e.g. Figure 3-7a, page 46). And without this phase difference, 

neither the identification of ‘sources’ within the lf-LFPs, nor the estimation of firing rates 

would be possible. 

However, this multichannel oscillatory structure is not a phenomenon that is only seen when 

LFPs are aligned to spikes. Indeed, if we look at the firing rate patterns during a period of the 

torque-tracking task (e.g. Figure 3-9a, page 50), we see that oscillatory patterns in the 1–3 Hz 

range appear to be a feature of motor cortical recordings. That is to say, the presence of 

oscillatory structure in the SRSP is not an ‘artefact’ of aligning LFPs to thousands of spikes, 

but rather, appears to reflect more a more general and ongoing property of the motor cortex 

during movement. 

We hypothesized that these oscillatory properties, visible in realtime recordings from subjects 

performing wrist-movement tasks, could be exploited in realtime, to develop a novel form of 

signal for BMI control. 

5.1.3 Wrist movements are correlated with realtime low-frequency cyclical 

activity in the lf-LFP 

A candidate for a useable signal—based on these low-frequency oscillations—was suggested 

by a separate, but simultaneous, series of experiments performed by me, Felipe de Carvalho 

and Andrew Jackson. The findings of these experiments are not presented as part of the 

results and conclusions of this thesis, because they were analysed and interpreted separately, 

primarily by Andrew Jackson. They are already available in published form (Hall, De 

Carvalho & Jackson 2014). Because this publication describes an essential step in our 

understanding of the lf-LFP, its relevant figures and findings are presented here, as part of the 

introduction to this Chapter. 
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Figure 5-1  Low-frequency LFP dynamics during isometric movements 
(a) Top: Position of cursor and target during one trial of the torque task. Middle: Radial cursor speed 

(arrows indicate submovements). Bottom: EMG from a wrist extensor muscle.	
(b) Low-pass filtered (< 5 Hz), mean-subtracted M1 LFPs. LFP traces are ordered and color-coded 

according to their phase relative to submovements.	
(c) Principal component decomposition of the M1 lf-LFPs.	
(d) Coherence between wrist muscles and cursor speed, with peak around 3 Hz. 
(e) Coherence between LFP-PCs and cursor speed.	
(f) LFP-PC trajectory for 2 s of the trial. Circles indicate times of submovements. 

— Figure adapted from Hall, De Carvalho and Jackson (2014) Neuron 83, Figures 1 & 2 (Cell Press). 
Figures originally produced by A. Jackson. 

In a centre-out task, we found that goal-directed isometric movements, rather than consisting 

of single, smooth trajectories, actually consisted of a series of submovements, occurring at a 

periodicity of ~2–3 per second. These were most clearly revealed when the radial speed of the 

cursor—the derivative of the distance from the origin (Figure 5-1a, top)—was plotted against 

time (Figure 5-1a, middle). As would be expected, the EMG activity (e.g. Figure 5-1a, 
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bottom) of multiple wrist muscles was also highly coherent with these wrist submovements 

(Figure 5-1d). 

More importantly, we saw clear periods of low-frequency (< 5 Hz) oscillatory activity in the 

lf-LFP that occurred during periods of movement (Figure 5-1b). These oscillations were 

closely synchronised to wrist submovements (coherent with cursor speed). However, very 

importantly, the phase of the these lf-LFP oscillations varied across cortical electrodes. 

The consistency of these oscillations, their phase relationships, and their correlation with 

submovement activity, were visualised by collapsing the multichannel lf-LFP space down into 

two components (PC1 and PC2) using principal component analysis. This revealed, even 

more clearly, that each cycle of the low-frequency cortical oscillation was associated with a 

submovement of the wrist, and that there was a consistent phase relationship across electrodes 

during these movement-associated oscillations – as illustrated by the consistent phase-

relationship of the principal components, with PC1 always leading PC2; Figure 5-1c). 

Correspondingly, LFP-PCs were highly coherent with the speed of the cursor (Figure 5-1e). 

Finally, the peak speed of the submovement consistently occurred at the same phase of each 

oscillatory cycle. This was most easily visualised in a state-space projection of PC1 vs. PC2 

(e.g. Figure 5-1f), where it can be seen that these oscillations traced cyclical (circular or 

elliptical) paths, with both a consistent phase relationship (consistent direction of state-space 

rotation; anticlockwise) and consistent phase when peak cursor speed occurred (π/2 radians, 

or ‘12 o-clock’, in this example). 

5.1.4 The importance of local lf-LFP sources and phase differences across 

electrodes 

Firstly, it is important to note that these findings are consistent with the findings of the 

previous chapters of this thesis. In fact, they suggest (although do not prove) that 

multichannel SRSPs show phase differences between electrodes because the underlying LFPs 

contain these phase differences (and they are not averaged out by spike-triggering because 

firing rates also have modulation at these frequencies). This re-enforces our case that the 

motor-cortical lf-LFP is generated by local cortical sources (thus multiple electrodes can 

capture different phases), and that these local lf-LFP sources are intimately related to (if not 

causal to) the generation of submovements. 
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LFPs in these low frequency ranges are most commonly associated with NREM (non-rapid 

eye movement, also known as ‘slow-wave’) sleep. In this type of deep sleep, large parts of the 

brain, including large areas of the cortex, exhibit synchronised low-frequency oscillations 

(Amzica and Steriade 1997). The function and origin of these oscillations is not known, but is 

assumed to be related to homeostatic and regenerative processes in the brain during sleep 

(Tononi & Cirelli 2014), or perhaps memory consolidation (Diekelmann et al 2012). 

Given this context, it is therefore very surprising and novel, firstly, to demonstrate evidence 

of local sources of lf-LFP activity in the motor cortex, which produce a specific lack of phase-

synchronisation across electrodes within a single cortical functional area; and secondly, to 

demonstrate functional lf-LFP activity that is clearly related to task-directed behaviour (rather 

than sleep, rest or inattention). 

We saw these movement-related low-frequency oscillations in all subject animals that we 

studied. Given their consistency, their movement-relation, their low-frequency nature and 

their apparently local (although as-yet mechanistically undefined) physiological origin in the 

motor cortex, we endeavoured to extract a movement-related signal from these multichannel 

oscillations which could be used for BMI control. 

5.1.5 Dynamical systems methods can be used to characterise these cyclical 

features 

The basis of our method for extracting a control signal was the projection of the multichannel 

LFP data into a two-dimensional state-space. Doing this, it became clear that faster 

submovements (those in which greater screen distance was covered by the cursor in unit time) 

were associated with ‘bigger’ rotations in the state-space projection. 

To quantify the ‘size’ of rotation, we used the parameter areal velocity, which is the unit of 

area swept out by the state-space ‘particle’, ϱ, about the origin, in unit time (expressed in S.I. 

units V2/s). 

This parameter is dependent on both the rotational ‘speed’ (angular velocity) of the rotation 

(which corresponds to frequency of the oscillation) and the ‘size’ (radius) of the rotation 

(which corresponds to amplitude of oscillation). Specifically, 
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 𝐚c(𝑡) = 5
&
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&, ( 5.2 ) 

  = 𝜋𝑓(𝑡)R𝐱c(𝑡)R
&, ( 5.3 ) 

 

Where aϱ(t) is the areal velocity, ω(t) is the scalar angular velocity, xϱ(t) is the 2-D vector 

position (radius) of the particle, ϱ, as a function of time, |xϱ(t)| is the magnitude of that vector 

(length of the radius), and f(t) is the frequency of the oscillation.  

As a note of interest to the reader: The concept of areal velocity is commonly used when 

analysing the orbit of planets around stars (and constancy of areal velocity around an elliptical 

orbit is known as Keppler’s second law). 

 

Figure 5-2  Areal velocity signals from low-dimensional LFP projections. 
(a) Example of top two lf-LFP principal components (LFP-PCs) as time-series waveforms. 
(b) The same data, plotted as a 2-D state-space plot, showing the trajectory of the imagined “particle”, ϱ, 

which is located at position/radius x(t) from the origin at time, t. All other variables can be calculated 
from this position, and the change in position, ẋ(t), to the next position (i.e. the velocity, v(t), of the 
particle at time, t). θ is the change in angle, from which can be calculated the angular velocity ω(t). The 
tangential velocity v⟂(t) is the projection of the velocity vector, ẋ(t) onto the basis vector that is 
perpendicular to the radius, x(t). 

Areal velocity is a convenient parameter because of its ease of calculation. It can be 

calculated directly as the area of the region (red triangle, Figure 5-2) bounded by the 2-D 

position vector at a given time-sample, xϱ(t), and the 2-D velocity vector at that sample, vϱ(t), 

where 

 𝐯c(𝑡) = 𝐱̇c(𝑡), ( 5.4 ) 

  = 𝐱c(𝑡 + 1) − 𝐱c(𝑡) ( 5.5 ) 
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In other words, the velocity function can simply be calculated as the derivative, ẋϱ(t), of the 

position function. The areal velocity function (red triangle) can then simply be calculated 

geometrically as the cross-product between the position and velocity vectors at a given time. 

That is to say, 

𝐚c(𝑡) =
𝐱c(𝑡) 	× 	 𝐱̇c(𝑡)

2 	, ( 5.6 ) 

 

where × denotes the vector cross-product. 

Strictly speaking, the cross-product is defined only in three-dimensional space, and its result 

is a vector which points in the direction orthogonal to both input vectors. In the case of our 

state-space data, the input vectors only have two dimensions (PC1 and PC2); thus the third 

input dimension is zero, and the areal velocity output vector points perpendicular to the plane 

of rotation (either ‘out of’ [positive] or ‘into’ [negative] the plane). Therefore, when we refer 

to the areal velocity, aϱ(t), we are actually referring to the (signed) scalar magnitude of the 

areal velocity, but this is implicit. 

5.1.6 The properties of these oscillations suggest that they reflect intrinsic 

dynamics of the motor cortex. 

As mentioned above, we found that faster wrist submovements were associated with ‘bigger’ 

rotations in state space. To now state this more precisely: we found that the areal velocity of 

the lf-LFP state space rotation in motor cortex was proportional to the speed of submovement 

at the wrist (Figure 5-3a,b,d,e). 
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Figure 5-3  Properties of low-frequency rotations with submovements of varying speed. 
(a) Average state space rotations (PC1 vs. PC2) of the lf-LFP space of Monkey D with submovements of 

varying speed. Submovements are classified into 9 categories according to cursor speed. (Colours as 
per panel b.) 

(b) Average areal velocity vs. average cursor speed for nine categories of submovement speed. Fitted line 
shows least-squares regression line and corresponding Pearson’s R value. 

(c) Same as b, but for average rotational frequency (proportional to angular velocity). 
(d–f) Same as a–c, but for an example session from Monkey R. 

— Figure adapted from Hall, De Carvalho and Jackson (2014) Neuron 83, Figure 2 (Cell Press) 
Figure produced originally by A. Jackson. 

Importantly, the angular velocity of lf-LFP state space rotations was relatively constant across 

this wide range of cursor speeds (Figure 5-3c,f), indicating that the frequency of oscillations 

remained relatively constant. Therefore, the increase in areal velocity associated with faster 

submovements was primarily mediated by an increase in the radius of rotation (amplitude of 

oscillation), rather than a change in angular velocity (frequency of oscillation). 

These findings suggest that the generation of these oscillatory features may be intrinsic to the 

physiology of the motor cortex. In other words, the hypothesis would be that there are some 

intrinsic constraints on the dynamics of the motor cortical networks, which impose a low-

frequency rhythmicity on the cortical LFP, and on the periodicity of submovements. 
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Figure 5-4  LFP dynamics during sleep: Submovement- and K complex-related activity share a common 
low-frequency phase structure. 
(a) Left: average cursor speed aligned to a peak speed of 2,063 submovements. Right: average surface-

referenced unfiltered LFP aligned to the peak of 197 K complexes. Data are from monkey D. 
(b) Average normalized firing rate of seven neurons in M1 (blue) and six neurons in PMv (red) relative to 

submovement (left) and K complex (right). 
(c) Average mean-subtracted lf-LFP from ten M1 electrodes relative to submovement (left) and K complex 

(right). Traces in both plots are colour-coded according to phase relative to submovements. 
(d) Average submovement-triggered (left) and K complex-triggered (right) lf-LFP-PC trajectories, plotted 

over 200 ms on either side of the trigger event (indicated by circles). All data are projected onto the PC 
axes determined from LFPs recorded during isometric task performance. 

(e) LFP phase relative to submovement (SM) phase plotted against LFP phase relative to K complex (KC) 
phase for each M1 electrode (unwrapped over two full cycles). Dashed lines indicate equality. Points 
are colour-coded according to LFP phase relative to submovements. 

(f) SM phase plotted against KC phase for all LFP recordings over 13 sessions in three monkeys. 

— Figure reproduced from Hall, De Carvalho and Jackson (2014) Neuron 83, Figure 4 (Cell Press). 
Figure produced originally by A. Jackson. 
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In support of this hypothesis, we also performed a series of experiments on the same subjects, 

with the same electrode arrays, whilst the animals were at rest in the training chair, after the 

task was finished. These data showed that the dynamical properties of the cortical lf-LFPs 

(frequency, and phase difference between channels) were constrained in a very similar way 

during sleep (aligned to the K complex) as during task performance (Figure 5-4). 

This provides strong evidence that these lf-LFP oscillations are not so-called ‘movement 

artefacts’—electrical artefacts correlated with movement, but caused by the physical 

movement of the body, head or recording equipment—since the animals were still during 

these periods, and yet the dynamics remained the same. Instead, these cyclical lf-LFP features 

appear to reflect a true physiological mechanism in the motor cortex. However, the identity 

and causality of this mechanism, or mechanisms, is not known, and will be discussed further 

in the Discussion section of this chapter. 

5.2 Aims 

Based on these previous findings, we wanted to see if the phenomenon of low-frequency 

cyclical oscillations in the motor cortex could be exploited for control of a BMI. Specifically, 

this Chapter has four main aims: 

Aim 1: Develop approaches for building a decoder that can best extract an AV signal, 

using unlabelled training data. 

Aim 2: Compare these approaches against one-another, and see how they compare to 

using more conventional signals, such as the power in a particular frequency band. 

Aim 3: Test the performance of such an approach in a BMI task. 

Aim 4: Use these data to test the hypothesis that these low-frequency dynamics are 

generated intrinsically to the cortex, as part of the movement-generation machinery, 

rather than being an artefact, or caused by some covariate. 
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5.3 Methods and Results 

5.3.1 Extracting dynamical features from multichannel lf-LFP —Motivation 

Having demonstrated the presence of cyclical dynamics, associated with movement, in the 

multichannel lf-LFP signal, and having identified the areal velocity (AV) as a meaningful 

parameter to quantify this signal, we were motivated to explore approaches for decoding this 

signal from the multichannel lf-LFP. We ideally wanted to do this using a fully-unsupervised 

approach: just using the available ‘signatures’ of movement, present in the lf-LFP, without 

needing to label specific task events. 

As already described, the signatures of movement that we were looking for in the lf-LFP, 

occurred as cyclical activity within the Q-dimensional (Q-D) lf-LFP space. However, to 

enable us to extract an AV signal, we needed to collapse this space down, by projecting the 

data on to a 2-D plane. The problem could therefore be reframed as one of dimensionality 

reduction, where the aim was to find those planes in the data which contained the most salient 

AV signals. 

The simplest approach to this problem is to use the first two principal component (PC) axes, 

to define the plane (PC1;PC2). However, whilst PCA aims to find those axes within the data 

that account for the highest variance, the plane (PC1;PC2), which accounts for the highest 

variance, does not necessarily contain cyclical dynamics. For example, if there is a large 

amount of zero-lag correlated signal (or noise) between LFP channels, the higher PCs are 

likely to reflect this correlation, whereas cyclical dynamics are dependent on phase-

differences (non-zero-lag correlation) between channels.  

We therefore used/developed two methods to extract AV signals from the higher-dimensional 

lf-LFP space. In both cases, we attempted to extract two (signed) scalar AV values from the 

data for further testing. 
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5.3.2 ‘jPCA’ approach 

5.3.2.1 Introduction and principles 

Our first approach was to use so-called ‘jPCA’, which is a variant of PCA developed by 

M Churchland and J P Cunningham in the lab of Krishnan Shenoy (Stanford, CA). (The ‘j’ in 

jPCA is arbitrary, but is thought to refer to one of the authors’ names.) 

This group observed that low-frequency cyclical dynamics (oscillations) are a common, if not 

ubiquitous, feature of locomotion-generation networks in animals. In their case, they were 

recording the firing rates of multiple neurons. Importantly, in more complex movements, such 

as the hand movements of primates, they still found these ‘quasi-oscillations’, but they were 

hidden (or ‘latent’), within the high-dimensional neural space. That is to say, when they 

studied the time-series of multi-cell firing rate recordings, they needed to re-project the 

population data into the appropriate plane, then the low-frequency oscillatory structure 

become obvious, in the form of circling or elliptical paths in a 2-D state space (Churchland, 

Cunningam et al. 2012). 

 

Figure 5-5  Oscillation of neural firing rates during three movement types. 
Three types of movement, in the leech, the locomoting monkey, and the reaching monkey (a–d), all reveal 

low-frequency oscillations in neural firing rates, and circular dynamics in 2-d projections of the neural 
population space (e–f). The 2-d projections shown here were generated using jPCA, which is one of the 
algorithms I go on to use in this thesis. 

— Figure reproduced from Churchland, Cunningham et al. (2012), Nature 487 (Nature Publishing Group) 
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The jPCA algorithm begins with a standard dimensionality-reduction, into (in their case) six 

axes, using conventional PCA. The algorithm then finds projections of this 6-D space that 

capture rotational structure in the data. The approach to doing this is based on linear 

dynamical systems theory. 

A time-invariant linear dynamical system is one in which the time-derivative (velocity) of the 

state-vector is a constant function of the state vector itself (radius). That is: 

𝐱̇(𝑡) = f(𝐱(𝑡)) , ( 5.7 ) 

 

where f is a linear function. 

This can be more concisely displayed in matrix notation, by representing the data as matrix X, 

where 𝐗 ∈ ℝn×3, L is the duration of the data (number of samples), and n = 6, the 

dimensionality of the data. Thus, 

𝐗̇ = 𝐌𝐗 ( 5.8 ) 

 

Where M is a square matrix of dimensions n × n, that transforms X to give Ẋ. 

Equation 5.8 is a general equation describing any linear dynamical system. Therefore, matrix 

M is a mixture of two components: a ‘symmetric’ component and a ‘skew-symmetric’ 

component. That is, 

𝐌 = 𝐌opqq +𝐌orst , ( 5.9 ) 

 

where the symmetric (‘even’) component, Msymm, has purely real eigenvalues (and thus 

describes expansion/contraction), and the skew-symmetric (‘odd’) component, Mskew, has 

purely imaginary eigenvalues (and thus describes rotation). 

jPCA looks for rotation in the data by using gradient descent optimisation to solve for M̂ (the 

hat modifier denoting an estimated variable), the least-squares solution to the problem of 

fitting a linear dynamical system to X. However, solutions to M̂ are constrained to be skew-

symmetric, and therefore are the solutions which best describe rotations in the data. 

Similar to traditional PCA, eigenvalue decomposition of matrix M̂ allows the calculation of a 

ranked set of orthonormal vectors, which can be used to re-project the original data, X, into 
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new axes. In the case of jPCA, the plane with the most rotational tendency, is that identified 

by the eigenvectors associated with the largest two (complex-conjugate) imaginary 

eigenvalues in M̂. Within a given jPCA plane, e.g. defined by (jPC1;jPC2), the direction of 

rotation is arbitrary, but is set by the algorithm to be anticlockwise (by convention). 

Henceforth, this process of finding the reprojection matrix for jPCA, based on a training 

dataset, will be referred to as training a ‘jPCA decoder’. It is important to note, that the 

anticlockwise convention is set at the time of training the jPCA decoder. This means that, 

when using a decoder on test data, any activity in which jPC1 precedes jPC2 will produce 

anticlockwise rotation. However, clockwise rotation is possible, if the test data contains 

periods where activity in jPC2 precedes jPC1. Anticlockwise rotation is not a constraint of 

jPCA per se, merely a convention. Following the same convention, anticlockwise rotation in 

the plane (jPC1;jPC2) will produce positive values of areal velocity (vector a(t) pointing out 

of the plane), whereas clockwise rotation in that plane will produce negative values of areal 

velocity (vector a(t) pointing into the plane). 

5.3.2.2 Implementation of the jPCA-based approach 

To implement jPCA on our lf-LFP data, we used the MATLAB code package available online 

from Churchland and colleagues (at http://churchlandlab.neuroscience.columbia.edu/ code/

jPCA_ForDistribution.zip), and adapted it for our specific use-case. 

In the prototypical experiment, we were using 24 lf-LFP signals (Q = 24). Prior to performing 

jPCA, we performed mean-subtraction; meaning that we subtracted the mean (across Q LFPs) 

lf-LFP signal from each of the individual lf-LFP signals (at each time-point). This is 

equivalent to re-referencing the data to a theoretical ‘average’ local reference. 

For each experiment, we required up to two areal velocity (AV) signals—each AV signal 

requiring a 2-D plane—and we therefore needed four jPC axes (jPC1–4). For dimensionality 

reduction, we therefore used the first 12 principal components from the original lf-LFP space 

(usually 24 dimensions/electrodes), to generate six jPC planes, from which we used the top 

two: (jPC1;jPC2) and (jPC3;jPC4). 

This jPCA decoder algorithm produced the orthonormal vector set to calculate these planes, 

which we referred to as the projection matrix, J. This projection matrix was saved, and used 

to reproject test data into the two jPC planes. An areal velocity signal could then be calculated 
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from each plane by calculating the cross-product between the 2-D signal in that plane, and its 

own cross-product, as per Equation 5.6, to produce two AV values (known as AV1 and AV2) 

5.3.3 ‘Areal velocity component’ (AVC)-based approach 

5.3.3.1 Limitations of the jPCA approach 

Whilst jPCA is theoretically a good way to find AV signals in the lf-LFP space, it has a 

number of mathematical constraints, with potentially undesirable outcomes. 

Firstly, when going from Q-D to 2-D, jPCA may collapse informative patterns in the data into 

a single plane. This is best illustrated with a schematic figure: 

 

Figure 5-6  Illustration showing the potential problems of using jPCA to find the best planes in multi-
dimensional neural data 
The figure shows a schematic of a hypothetical dataset in panel (b), displayed in three dimensions 

(PC1;PC2;PC3). This represents a single cloud of data, but, for illustrative purposes, we actually have a 
priori knowledge that there are two sources producing latent rotational patterns within those data. In (a) 
and (c) are shown projections of that same data onto the planes (PC1;PC2) and (PC2;PC3), 
respectively. Very similar anti-clockwise rotation is seen in (a), but the projection in (c) shows that a 
variation in the axis of rotation in (b) can produce rotations of the opposite direction (hence AV values 
of opposite polarity). 

In Figure 5-6b, we display a theoretical single cloud of data, where we know a priori that 

there are two underlying sources producing latent rotational patterns (red and blue) within 

those data. The dominant pattern of activity is rotation in plane (PC1;PC2) (view in Figure 

5-6a). jPCA would allocate very similar axes to the first jPC plane, (jPC1;jPC2). Essentially, 

the vast majority of the rotation would be collapsed into the first jPC plane. 

Unfortunately, both rotations look very similar in this plane, and this is therefore not very 

informative for separating the activity of the two underlying sources. A highly informative 

plane is actually (PC2;PC3) (the view in Figure 5-6c), because in that plane, the two sources 
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rotate in the opposite direction, and would therefore produce AVs with opposite polarity. 

However, because of the constraints of jPCA, the second jPC plane, (jPC3;jPC4) is unlikely 

to reveal this counter-rotational activity: firstly, because there is no consistent direction of 

rotation; and secondly, because the first n jPCs form an orthonormal basis which spans the 

same space as the first n PCs, and the second jPC plane, (jPC3;jPC4), is already constrained 

by the choice of the first plane, (jPC1;jPC2), and is therefore very unlikely to capture the 

information seen in (PC2;PC3). 

In fact, a valid criticism of jPCA is that, essentially, sources are best separated into planes 

according to their frequency. This is because the imaginary eigenvalues of Mskew are 

fundamentally related to the frequency of rotation of the dynamical system that M describes. 

As a result, if two sources in the lf-LFP data have the same frequency, then they are very 

likely to be collapsed into a single jPC plane, rather than being separated. 

Results of the work from our lab already mentioned (Hall, De Carvalho, Jackson 2014) also 

supported our concerns that these constraints of jPCA may lead to dimensionality reduction 

on the multichannel lf-LFP in such a way that we would lose salient information. 

 

Figure 5-7  Relationship between LFP-PCs and movement direction in three dimensions. 
(a) Average 2D LFP-PC trajectories for submovements, binned and color-coded according to the direction 

of cursor movement. Arrows in the inset indicate the centre-out direction of movement for each bin. 
(b) Average LFP-PC trajectories in the plane of PC2 and PC3. The trajectories revolve around slightly 

different angular velocity vectors, indicated by arrows. 

— Figure adapted from Hall, De Carvalho and Jackson (2014) Neuron, Figure 2 (Cell Press). 
Figure produced originally by A. Jackson. 

When Monkey D performed the isometric wrist force task, we observed that all directions of 

movement produced similar state-space rotations, with similar frequencies, when viewed in 

the first PC plane (PC1;PC2) (Figure 5-7a). However, when viewed in the plane (PC2;PC3) 
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it was clear that the axis of rotation of the activity was different for each of the different 

directions of movement (Figure 5-7b). This suggested that there may be more information 

about movement kinematics available from the high-dimensional lf-LFP space, than simply 

the speed of movement. Using jPCA would likely impose dimensionality reduction that 

would collapse all of these rotations into a single plane, and capture little of the difference 

between them. We therefore decided to develop a method to try and capture a richer sample 

of the AV signals contained within the lf-LFP data. 

5.3.3.2 Areal velocity component (AVC) principles 

We developed an alternative approach to extracting areal velocity from high-dimensional 

lf-LFP data, which did not require the definition or detection of specific 2-D planes within the 

data. Instead, we widened the search for salient AV signals by looking across all possible 

‘areal velocity components’ within the data. 

The concept of an areal velocity component (AVC) is not intuitive and requires some 

explanation. As inferred already in Section 5.1.5, the areal velocity can be thought of in 

geometric terms as the cross-product between two vectors in three-dimensional coordinates. 

For example, the two vectors, u and v, can each be defined as the sum of three orthogonal 

components parallel to the three standard basis vectors (i, j and k). 

𝐮 = 𝑢5𝐢 + 𝑢&𝐣 + 𝑢x𝐤 

𝐯 = 𝑣5𝐢 + 𝑣&𝐣 + 𝑣x𝐤 
( 5.10 ) 

 

Where u and v indicate scalar components (coefficients), by which the basis vectors are 

multiplied. 

The cross-product, s, of u and v can then be shown to be equal to, 

𝐬 = 𝐮	 × 	𝐯 = (𝑢&𝑣x − 𝑢x𝑣&)𝐢 + (𝑢x𝑣5 − 𝑢5𝑣x)𝐣 + (𝑢5𝑣& − 𝑢&𝑣5)𝐤 ( 5.11 ) 

 

where × indicates the cross-product. 

This means that the resulting vector, 𝐬 = 𝑠5𝐢 + 𝑠&𝐣 + 𝑠x𝐤, actually has three scalar 

components: 
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𝑠5 = 𝑢&𝑣x − 𝑢x𝑣& 

𝑠& = 𝑢x𝑣5 − 𝑢5𝑣x 

𝑠x = 𝑢5𝑣& − 𝑢&𝑣5 

( 5.12 ) 

 

Translating this to the situation in hand: areal velocity, a, is equal to the cross-product of the 

position vector, x, and the associated velocity vector, ẋ. (Strictly it is equal to half of this 

cross product, but the factor of ½ is ignored to simplify the current explanation.) We can see 

that the areal velocity (in three dimensions) can be defined by three scalar components: 

𝑎5 = 𝑥&𝑥̇x − 𝑥x𝑥̇& 

𝑎& = 𝑥x𝑥̇5 − 𝑥5𝑥̇x 

𝑎x = 𝑥5𝑥̇& − 𝑥&𝑥̇5 

( 5.13 ) 

 

One can refer to each of these scalar components as an ‘areal velocity component’. Strictly 

speaking, the cross-product is only defined for three dimensions. However, for the purposes of 

this methodology, we extended the concept of the areal velocity component (AVC) to higher 

dimensions. In a space higher than three dimensions, we defined the AVC as the relationship 

between any given pair of signals, and the derivative of those same two signals, such that, 

𝑎′3 = 𝑥1𝑥̇} − 𝑥1𝑥̇} ( 5.14 ) 

 

where a′n is the areal velocity component (AVC), and i and j are indices of signals from 1 to 

N, where N is the dimensionality of the signal space, and i < j. 

One can see from Equation 5.14, that for every pair of signals in the data, we can calculate an 

AVC. Hence, when calculating AVCs, we actually expand the dimensionality of the data; 

going from a N-dimensional input space (Figure 5-8a), to a ½N(N − 1) dimensional AVC 

space (Figure 5-8c). This gives us a much richer representation of all the possible areal 

velocity features within the data than we get by using orthogonal axes (like with PCA or 

jPCA). Once we have this rich AVC feature set, we can then generate two AV signals for 

future use by performing dimensionality reduction (Figure 5-8d) on the AVC space (rather 

than on the original data), in order to find the dominant features. 
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Figure 5-8  Illustration of the steps involved in the ‘AVC’-based method of dimensionality reduction and AV 
signal calculation. 
(a) Selection of input signals (in our implementation, these were the PCs of lf-LFPs) 
(b) Calculation of areal velocity components using the equation given, for i = 1…N, for j = 1…N, but 

where i < j. 
(c) This dimensionality expansion produces ½N(N − 1) AVCs. 
(d) Dimensionality reduction, e.g. through PCA. 
(e) The top two ranked signals from the dimensionality reduction can be used as AV signals (1 and 2) in 

later experiments. 

Although this AVC-based approach has the advantage of using a richer and less-restrictive 

feature set than with PCA or jPCA, it does have the distinct disadvantage that AVCs (and thus 

the two final AV signals generated) are not representative of actual planes within the data, and 

therefore they cannot so easily be used to make inferences about the underlying physiology 

that is generating the signals. The importance of this will become clear in a later section. 

5.3.3.3 Implementation of the AVC-based approach 

In the prototypical experiment, we were using 24 lf-LFP signals (Q = 24). Like with jPCA, 

our first step was to perform mean-subtraction of the lf-LFPs; meaning that we subtracted the 

mean (across Q LFPs) lf-LFP signal from each of the individual lf-LFP signals (at each time-

point). Like with jPCA, we next performed PCA on the Q-dimensional lf-LFP space, y(t), to 

produce the Q-dimensional LFP-PC space. Like with jPCA, we took the 12 top-ranked PCs, 

here called z(t), as the input data for our AVC algorithm. 

We calculated AVCs from the PCs, as per Equation 5.14 (with principle components, z(t), and 

their derivatives, żn(t), used as input signals, and N = 12) to produce the 66-dimensional AVC 

space. It is important to note that, like a principal component, each AVC is still a function of 

time in the recording, so each AVC is a time series, a′n(t). In other words, we expanded the 
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12-dimensional z(t) vector to produce the 66-dimensional a′(t) vector. AVCs were then each 

normalised to unity variance. 

For each experiment, we required up to two areal velocity (AV) signals. To recover these 

from the high-dimensional AVC space, we carried out dimensionality reduction using 

exploratory factor analysis (EFA; using function factoran.m from the Statistics and Machine 

Learning Toolbox in MATLAB). We used EFA rather than PCA, for largely notional reasons: 

that EFA is theoretically better suited to exploratory analysis for underlying/latent variables. 

However, we also tested PCA, and the results were so similar that the difference between 

EFA and PCA can largely be ignored here. 

The first two ‘factor scores’ (predictions of common factors from EFA) were used as the two 

areal velocity signals (AV1 and AV2) for later experiments. 

We used the loadings from factor analysis to calculate the 12-by-2 matrix, K, which contained 

the values necessary to calculate AV1 and AV2 directly from principle components, zn(t), and 

their derivatives, żn(t). This was saved for use in future experiments. 

5.3.4 Comparing the performance of AV-based approaches to conventional 

methods.  

Using either of our two AV-based methods—jPCA-based or AVC-based—we were able to 

extract two scalar waveform signals (AV1 and AV2) from the Q-dimensional lf-LFP data. We 

hypothesised that these signals would provide a reliable method of feature-extraction of 

movement-related signals from motor cortical LFPs, and that these may be useful signals for a 

future BMI. We therefore wanted to quantify this performance in comparison to other, 

conventional and established methods of feature extraction from LFPs. 

Because they were derived based on underlying knowledge of cortical physiology (the 

presence of low-frequency cortical LFP dynamics) we believed that our AV-based methods 

would perform better than other, conventional methods of feature extraction from LFPs. To 

test this, we developed an experiment to compare these different feature-extraction 

techniques. 

To make the comparison as simple as possible, we decided to use binary classification as our 

test of performance. Therefore, we recorded neural signals from both cortical hemispheres of 
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a monkey, and recorded movements in both forelimbs. We then tested how well each of our 

signal extraction methods, based only on the cortical recordings, could correctly classify trials 

into left-handed or right-handed movements. 

To the reader, this may seem like a trivial task. Left-handed movement would usually be 

associated with robust activity in the right M1 (and right-hand with left M1), due to the 

pyramidal decussation of the corticospinal tracts. However, these experiments were 

performed in an animal (Monkey S) whose right hemisphere electrodes had been implanted 

for over 15 months (475 days). Therefore, the amplitude and signal-to-noise ratio (SNR) of 

the LFP signals was not as large as in data presented in previous chapters. 

We chose to perform this experiment in this subject, because it gave us an opportunity to test 

the performance of AV-based signals in chronically-implanted arrays, where conventional 

methods typically perform badly, due to the poor quality of recording. Whilst not a perfect 

analogy, this can be thought of as similar to an array chronically implanted in a patient, where 

the quality of signals is too poor to use for BMI control. The choice of such a simple bimanual 

task was partly a pragmatic one: that training a monkey to perform a bimanual task was 

extremely challenging; her having previously only performed unimanual tasks. 

We hypothesised that our AV-based methods may still allow us to extract useful information, 

and categorise the movement correctly, even after conventional methods failed. 
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5.3.4.1 Experimental setup: task and recording 

 

Figure 5-9  Bimanual wrist-torque task 
2-D cursor position was controlled by wrist torque from both wrists. The origin (home target) was at the 

top in the centre of the screen. Left wrist, y-axis torque (rotating and/or pushing downward) produced 
movement on the screen axis x′ (down-and-left). Right wrist, y-axis torque produced movement on the 
screen axis y′ (down-and-right). 

Task: bimanual wrist-torque task 

The task had broadly the same apparatus and setup as the unimanual, 2-D torque task 

introduced in Section 2.1.2, and the monkey’s aim was the same: to move from a home target, 

to acquire peripheral targets. However, monkeys controlled a task in which 2-D cursor 

position was controlled by torque from both wrists. Subjects therefore had both of their hands 

in torque manipulanda. We recorded the y-axis torque (Ty), which represents a moment acting 

downwards (into the manipulandum) with a pivot at the wrist.  

The two axes of cursor movement on the screen were not parallel to the screen borders, but 

rather were rotated by 45-degrees. These rotated axes were are referred to as (x′ , y′), as per 

Figure 5-9, and were controlled by the y-axis torque from the left wrist (Tyleft) and right wrist 

(Tyright), respectively. The home target (relaxation) was at the centre-top of the screen, and 

monkeys had to acquire targets in nine different positions, at three different distances (see 

Figure 5-9), presented in pseudo-random order. To acquire the central three peripheral 



 120 

targets, monkeys had to combine force from both wrists. However, for the purposes of the 

analysis presented here, data from the trials of the centre (bimanual) targets were ignored. 

Electrophysiological recording 

Electrophysiological activity was recorded in the same way as documented in Section 2.4.1, 

from 12 tungsten microwire electrodes implanted in each primary motor cortex in Monkey S, 

using the TDT system. For this experiment, signals were low-pass filtered at 200 Hz and 

down-sampled and stored at 488 Hz. 

In each hemisphere, there were two damaged electrodes (evident from extremely noisy 

signals) with unusable signals, and these channels were therefore rejected from further 

analysis, leaving us with a total of 20 LFP waveforms, 10 per hemisphere. 

5.3.4.2 Methods for extracting signals from multichannel lf-LFP 

Conventional methods 

The key question we wanted to answer was whether using an AV-based approach would out-

perform a conventional and simple method of decoding LFP activity: using the power in a 

particular LFP band. 

We therefore bandpass filtered the LFP signals offline using 5th-order Butterworth filters 

(sequential high-pass then low-pass), into three frequency categories: 

i) The lf-LFP (< 5 Hz), as previously (no offline high-pass); 

ii) beta band (16–30 Hz); 

iii) low-gamma band (30–60 Hz) 

iv) high-gamma band (60–200 Hz). 

We quantified power using the root mean square (RMS) method. That is, using the square 

root of the arithmetic mean of the squares of the values in the waveform under study. To do 

this, continuous bandpass-filtered LFP signals were squared. The mean and square-root were 

then performed later on windowed chunks of data, as later described in Section 5.3.4.4 (‘ROC 

quantification of neural-derived signals’, page 125). 
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AV-based methods 

We compared this conventional signal-extraction method (band power) to our AV-based 

methods. We implemented the jPCA-based method as per Section 5.3.2.2 and the AVC-based 

method as per Section 5.3.3.3. However, we analysed hemispheres separately, and only 

extracted a single AV signal from each hemisphere (e.g. AV1 from right M1; AV2 from left 

M1). Furthermore, there were two damaged electrodes in each hemisphere, we were able to 

use a maximum of ten LFPs (Q = 10) as input signals. To decide on the size of the principal 

component subspace used for subsequent jPCA/AVC analysis, we calculated the rank of the 

mean-subtracted lf-LFP matrix (using the built-in function rank.m in MATLAB), which 

provided an estimate of the number of linearly-independent signals. 

5.3.4.3 Results: Extracting areal velocity-based signals from data from the bimanual 

wrist-torque task 

Analysing periods of the bimanual torque task offline, we found that our AV-based methods 

successfully found periods of activity demonstrating cyclical dynamics, as evidenced by clear 

peaks in the AV signal, typically associated with the peak movement (torque) velocity in the 

contralateral wrist. For example, right hand movement (Figure 5-10b, red) was associated 

with robust lf-LFP activity in the contralateral M1 (Figure 5-10c, red). A jPCA-based feature 

extraction on these data was able to find a plane which successfully captured cyclical 

dynamics at this time (essentially due to the phase structure present in the lf-LFP data), and 

calculation of the areal velocity from this jPC plane produced a robust AV signal (Figure 

5-10c, “AV2”, red). 

Moreover, in the contralateral side (blue in all panels), the M1 LFP signals were highly 

attenuated, due to the age of the implant (likely because of insulation damage, as well as 

gliosis around the recording tip). Even so, a jPCA-based approach was still able to extract a 

robust AV signal. This was because there was still cyclical dynamical activity present in the 

multichannel lf-LFP (i.e. phase structure was preserved), even though the amplitude of the 

signals was very small. 
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Figure 5-10  Example section of data from the bimanual wrist-torque task 
(a) Illustration of the three targets acquired during this period of the task 
(b) Traces of y-axis wrist torque from both wrists. Bars above show period during which target was on-

screen. Torque is expressed in terms of the biofeedback signal given to the subject: percentage of the 
screen traversed by the cursor. 

(c) Mean-subtracted lf-LFP signals from M1 in both hemispheres. At this time, the array in the right 
hemisphere had been implanted for 475 days (15½ months), and the array in the left hemisphere for 174 
days (5½ months). Hence why the signals from the right M1 appear so attenuated. (Boxes [1] and [2], 
please refer to main text). 

(d) Areal velocity signals (calculated using the jPCA-based method on all 10 signals in each hemisphere), 
demonstrating the size of signals that could be extracted from each hemisphere, their high correlation 
with periods of movement, and their relative insensitivity to LFP activity un-related to movement (such 
as that associated with taking the reward, and chewing, between trials). 

Finally, and perhaps most importantly, the AV signals were clearly highly selectively 

associated with periods of limb movement (e.g. Figure 5-10c, Box 1) on, whereas other 

periods of moderate amplitude lf-LFP signal (perhaps associated with chewing, or other body 

movement, e.g. Figure 5-10c, Box 2) did not have the appropriate phase structure to generate 

an AV signal. We believed that this feature of AV-based feature extraction, in particular, 

would allow us to extract signals from LFPs better than conventional power-based methods; 

particularly when LFP recording quality has deteriorated. 
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5.3.4.4 Quantifying classification performance of signals: Receiver-operating 

characteristic (ROC) analysis 

To quantify the performance of a particular signal in the task of binary classification, we used 

the receiver-operating characteristic (ROC) curve. This is a method which illustrates the 

performance of a binary classifier as the discrimination threshold is varied, by plotting the 

false-positive rate (FPR) against the true-positive rate (TPR). 

Worked example using torque signals 

 

Figure 5-11  Illustration of receiver-operating characteristics (ROC) analysis using wrist torque 
(a) Actual left-hand torque (Tyleft) generated to acquire left-side targets. Trace represents a mean, aligned 

to end of the successful hold period, of all trials with a left-side target (i.e. all three of the pure x′ axis 
targets) ± s.e.m (n = 134 trials). Torque is expressed in terms of screen cursor position (maximum 
100%). 

(b) Actual left-hand torque (Tyleft) generated to acquire right-side targets (n = 134 trials). 
(c) Receiver-operating characteristic (ROC) curve for the performance of left-hand torque for classifying 

left- vs. right-sided targets. For this, a single metric for each signal/trial was used, of mean torque 
during the hold period. 

(d) Right-hand torque (Tyright) for left-side targets. 
(e) Right-hand torque (Tyright) for right-side targets. 
(f) ROC curve for right-hand torque, classifying left- vs. right-sided targets. 
D is the ROC discrimination index; 𝐷 = 2(𝐴𝑈𝐶 − 0.5), where AUC is area under the curve. 

As a simple but useful worked example of the method, Figure 5-11a–c shows the binary 

classifier performance of the torque from the left wrist (from the same example session shown 
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in Figure 5-10) in classifying whether the original target was left-sided or right sided. In 

theory, this signal should have perfect performance, because the amplitude of left-wrist torque 

for left-sided targets should always be bigger than for right-sided targets, (because the left 

wrist only needs to move for left-sided targets). However, we can see from Figure 5-11b that 

the subject does sometimes move the left wrist a small amount for the right target, and this is 

tolerated because of the diameter of cursor/target, and overlap required by the task. 

ROC analysis essentially says: for a given amplitude of response (amplitude of left-hand 

torque, measured as the mean during the hold period), what is the likelihood of a true positive 

classification (correctly classifying as a left-side target) and what is the likelihood of a false 

positive allocation (incorrectly classifying as a right-side target)? To express this slightly 

differently: if we set a threshold value of left-hand torque amplitude, and take all trials where 

left-hand torque amplitude was above that threshold, and call these ‘classified as left’, what 

proportion of those trials were actually left-side trials (this is the TPR), and what proportion 

were actually right-side trials (this is the FPR). Therefore, although Figure 5-11a,b,d,e show 

mean torque traces, ROC actually tests classification on a trial-by-trial basis. 

Figure 5-11c shows the ROC curve for left-hand torque amplitude. A perfect classifier would 

immediately have a point at the top left of the axes, because even with the lowest amplitude 

threshold, all left-hand movements above this threshold would be for left-hand targets (FPR = 

0; TPR = 1). However, we can see that even the torque is not a perfect classifier. There are 

some trials where left-hand movement is associated with right-side targets. But once the 

amplitude threshold is high enough, all left-hand torques above that amplitude are associated 

with left-side targets. 

The shape of the ROC curve is difficult to summarise in a single metric, but can be 

satisfactorily achieved using the ‘discrimination index’, D, where, 

𝐷 = 2(𝐴𝑈𝐶 − 0.5) ( 5.15 ) 

 

and AUC is area under the ROC curve. A perfect discrimination index is D = 1, and chance 

discrimination is D = 0. In our example, left-hand torque has a virtually perfect discrimination 

index of D = 1.0. The same pattern of results can be seen with torque from the right wrist, in 

(Figure 5-11d–f). 
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ROC quantification of neural-derived signals 

We used the same methods to quantify the performance of our various neural-derived signals. 

Data were trial-aligned to the end of the successful hold period, as above. 

To give a single metric of ‘signal strength’ for each of the AV signals, for each trial, we used 

the mean* amplitude of AV over an analysis window from −1.2 s to −0.4 s, relative to the end 

of the hold period. This early analysis window (relative to the hold period) was chosen 

because AV signal amplitude peaked during the period of highest speed of movement (as 

discussed previously), and subsided rapidly soon after the onset of the hold period. 

To give a single metric of ‘signal strength’ for each of the power bands, for each trial, we 

used the mean RMS power across the 10 LFPs during over an analysis window from −0.8 s to 

0 s relative to the end of the hold period (which corresponded to when the power signal was 

largest). RMS power for each LFP was calculated by taking the mean, over the analysis 

window, of the squared-LFP signal, then taking the square root of this mean, to give a single 

RMS value for each LFP. The mean RMS power value was then taken across the 10 LFPs to 

give a single metric (per hemisphere) per trial. 

It is worth noting, that the laterality labels are of course reversed for neural data, because 

generally, left-sided movement is associated with right-hemispheric motor cortical activity. In 

the following section, this logical reversal is already accounted for, and labelled appropriately 

in the figures. 

                                                
* Note: Mean across time, not across trials. Here we are calculating a metric to represent a particular trial for 
ROC analysis. 
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5.3.4.5 Results: Example ROC analysis for AV-based data from a single session 

 

Figure 5-12 Example ROC analysis of AV-based signals generated using the jPCA-based method 
(a) Actual right M1 signal (AV1) generated when subject acquired left-side targets. Trace represents a 

mean of all trials with a left-side target ± s.e.m. (n = 134 trials). AV1 calculated from 10 right M1 lf-
LFPs using jPCA-based method. 

(b) Actual right M1 signal (AV1) generated to acquire right-side targets (n = 134 trials). 
(c) Receiver-operating characteristic (ROC) curve for the performance of signal AV1 for classifying left vs. 

right-sided targets. 
(d–f) Same as a–c, but for AV2 signal. AV2 calculated from 10 left M1 lf-LFPs using jPCA-based method. 

The jPCA-based analysis (as shown in the example above, Figure 5-12; same session as in 

Figure 5-10) produced signals which were relatively selective for unilateral movements 

although—it almost goes without saying—not as selective as the torque signals themselves 

(Figure 5-11). The discrimination indices (D) were 0.5 and 0.8, for the right M1 and left M1 

signals, respectively. 

5.3.4.6 Comparison of areal velocity-based feature-extraction techniques to conventional, 

power-based techniques using ROC analysis  

The AV signal represents a metric, derived a priori from the LFP data, which retrospectively 

can be seen to be informative about the movement of the subject. That is to say, the AV is 

derived in a totally unsupervised way from the LFP data, without a labelled ‘training set’. The 
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ROC is then a measure of the fully unsupervised decoding ability of the AV signal to 

categorise bimanual movements. 

We wanted to compare the unsupervised decoding performance of AV-based methods to 

conventional LFP signals, and we chose to use the mean LFP power as a comparable a priori 

metric on which we could test unsupervised decoding performance. Of particular interest was 

whether AV-based methods would outperform power-based methods given a restricted 

number of LFP signals. 

To test this, we took a number, Q, of LFPs from a hemisphere, and performed ROC analysis 

on the metrics of the six different signal types already mentioned (jPCA-based AV, AVC-

based AV, delta band power, beta band power, low-gamma band power and high-gamma 

band power). 

Specifically, we calculated the signal strength metric and performed ROC analysis, for 50 

random draws of Q LFPs from the 10 LFPs in each hemisphere, for each of the six signal 

types. For power-based metrics, the number of LFPs, Q, ranged from 1 to 10 in each 

hemisphere. For the jPCA-based signal, an even number of LFP-PCs was required for each 

AV signal. We used the even number of LFP-PCs less than or equal to the rank of the LFP-

PC matrix. Therefore, a minimum value of Q = 3 LFPs was required for this analysis. For the 

AVC-based AV metric, we also used a minimum of Q = 3 lf-LFPs (and then 3 LFP-PCs). 

The result of ROC analysis, for each signal and for each Q, was summarised as the mean 

discrimination index, D, across the 50 random LFP permutations. 
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5.3.4.7 Results: Comparison of areal velocity-based feature-extraction techniques to 

conventional, power-based techniques using ROC analysis 

 

Figure 5-13  ROC analysis comparing performance of different feature-extraction techniques, with 
increasing numbers of LFPs 
(a) Mean D (ROC discrimination index) values ± s.e.m. (across 50 random draws) for each of the six 

signal types used, with increasing numbers of LFPs from the right M1. Negative D values indicate 
consistent (non-random) categorisation in the wrong direction. BP, band power. 

(b) Same as a, but for signals from the left M1. 

When using signals being recorded from a relatively recently-implanted (5½ month-old) array 

(left M1), we found that mean RMS delta band and high-gamma band power were signal 

features that performed reasonably well at binary classification in our bimanual task (Figure 

5-13b; delta band, orange, mean D (10 LFPs) = 0.75; high gamma-band, cyan, mean D (10 

LFPs) = 0.61. In fact, these signal-types performed well, even when a single LFP was used. 

The beta-band also performed well at classification (Figure 5-13b; purple, mean D (10 LFPs) 

= −0.59, but classified signals in the opposite direction from the other power bands. This is 

not surprising, because it is known that the movement-phase of directed forelimb activity is 

associated with beta-band desynchronization, and reduced power (Baker et al. 2000). It is not 

clear why the low-gamma band also did this, but this may be due to overlap with the beta 

band at the lower limit of the range. 

Importantly, both of the AV-based feature extraction methods (jPCA-based and AV-based) 

outperformed the conventional power-based methods, when 6 or more LFP signals were 

available. The AVC-based method out-performed all other methods, including the jPCA-

based method (Figure 5-13b; AVC-method, green, mean D (10 LFPs) = 0.87; jPCA-method, 

red, mean D (10 LFPs) = 0.83). 
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A more interesting result was seen in the right hemisphere. The right M1 array had been 

implanted for over 15 months at the time of these recordings. As a result, the signal 

amplitudes, and more importantly, the signal-to-noise ratios were very low. Therefore, 

conventional, power-based feature extraction methods actually performed very poorly, even 

on this simple binary movement classification task (Figure 5-13a; all have D < 0.3). 

However, AV-based methods both performed well, with AVC-based feature extraction 

performing surprisingly well given enough LFP inputs (Figure 5-13a; AVC-method, mean D 

(10 LFPs) = 0.65; jPCA-method, mean D (10 LFPs) = 0.46). 

In summary, we found that AV-based metrics can outperform power-based metrics for the 

unsupervised decoding of bimanual movement, particularly when signal quality is poor. This 

suggests that the AV-based approach is able to extract a metric from unlabelled multichannel 

LFP which is not captured by the power of the LFPs. This is likely because AV-based 

methods allow principled identification of phase information and, specifically, progression of 

phase across channels, even if amplitude (and therefore power) is very small. 

5.3.5 Using areal velocity signals for biofeedback BMI control and exploring 

the underlying physiology of low-frequency cortical dynamics 

5.3.5.1 Introduction, hypothesis and predictions 

Our next aim was to investigate whether monkeys could use and modulate AV-based signals 

to control a biofeedback BMI task. More importantly, we wanted to see how they did this. 
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Figure 5-14  Simple schematic of state space parameters 
ϱ, particle moving in state space; x, radius vector; v, velocity vector; ω, represents angular velocity; red 

triangle, represents areal velocity. 

As already mentioned, there are two ways in which the areal velocity (size of the red triangle) 

can be modulated within a defined 2-D plane (Figure 5-14): 

i) By modulating the radius of the rotation, |x|, where vertical bars indicate the modulus 

(length) of the vector; and 

ii) By modulating the angular velocity (angle subtended per unit time), ω, of the rotation, 

which is inversely proportional to the frequency (f) of the rotation/oscillation. 

Based on our previous studies, and previous data presented in this thesis, we formed the 

hypothesis that the oscillations producing these cyclical patterns in the multichannel lf-LFP 

are intrinsically-generated. This allowed us to produce two predictions that we could test 

quantitatively. 

Predictions: 

1. That the direction of rotation (which is dependent on the relative phase-shift between 

LFP channels) is constrained by internal dynamics, and that the subject therefore 

should not use negative AV signals to complete the task. 

2. That the frequency of these oscillations is constrained by cortical dynamics, which are 

imposed by the internal physiology of the motor cortex, and that the subject will 

therefore find it easier (and tend to) modulate the radius of the oscillation, rather than 

the frequency/angular velocity. 
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A biofeedback BMI task uniquely allowed us to quantitatively test these predictions, because 

we could explicitly set the signal-to-effector relationship, and the observe how the signal was 

modulated in a highly controlled way. To be clear, the task would not constrain the method by 

which the subject ‘chose’ to perform the task; the subject was free to perform the task in 

whichever way they find easiest; but we could directly test the properties of the cortical 

dynamics under different conditions. 

It was essential to use a jPCA-based method for extracting AV signals for this experiment. 

jPCA provides a true 2-D plane, from which the parameters shown in Figure 5-14 could be 

calculated – allowing us to quantitatively test the above predictions. The AVC-based method 

would not provide this, since AVCs (areal velocity components) are not calculated from true 

projections of the data onto a 2-D plane. 

5.3.5.2 General methods for AV-based biofeedback BMI experiments 

Experimental setup 

 

Figure 5-15  Schematic of experimental setup for areal-velocity (AV)-controlled BMI task 
(a) Left wrist-torque controlled task 
(b) 1-D AV-controlled biofeedback BMI task (2:1 signal to task-axis mapping) 
(c) 2-D AV-controlled biofeedback BMI task (2:2 mapping) 
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These experiments were all performed in Monkey D. Each experiment began with 50 trials of 

the wrist torque-tracking task with the left wrist (Figure 5-15a), and we recorded from both 

PMv and M1, as previously described in Chapter 2. 

jPCA-based decoder training 

After recording for 50 trials of the torque-tracking task, we used data from that recording to 

train a jPCA-based lf-LFP decoder. We followed the method described already in Section 

5.3.2.2, except that one electrode in PMv was damaged (noisy signal), so the input to the 

decoder consisted of 23 lf-LFPs. We used 12 LFP-PCs, allowing 6 jPC planes. We only used 

the top two jPC planes, (jPC1;jPC2) and (jPC3;jPC4), from which we calculated signals AV1 

and AV2, respectively. 

The reprojection matrices (J1 and J2) were stored and transferred to the TDT-RZ2 system, 

which allowed us to reproject lf-LFPs into jPC planes, and calculate AV signals in near-

realtime, as data came in from the recording system. The two resulting AV signals were 

normalised, using their relative standard deviations, so that the signals spanned a comparable 

range and could be mapped to screen dimensions in the BMI task. They were then smoothed 

online using an exponential decay filter with a decay constant λ = 0.25 s. Cursor position was 

then controlled in near-realtime using these normalised, smoothed AV1 and AV2 signals, in 

two different biofeedback BMI tasks: a 1-D task and a 2-D task. 
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1-D BMI task 

 

Figure 5-16 1-D BMI task and possible strategies to the redundant 2:1 mapping 
(a) Schematic illustrating the control mapping of the biofeedback cursor in the 1-D AV-control BMI task. 

We used a 2:1 mapping, where the cursor position was controlled by the difference between the two 
AV signals. Colours of the targets are just labels for descriptive purposes. 

(b) Schematic of the ‘solution space’. Coloured bars indicate the possible solutions to each of the targets, 
coloured using the same code as in a. Because there is a redundant 2:1 mapping, there are multiple 
redundant solutions to the task, and the subject is free to use any strategy. See text for more details, and 
descriptions of the arrows. 

This experimental paradigm (Figure 5-15b and Figure 5-16a) was broadly the same as the 

two-cell BMI control described in Section 2.1.3.1. Targets appeared at four positions: −75 %, 

−50 %, 50 % and 75 %. Cursor position, c, was defined by c = (AV1 − AV2)/√2. We 

presented 75 trials per target, pseudorandomly interleaved, giving a total of 300 trials in this 

phase of the experiment. 

Because of the redundant 2:1 mapping in this task arrangement, there are multiple redundant 

solutions to acquiring each target, and it is up to the subject to use the strategy which they 

find easiest. For example, in theory, the shortest distance from the origin to the green 

(up 50%) target in the 2-D AV ‘solution space’ (Figure 5-16b) is according to the black 

arrow shown. However, this requires that the subject’s motor cortex is able to generate a 

negative AV2 signal (clockwise, as opposed to anticlockwise, rotation in the jPC plane). 

However, we hypothesise (Prediction 1, Section 5.3.5.1) that the physiology of the cortex 

constrains AV signals to be positive. This generates the prediction that the strategy used 

would be that indicated by the blue and red arrows: only using positive AV1 and AV2 signals. 
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2-D BMI task 

As well as differentially controlling AV signals, we also wanted to test whether the subject 

was able to combine the two signals, by using a 2-D control biofeedback task. 

Normalised, smoothed, AV1 and AV2 signals controlled the 2-D coordinates (the horizontal 

and vertical position, respectively) of the screen cursor. 9 targets were placed at a radial 

screen distance of 30%, 60% and 90% away from an origin in the bottom-right of the screen 

(Figure 5-15c). Acquisition of the three targets on the diagonal required simultaneous 

generation of AV1 and AV2. 39 trials per target were presented, pseudorandomly interleaved, 

giving a total of 351 trials in this phase of the experiment. 

5.3.5.3 Results: One-dimensional (2:1 mapping) BMI biofeedback task using areal 

velocity signals 

An lf-LFP decoder was trained on torque-tracking data using the jPCA-based method. jPCA 

planes and AVs were then calculated and used to provide feedback as the cursor position in 

near-realtime. Monkey D was able to control AV1 and AV2 independently, in order to acquire 

targets in this 1-D biofeedback BMI task (two example trials are shown in Figure 5-17). 

It is clear even from this short segment of data (see Figure 5-17a and b), that jPC plane 1 

(AV1) predominantly reflected a ~3–4 Hz oscillation/rotation present within the M1 lf-LFPs, 

whereas jPC plane 2 (AV2) predominantly reflected a slightly slower oscillation/rotation 

within the PMv lf-LFPs. This was confirmed when we looked at the weighting coefficients of 

lf-LFPs in the jPCA projection matrices for plane 1 and plane 2 (Figure 5-18). 

It is important to note that this ‘separation’ of M1 and PMv LFPs between the jPC planes was 

not due to an imposed constraint, but rather, revealed itself as a finding from unconstrained 

jPCA across all 23 lf-LFPs. This suggests that, in this dataset at least, there may be cyclical 

dynamical structure within the PMv LFPs that operates at a different (lower) frequency than 

one within the M1 LFPs. jPCA allocates these rotations (‘M1’ rotation and ‘PMv’ rotation to 

the top two planes, because they represent the two dominant (but unique) cyclical features 

within the lf-LFP data. 
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Figure 5-17  Example data from 1-D (2:1 mapping) AV-control BMI biofeedback task 
(a) 12 lf-LFPs recorded from M1 (top) and 11 lf-LFPs from PMv (bottom). 
(b) Projections of those lf-LFPs into the first two jPC planes. jPC plane 1 (top) has axes (jPC1;jPC2) and 

jPC plane 2 (bottom) has axes (jPC3;jPC4). 
(c) Areal velocity signals, AV1 (red) and AV2 (blue), as calculated by the cross-product method from jPC 

plane 1 and 2, respectively. 
(d) Cursor screen position, as seen by the monkey. This is calculated in near-realtime as AV1 – AV2. There 

is a very short processing delay, and a longer smoothing delay evident. 

 

Figure 5-18  Weighting coefficients for each jPC plane. 
Mean weighting coefficients across M1 lf-LFPs and PMv lf-LFPs for each jPC axis. 
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5.3.5.4 Methods for exploring how the subject modulates areal velocity during the 1-D 

biofeedback BMI task 

Secondary parameter calculation 

 

Figure 5-19  Illustration of the various parameters related to the areal velocity 
ϱ, particle moving in state space; x, radius vector; v, velocity vector; v|| , radial velocity component (parallel 

to x); v⊥	, tangential (cross-radial) velocity component (perpendicular to x); ẑ, unit vector perpendicular 
to x; ω, represents angular velocity; red triangle, represents areal velocity. 

In order to test Prediction 2 (Section 5.3.5.1; that the subject will tend to modulate the radius 

of the rotation to modulate areal velocity, rather than the angular velocity), we needed to 

compare the individual contribution of the radius, |x|, and angular velocity, ω, to the 

modulation of AV during the biofeedback task. To do this required the post hoc calculation of 

a number of secondary parameters (Figure 5-19) from the 1-D AV-control BMI data. 

Firstly, 𝑣�, the ‘tangential’ (or ‘cross-radial’) velocity, which is the component of the velocity 

vector v perpendicular to x. 

𝑣� = |𝐯|	sin(𝜃) ( 5.16 ) 

 

Angular velocity is related to tangential velocity by, 

𝜔 =
𝑣�
|𝐱| ( 5.17 ) 

 

We found that an instantaneous (sample-by-sample) estimate of ω was extremely noisy, 

because during periods of the recording with low LFP activity, as |𝐱| → 0, then 𝜔 → ∞, 
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producing a very erratic signal. We therefore elected not to measure ω on a trial-by-trial basis, 

but rather to measure 𝑣� (which is not susceptible to this noise issue), and use the gradient 

relationship between 𝑣� and |𝐱| to study the constancy of ω. 

We calculated 𝑣� directly (without using θ) as a projection of v, 

𝑣� = 𝐯 ∙ 𝐳H ( 5.18 ) 

 

Where the dot operator indicates the vector dot-product, and ẑ is the unit vector perpendicular 

to the vector x. (As a projection onto a unit vector [a component], 𝑣� is scalar.) 

Graphical evaluation of changes in angular velocity over a range of AV values 

For each of the 300 trials, aligned to the end of the successful hold period (0 s), the mean 

(over time) values of AV, |𝐱| and 𝑣� were calculated over an analysis window from –0.6 to 

0 s. These values were used as trial-by-trial metrics of AV, |𝐱| and 𝑣� for the remainder of 

this analysis. 

We plotted 𝑣� (abscissa) against |𝐱| (ordinate) for each trial. The gradient of such a plot 

(Δ𝑣�/Δ|𝐱|) is proportional to the angular velocity (𝜔, radians/second) of the underlying 

rotation, and this is also proportional to the frequency (Hz), since 𝑓 = 𝜔/2𝜋. 

By having a biofeedback task, which explicitly requires the subject to modulate AV over a 

wide range (to acquire the different targets), we were able to observe the relationship between 

|𝐱| and 𝜔. Prediction 2 would predict that AV is only modulated by |𝐱|, in which case, there 

would be a constant 𝜔 over a range of AV value. And there would therefore be a straight-line 

relationship (theoretically passing through zero) between 𝑣� and |𝐱|. 
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5.3.5.5 Results: Modulation of areal velocity, radius and angular velocity during the 1-D 

(2:1 mapping) AV-control biofeedback BMI task 

Trial-averaged, event-aligned data 

 

Figure 5-20  Trial-averaged data from the 1-D (2:1 mapping) AV-control biofeedback BMI task, aligned to 
the end of the successful hold period 
In each panel, each trace shows the mean over n = 75 trials. 
(a) Trial-averaged cursor position. 
(b) Trial-averaged areal velocity (AV) signal for each jPC plane 
(c) Top: Trial-averaged lf-LFP signal projected onto the first two jPC axes (1 and 2), i.e. jPC plane 1 
 Bottom: The same for jPC axes 3 and 4 (jPC plane 2) 
(d) Trial-averaged magnitude of the radius, |x| (distance from the origin in the jPC plane) 
(e) Trial-averaged tangential velocity, 𝑣� 
(f) Trial-averaged, smoothed, mean EMG signal from muscles in the left (controlling) arm 
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Trial-averaged data confirmed that the subject was able to control the two AV signals 

independently, with negative targets being acquired almost exclusively with signal in jPC 

plane 1, and positive targets with signal in plane 2 (Figure 5-20b). Although a ‘mean’ jPC 

signal itself is not very meaningful (because the AV signal is dependent on within-trial phase 

differences between the two jPCs, which may not be locked to the task), it was interesting to 

see the clear modulation, and surprisingly consistent phase relationships aligned to the task 

event (Figure 5-20c). As expected, both radius, |𝐱|, and tangential velocity, 𝑣�, were 

modulated during the generation of AV signals (Figure 5-20d–e). 

Finally, we noted that AV1 signal (essentially right M1 LFP activity) was associated with 

movement and EMG activity in the contralateral (recorded) limb (Figure 5-20f), whereas 

AV2 signal was largely associated with relaxation of the left limb (minimal EMG activity). 

This was compatible with the behaviour of the subject at the time. She would make clear 

movements of her left wrist to acquire the positive (AV1) targets, and actually make 

movements with her right limb, and postures with her body, to acquire the negative (AV2) 

targets. Unfortunately, we did not have implanted EMG or kinematic monitoring in the right 

limb to enable us to quantify this. 

Testing Prediction 1: ‘The subject will use only positive AV signals in their task 

strategy.’ 

 

Figure 5-21  ‘Solution space’ plot for the 1-D (2:1 mapping) biofeedback BMI task 
The coordinates of each datum-point show the mean (over a 0.6 s analysis window) areal velocity signals 

(AV1 and AV2) generated to successfully complete a particular trial. Coloured bars show the possible 
solutions to the four target positions. Data-points are coloured according to target position on that trial 
(orange, +75%; green, +50%; cyan, –50%; purple, –75%). 
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We found that it was certainly possible for negative areal velocities (state-space counter-

rotations) to be generated by the brain, particularly in the case of AV2 (e.g. see Figure 5-17c 

and Figure 5-21). However, on average, we found that the strategy overwhelmingly preferred 

by the subject was to use positive AV1 signals in trials to acquire upward targets (Figure 

5-21; green and orange data-points) and to use positive AV2 signals in trials to acquire 

downward targets (Figure 5-21; to the right; cyan and purple data-points). It was very 

unusual to see negative AV1 signals, but negative AV2 signals were slightly more common, 

and this occasionally appears to have contributed to the acquisition of upward targets (Figure 

5-21; orange and green data-points to the left of the vertical axis). 

Testing Prediction 2: ‘The subject will modulate AV signals by modulating |x|, and ω 

will remain constant.’ 

We found that there was a clear positive correlation between 𝑣� and |𝐱|, but it would be 

incorrect to claim that the relationship was linear because, particularly in the case of AV1 

(Figure 5-22a), it appeared that the gradient Δ𝑣�/Δ|𝐱| increased with |𝐱|; suggesting that the 

angular velocity, ω, (and thus the frequency, f) did increase slightly with increasing AV. 

It was also clear that simple linear regression through the data in either Figure 5-22a or b 

would not pass through the origin. However, performing simple linear regression (no 

constraint to origin) produced gradients of: jPC plane 1 (Figure 5-22a), ω = 23.2 rad s−1, thus 

f = 3.7 Hz; and jPC plane 2 (Figure 5-22b), ω = 18.2 rad s−1, thus f = 2.9 Hz. Unfortunately, it 

is difficult to comment formally on these values, other than to say that they are consistent 

with our observations of the frequency of lf-LFP activity that we see associated with 

movement (typically 2–4 Hz), and with the observation that the rotation in jPC plane 2 

(mainly PMv activity) is slower than that in jPC plane 1 (mainly M1 activity). 

The reason for the offset in |𝐱| (but not in 𝑣�) is likely a technical issue with this analysis 

approach. Noise in the jPC signals is likely to manifest as small, random movements around 

the origin. The distance, |𝐱|, around the origin will—by definition—always be positive, and 

positive on average over time; whereas the tangential velocity will be randomly positive and 

negative (depending on direction of rotation), and will average to zero over time. 
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Figure 5-22  The mechanisms of modulation of areal velocity in the 1-D (2:1 mapping) biofeedback BMI 
task. 
 (a) Scatter plot of radius, |x|, versus tangential velocity, v⟂ in jPC plane 1. Each datum-point shows the 

mean parameter value for an individual trial (over the 0.6 s analysis window). Data-points are coloured 
according to the target-location for that trial. Gradient is proportional to angular velocity, ω (which is 
also proportional to frequency, f, of the rotation). 

(b) The same as a, but for jPC plane 2. 
(c) Cross-correlation between components jPC1 and jPC2 (i.e. jPC plane 1), over the duration of the 

recording, for each of the two upward targets (green, +50% target; orange, +75% target). 
(d) Cross-correlation between components jPC3 and jPC4 (i.e. jPC plane 2), over the duration of the 

recording, for each of the two downward targets (cyan, −50% target; purple, −75% target). 

In order to avoid these effects, we also studied the jPCs directly in the time-domain, by 

calculating the cross-correlation between the two jPCs in each jPC plane, for each of the two 

targets where substantial signal was being generated (e.g. positive targets for jPC plane 1). In 

jPC plane 1 (Figure 5-22c), for the +50% target, we saw an oscillation with a frequency of 

3.3 Hz and a lag of 0.07 s (jPC1 leading). For the +75% target, the peaks of the cross-

correlation function were extremely similar, and the frequency was 3.6 Hz. In jPC plane 2 

(Figure 5-22d), for the −50% target, we saw an oscillation with a frequency of 2.4 Hz and a 

lag of 0.07 s (jPC1 leading). For the −75% target, the peaks of the cross-correlation function 

were extremely similar, and the frequency was also 2.4 Hz. 
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To summarise, whilst we can’t conclusively claim that the frequency (angular velocity) of the 

lf-LFP rotations associated with movement is fixed, it seems that the dominant parameter that 

modulates areal velocity is the radius (amplitude) of the rotation. 

5.3.5.6 Two-dimensional biofeedback BMI using areal velocity signals 

Behaviour of AV signals separately and in combination 

 

Figure 5-23  Areal velocity during 2-D AV-control biofeedback BMI task 
(a) Screen mapping of AV signals to a 2-D task with 9 targets. 
(b) Mean AV1 and AV2 signals, aligned to end of the successful hold period, for each of the 9 target 

locations (mean across n = 39 trials per target). Panel location represents target location. AV signals are 
both expressed in terms of screen proportion (%). 

We found that the subject was able to both separate and combine the generation of areal 

velocity in the two planes, to acquire positive targets in the 2-D biofeedback task (Figure 

5-23). 
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Testing Prediction 2 in two dimensions: ‘The subject will modulate AV signals by 

modulating |x|, and ω will remain constant.’ 

 

Figure 5-24  The mechanisms of modulation of areal velocity in the 2-D biofeedback BMI task. 
(a) Legend for the figures to the right, indicating the marker used for each target. 
(b) Scatter plot of radius, |x|, versus tangential velocity, v⟂ in jPC plane 1. Each datum-point shows the 

mean parameter value for an individual trial (over the 0.6 s analysis window). Data-points are coloured 
according to the target-location for that trial. Gradient is proportional to angular velocity, ω (which is 
also proportional to frequency, f, of the rotation). 

(c) The same as b, but for jPC plane 2. 

We saw a very similar relationship between 𝑣� and |𝐱| in the 2-D BMI task as we did in the 

1-D task. Again, there was a suggestion in jPC plane 1 that angular velocity (gradient) did 

increase as AV increased (more distant targets). But these data also suffered from the same 

issues discussed previously in Section 5.3.5.5 (‘Testing Prediction 2’, page 140). Simple 

linear regression (no constraint to the origin) through the data gave gradients of: jPC plane 1 

(Figure 5-24b), ω = 21.4 rad s−1, thus f = 3.7 Hz; and jPC plane 2 (Figure 5-24c), 

ω = 13.8 rad s−1, thus f = 2.2 Hz. These values are broadly consistent with those in the 1-D 

task. 

Behaviour of the local neurons during the 2-D AV-control biofeedback BMI task 

So far, we have demonstrated indirect evidence of two separate dynamical systems in two 

separate areas of motor cortex—M1 and PMv—operating at different frequencies, and 

capable of being controlled separately and in combination by the subject. Whilst our 

experiments did not allow us to provide direct evidence of the neural substrate of these 

sources of activity, we were able to study the behaviour of the neurons which we recorded 

simultaneously to the LFPs, from both areas. 
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We recorded a total of 15 neurons during 2-D AV-control BMI experiment; 8 from M1 and 7 

from PMv. Firing rates were calculated offline by binning spikes into 20.5 ms bins (to match 

the sampling interval of the lf-LFPs), and low-pass filtering at 5 Hz (Butterworth filter, as 

previously). Firing rates were normalised to zero mean and unity variance, and aligned to the 

end of the successful hold periods from the underlying AV-controlled task. A mean firing rate 

was calculated for each neuron, for each target, over a 0.6 s analysis window prior to the end 

of the hold period. For each neuron, we then performed multiple linear regression, with 2-D 

target screen co-ordinates as predictor variables (regressors), and mean firing rate as the 

response variable (regressand). This gave us a regression coefficient for each of the 

dimensions of the task (as well as a constant, which we ignored for this particular analysis). 

 

Figure 5-25  Behaviour of the local neurons during the 2-D AV-control biofeedback BMI task 
(a) Example firing rate profiles of one M1 neuron for each of the 9 targets. Panel location in the figure 

represents target location in the task. Important to note that the cursor is still controlled by the AV 
signals, not by the firing rate. Firing rate is simply measured concurrently. 

(b) Regression coefficients for 15 neurons (8 M1, 7 PMv). A neuron with a high regression coefficient 
associated with y-axis targets has a firing rate which is strongly modulated when the cursor moves 
upwards on the screen (i.e. when the brain is generating AV1 signal via rotation in jPC plane 1). The 
neuron in panel a is such an example. A neuron with a high regression coefficient associated with x-
axis targets has a firing rate which is strongly modulated when the cursor moves leftwards on the screen 
(i.e. when the brain is generating AV2 signal via rotation in jPC plane 2). 

Firing rates of PMv neurons (open circles in Figure 5-25b) were highly associated with state-

space rotation in jPC plane 2 (leftward target locations). This is consistent with previous 

observations, including LFP weightings (Figure 5-18), which indicated that jPC plane 2 

rotation predominantly reflected PMv LFP activity. M1 neurons (crosses in Figure 5-25b) 

were more variable—showing some association with both target axes—but they were 

predominantly associated with rotation in jPC plane 1 (upward target locations). This is 
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consistent with LFP weightings which indicated that jPC plane 1 rotation predominantly 

reflected M1 LFP activity. 

We know that the recorded neurons must be within their respective cortical areas (because 

neural recordings require micro-metre proximity). These findings therefore support the belief 

that the rotational features we see in the lf-LFP are generated locally by cortical ensembles 

within their respective cortical areas (rather than arising from a global phenomenon being 

propagated, or transmitted by volume conduction, across wide areas of cortex). 

5.4 Discussion 

Neuronal action potentials (spikes) have an all-or-nothing nature (making the separation of 

signal from noise very intuitive); they have a tangible physical origin (a neuron); and their 

signals demonstrate clear ‘features’ associated with movement – namely modulation of firing 

rate, and directional tuning. These factors have, for good reason, biased motor neuroscience 

researchers towards using the firing rates of neurons when trying to decode motor intention 

from wide-band cortical recordings. 

LFPs have long been recognised as an alternative to spikes for decoding movement-related 

cortical activity, and providing control signals to BMI devices. However, in comparison to 

spikes, the origin of field potentials is more complex and less well understood. 

Separating out a biologically or behaviourally relevant signal is arguably more challenging 

with LFPs than with spikes. There is an accepted method — thresholding — for at least 

separating spike events from other ‘unwanted’ activity. In comparison, what neuroscientists 

call an ‘LFP’ recording, consists of a complex mixture of a multitude of continuous signals. 

Separating a signal of interest in an LFP recording from irrelevant ‘noise’ (e.g. electronic 

recording noise, movement artefacts, cardio-respiratory noise), let alone from other genuine 

neural signals, is notoriously difficult. Also, LFPs represent a complex mixture of the activity 

of a network of tens of thousands of neurons, and the effects of volume conduction, 

propagation and intrinsic filtering all combine to make the LFP relatively complex and non-

intuitive to analyse. Specifically, LFPs recorded simultaneously on multiple electrodes cannot 

be treated as independent channels of information. 
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There is currently no consensus on exactly which features of the LFP are best suited to 

extracting a movement-related signal, suitable for BMI control, and this therefore remains a 

challenge to the field. 

We used an unsupervised decoder approach to test the performance of a metric based solely 

on LFP power at classifying bimanual movement. As expected, in a relatively recently-

implanted cortical electrode array (left hemisphere, 5½ months old), both low-frequency 

(< 5 Hz) and gamma-band power performed well at movement classification. It is perhaps 

surprising to note that beta-band power also performed well at binary classification, but in the 

opposite direction to the other bands. In fact, this can be explained very simply, because it 

reflects a pattern of depression of beta-band LFP power in the motor cortex during 

movement, which is consistent with the literature (Baker et al. 1997). 

More importantly, in the other (right) hemisphere, where the cortical electrode array had been 

implanted for much longer (15½ months), power-based unsupervised decoding of movement 

laterality performed extremely poorly (Figure 5-13a). As can be seen in the example data 

plotted in Figure 5-10c, this is not surprising, given the very low amplitude, and very low 

signal-to-noise ratio of the LFP signals in the right hemisphere (blue traces), compared to the 

left hemisphere (red traces). 

The power of a signal is only dependent on its amplitude, but there is evidence that significant 

additional information is available in the LFP from the instantaneous phase of the signal. For 

example, a number of groups have found that the local motor potential (LMP; preserving 

phase information) out-performs delta-band power (removing phase information) when 

decoding EMG (Flint, Ethier et al. 2012) or movement (Rickert et al. 2005, Bansal et al. 

2012). 

Such studies also demonstrate that decoding performance is significantly better when 

movement is decoded using multiple lf-LFPs, rather than a single signal (Rickert et al. 2005), 

and when field recordings are made from within the cortex (LFPs) rather than just from the 

surface (ECoG/EEG) (Mehring et al. 2004). Bansal and colleagues, for example, explicitly 

comment on the variation in timing between their lf-LFP signals, and the relative 

independence of their lf-LFPs (Bansal et al. 2011). 

These previous reports are consistent with the idea that we have already evidenced in previous 

chapters: that lf-LFP signals recorded from within a motor cortical region (e.g. M1) are not 
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redundant (as one might expect from the association of delta waves with periods of sleep or 

rest). Instead, multichannel lf-LFP contains a complex mixture of phases, which likely reflect 

the mixing of signals from a number of underlying sources. Resolving these underlying 

sources from the recorded data is an example of the ‘inverse problem’, commonly referred to 

as the ‘cocktail party problem’. 

In Chapter 3, we demonstrated one approach to this problem, which enabled us to make use 

of the phase-structure within multichannel lf-LFP to estimate the firing rate of motor cortical 

neurons. In the current Chapter, we aimed to extract movement-related signals from the 

multichannel lf-LFP without any prior information about spiking, and without any information 

about kinematics (that is to say, using unlabelled data to train a model in an unsupervised 

fashion).  

Our approach was based on the observation that the target-directed movement we recorded in 

monkeys contained subtle but consistent periodicity, termed ‘submovements’ (Hall, De 

Carvalho & Jackson 2014). Unpublished results from our laboratory (Susilaradeya et al. NCM 

poster) and previous literature (Miall et al. 1993) also indicate that similar submovements are 

seen in forelimb movements in humans. In monkeys, we saw that this periodicity was 

coherent with lf-LFP oscillations, but importantly, that there was variation in phase of these 

oscillations across different electrodes within M1 (e.g. Figure 5-1). Looking at these data in a 

reduced set of principal components (PCs), it became clear that these phase differences 

reflected a consistent dynamical structure within the lf-LFP, the activity of which was related 

closely to movement, and was seen as rotation in a low-dimensional state-space projection. 

Similar movement-related rotational structure has also been observed in multichannel neural 

recordings (Churchland, Cunningham et al. 2012). 

We chose the areal velocity (AV) as a simple metric to capture the properties of this rotational 

structure in the high-dimensional LFP. We then used two different methods to extract AV 

signals from lf-LFPs. The first of these was jPCA, which explicitly reprojects the data onto 

2-D planes which best capture the rotation. The second of these introduced a novel concept, 

the ‘areal velocity component’ (AVC), which is an abstraction of areal velocity calculation 

(cross-product) in three dimensions, to a situation where a pairwise AVC is calculated for all 

possible unique pairs of principal components. 
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Both of our AV-based feature extraction methods out-performed power based methods when 

sufficient (approximately six) lf-LFPs were included. More importantly, our AV-based 

methods were able to extract useful information, and hence classify correctly, using signals 

from electrodes where signal power alone performed extremely poorly. 

It is important to reiterate and discuss further the distinction between supervised and 

unsupervised decoding. All of the studies cited above (page 143) detect features from their 

LFP data by using supervised/machine learning methods to learn which features of the LFP 

are most informative to movement decoding, based on labelled data from a ‘training set’. If 

we were to perform multivariate supervised decoding using multichannel LFP band-power, it 

would clearly perform significantly better at classification than simply using the mean LFP 

power (as was used in Figure 5-13). Having said this, supervised decoding of the high-

dimensional AV space would likely also yield significantly better performance than 

unsupervised decoding. For example, it would appear from Figure 5-7 that the 

multidimensional AV contains information about movement direction. Indeed, previously we 

have demonstrated that movement direction can be decoded in a supervised fashion from the 

orientation of the 3D AV vector (derived from the LFP-PC space) (Hall et al 2014, Figure 

2N). Performance was not much better than chance, but it is possible that more sophisticated 

supervised learning methods, perhaps using the expanded-dimensionality AVC space could 

yield much better performance. 

However, the critical and exciting property of AV-based metrics that I have shown in this 

chapter, is that they can be derived a priori from multi-channel LFP, without knowledge or 

labelling of the associated behaviour; then even in this unsupervised scenario, they can 

successfully allow decoding of simple movements. This property may be useful in patients 

who are completely paralyzed, and don’t exhibit any residual limb movement, therefore 

cannot provide a training dataset. Further work will be required to investigate whether AV-

based methods could still extract (in an unsupervised fashion) a useable signal from brain 

recordings from such patients. 

Our method based on areal velocity components (‘AVC-based’ method) performed slightly 

better than the jPCA-based method. This may be because jPCA looks explicitly for rotation 

within the PCs, meaning that projections of the data which would otherwise be informative 

for making subtle distinctions between movements, are often collapsed down into a single 

plane. In contrast, the AVC-based method actually expands the dimensionality of the feature 
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search-space, increasing the chances that pairs of PCs which contribute particularly rich areal 

velocity signals are more likely to be featured in the output signal. 

Areal velocity signals seem particularly well-suited to BMI applications, because they are 

intrinsically robust to the two main types of noise which typically affect multichannel LFP 

recordings: uncorrelated and correlated noise. Uncorrelated noise across LFPs produces a 

mean areal velocity of zero, because it produces no consistent direction of rotation about the 

origin. Correlated noise is also rejected from the areal velocity signal, because correlated 

signals, regardless of their amplitude, produce only reciprocation, rather than rotation, in state 

space. Reciprocation involves only back-and-forth movement along a single axis, and 

therefore the area swept out is zero. The areal velocity is therefore effective at selecting only 

those physiological sources that produce consistent phase differences within the multichannel 

LFP. AV-based methods can therefore out-perform power-based methods in situations of poor 

signal-to-noise ratio, as long as phase structure is preserved and consistent. 

Conceptually, the AVC-based method can be considered an extension of the concept of a 

differential recording (Figure 5-26). Whilst a differential recording is able to reject common 

(identical) noise between channels, the AVC can also reject all in-phase correlated 

components (regardless of amplitude), making the AV signal relatively insensitive to distant 

or external sources of noise. 

Next, to test the feasibility of an AV-based BMI, we used the jPCA-based method to extract 

two AV signals simultaneously, and without supervision, from LFPs recorded across M1 and 

PMv. We found that the first jPC plane corresponded mostly to M1 LFPs, while the second 

plane corresponded mainly to PMv LFPs. That is to say, the algorithm found, and was able to 

separate the dynamics associated with each area. This separation took place largely on the 

basis of frequency, with PMv LFP dynamics demonstrating a slightly lower frequency of 

rotation (~2–3 Hz) than the M1 LFPs (~3–4 Hz). 
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Figure 5-26  Comparison of different signal types from LFP recording 
Single-ended recordings are relative to ground. Differential recordings can reject signal components that 

are common to two LFPs (anything that falls along the axis l1=l2. Areal velocity calculation rejects any 
in-phase oscillatory components in the two LFPs, as well as having zero mean for uncorrelated noise. 

— Figure reproduced from Jackson & Hall (2016), IEEE TNSRE, Figure 4. 
Figure produced originally by A. Jackson. 

To our knowledge, this is the first time that such differences in LFP dynamics have been 

described in motor cortex. However, the frequencies we observed are highly consistent with 

those seen in neural data, as is the observation that rotations tend to be faster in M1 than in 

premotor areas. Churchland and colleagues report that “… the angular velocity of the 

rotations was in each case slightly higher for M1 [than for dorsal premotor cortex]. We 

suspect that this effect may be real. It is consistent with our informal observations, notable in 

every dataset we have inspected so far, that neurons recorded in posterior sites [M1] are 

more likely to exhibit high-frequency response features.” (Churchland, Cunningham et al. 

2012, Supplementary Figure 5). 

In a realtime, closed-loop biofeedback experiment, we found that the subject was able to 

control our two AV-signals simultaneously, both independently (in the 1-D experiment) and 

in combination (in the 2-D experiment). This behaviour was associated with relatively distinct 

modulation of neuronal firing rates in M1 and PMv. Given that neuronal signals are well-
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localised to cortical area, this suggests that each area is able to generate independent low-

frequency neural dynamics, that can be detected and exploited via the multichannel lf-LFP. 

By using a biofeedback BMI, we were able to ask questions of the data that would not be 

possible with a ‘black box’ biomimetic set-up, or simply by using data from the torque-task. 

The relationship between the recorded brain signals and the cursor position was explicitly set 

by (and therefore known to) us. By observing the strategy that the subject used to perform the 

tasks, we were therefore able to test specific predictions that we had made, based on our 

hypothesis of the underlying physiology of AV signals. 

Our hypothesis was that lf-LFP dynamics (and therefore areal velocity) would be constrained 

by the intrinsic cortical dynamics of a cortical area. Our first prediction from this was that the 

direction of rotation in state space would be constrained (because relative lf-LFP phase 

relationships remain consistent), and therefore the subject would only be able to generate 

positive AV signals. We could test this in our 1-D task, because it had a redundant 2-D 

solution space. 

We found that the subject was able to generate small, negative AV signals, but that the clearly 

preferred strategy was to use positive AV signals. A consistent polarity of AV indicates that 

the phase relationships between lf-LFPs remain robust, despite the differing requirements of 

each target in the task. This supports our hypothesis that lf-LFP phase relationships are 

constrained by cortical physiology. However, we certainly cannot claim that this is proof that 

lf-LFP relationships are fixed. The subject chose a strategy for the task in which she moved 

her left hand to acquire ‘M1-dominant’ targets, but produced right forelimb movement and 

other body posturing to acquire the ‘PMv-dominant’ targets. It may therefore be coincidence 

that these particular behaviours correspond to positive dynamical rotations in their respective 

cortical areas of activity. This experiment should therefore be repeated in further subjects. In 

addition, it would be important to record LFPs from other cortical areas (for example dorsal 

premotor cortex, supplementary motor area) to see whether each area displays its own unique 

pattern of LFP dynamics. 

Our second prediction was that increases in areal velocity would be mediated by increases in 

radius (amplitude) rather than increases in angular velocity (frequency), on the basis that the 

frequency of the cortical dynamics within a particular area is constrained. This prediction 

proved harder to test than we anticipated, because of background noise. Although the AV 
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signal itself is relatively robust to background noise, the angular velocity signal becomes very 

erratic, and also the mean radius signal becomes non-zero. 

Broadly speaking, we found that the angular velocity (thus frequency) was relatively constant 

over a wide range of AV values, and this was supported by time-domain analysis (cross-

correlation). However, we did consistently see increases in the gradient of the Δ𝑣�/Δ|𝐱| plots 

with higher values of AV, suggesting that the angular velocity (thus frequency) of the cortical 

dynamics can, and probably does, increase when the brain is generating output to produce fast 

movements of the forelimb. 

There is no reason, from physiological first-principles, to assume that the frequency of 

cortical dynamics should be constrained to a specific frequency. The physiological nature of 

the sources that contribute to the LFP at these frequencies is still highly speculative. For 

example, if they are a manifestation of simple pharmacological phenomena, or sensory 

feedback loops, then one might expect latencies (and therefore frequency) to be relatively 

fixed. However, if they are a manifestation of a more complex internal cortical model of the 

physics of movement, then one might expect the frequency of the system to have some 

variability with movements of different speeds. Future work on this is already being carried 

out in our lab (Susilaradeya & Jackson) by introducing artificial delays into the visual 

feedback of a torque task (in both monkeys and humans), and measuring the effects of these 

feedback delays on submovements and on cortical dynamics. 

We propose that areal velocity signals may, both conceptually and practically, be a useful tool 

when trying to extract features from LFPs. They certainly have some desirable features for 

use as BMI control signals, particularly in ‘real-world’ experiments, where signal amplitude 

and recording noise levels (i.e. signal-to-noise ratio) are often an issue, or there may be other 

external sources of correlated noise (e.g. movement of cables). AV signals are also very 

simple to calculate, and therefore to implement in low-power hardware. 

In this work, we have only considered AV signals associated with low-frequency LFPs. 

However, areal velocity based signals should also be explored for other LFP frequency bands 

in the future. 

Whilst AV-based approaches are conceptually attractive, and their simplicity is desirable, it is 

also important to acknowledge that the true underlying physiology of lf-LFP generation in 

motor cortex is undoubtedly far more complex than the areal velocity can capture. Areal 
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velocity is a relatively simple non-linear transformation of LFP data, based on a simplistic 

assumption that the dynamics of the motor cortex can be modelled as a linear dynamical 

system. Such simple models may be useful for providing reliable BMI signals, but future 

work will need to explore more sophisticated non-linear models of lf-LFP dynamics. 

Furthermore, with regards the generalizability of our findings, it is important to note that all 

of the relationships studied in this thesis were recorded in the laboratory environment, with an 

animal highly trained to perform particular types of movement with one limb (although the 

other limbs were free, and did move frequently). It remains to be seen whether the robust LFP 

relationships which we observe in the lab hold true during natural behaviour – for example, 

jumping around in the home-cage environment. It may be that the relationships between LFPs 

change, and thus the informative (non-redundant) dimensions of the LFP space also change. 

Indeed, it is clear that relationships between LFPs do change with different directions of 

movement, and the dynamical system approaches that we use in this chapter may collapse a 

lot of this information down (thus making it effectively redundant). For example, in Figure 

5-7, we see that by only using the first PCs of the LFP space, we lose the information that 

varies with movement direction. Our ‘AVC’ method was an attempt to extract more than two 

useful signals using an areal velocity-based approach, and hence capture more of this 

information. However, we were only consistently able to extract two signals. Further work 

will be required to develop approaches to extract more of this non-redundant information. 

Finally, as already discussed in previous chapters, our data strongly suggest that recording 

from a variety of cortical depths is critical to capturing the local structure of the lf-LFP. 

Unfortunately, the most commonly-used arrays in human patients (and NHP experiments) are 

planar silicon arrays, which are optimised for spike recording, but tend to capture LFPs from 

a single layer of the cortex. The data presented in this thesis so far suggest that the 

information content of lf-LFP recordings could be improved by placing electrodes at specific 

depths, to optimally capture distinct SRSP components, and reduce the redundancy of 

recordings. Unfortunately, the moveable microwires we have used so far in this thesis do not 

allow us to document recording site location; nor do they provide a geometric electrode 

arrangement that allows us to perform spatial analysis. In the next Chapter, we discuss the 

design of a geometric array to address these limitations, and present some preliminary data 

from such an array. 
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5.5 Chapter summary 

• Cyclical patterns of activity in motor cortex can be seen in low-dimensional 

projections of low-frequency LFPs, and are linked to movement kinematics. 

• We observed (at least) two planes with rotational structure, corresponding broadly to 

distinct M1 and PMv activity. 

• A monkey was able to use the areal velocities of these rotations to control a 

biofeedback BMI task in one and two dimensions. 

• A consistent direction of rotation and largely consistent frequency of rotation within 

each plane suggests that these LFP dynamics may reflect intrinsic network properties 

of cortex. 

• Areal velocity is relatively insensitive to both correlated and uncorrelated noise: useful 

properties for LFP-controlled chronic BMIs. 

• The use of non-linear transformations such as areal velocity can expand the 

dimensionality of the feature space (since N LFP channels yields ½N(N−1) LFP pairs), 

and produce a conceptually new type of signal for future BMI experiments. 
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Chapter 6. Hybrid geometric/moveable arrays 

for investigating the spatial nature of lf-LFPs 

in motor cortex. 

In which we describe design and implantation of, and preliminary data from, a new design 

for a hybrid electrode array – featuring fixed, regularly-spaced electrodes and moveable 

microwire electrodes. 

6.1 Introduction 

In previous chapters, we have mentioned that we are unable to comment on the spatial nature 

of SRSPs and other lf-LFP features, because we do not know the locations of the tips of our 

tungsten microwire electrodes in the brain; other than knowing that they are in the cortical 

area of interest, based on the location of implantation. 

The majority of studies that use chronic cortical implants for performing BMI experiments in 

monkeys (and in humans) use high-density, rigid, silicone multielectrode arrays (MEAs) – 

most commonly ‘Utah’ arrays (Blackrock Microsystems). Typically, around 96 electrodes are 

implanted directly into the cortex in a single-stage surgery. The aim of the implant is 

generally to maximise the number of cortical neurons that are recorded from the ‘output’ layer 

of the cortex, and so the recording sites are found in a single plane, at the tips of 1.0–1.5 mm-

long shanks, where it is hoped that a large number will end up in layer V of the motor 

neocortex, recording from pyramidal neurons (Figure 6-1). 

Typically, all the electrodes in a rigid MEA are in a single plane. For physiological studies, 

this has the advantage that the recording sites are geometrically arranged, and the relative 

spatial relationships of the recorded signals are known. However, this likely produces a 

disadvantage for extracting useful BMI-control signals from LFPs on these arrays, because 

LFPs are also only recorded from a 2-D plane, at a single depth. The findings presented in this 

thesis, as well as other studies (e.g. Einevoll et al. 2007; Markowitz et al. 2011) indicate that 

decoding of movement (or neural firing rate, or EMG) is more successful when LFPs are 

recorded from multiple depths; in other words, from a 3-D volume of cortex. 
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Figure 6-1  Anatomy and histology around the central sulcus, and example MEA implantation 
(a) Schematic lateral view of the left hemisphere (human), showing the major sulci and gyri of the frontal 

lobe. Grey bar indicates line of sagittal section shown below, in b. 
(b) Schematic sagittal section through precentral and central sulci. Brodmann ‘Area 4’ corresponds to 

primary motor cortex (M1). Pink region indicates the approximate depth of layer V (pyramidal cell, 
primary output layer) in pre-central motor areas. Areas 1, 2, 3a and 3b are primary somatosensory 
cortex. Black box indicates area enlarged in Inset i: example histology (SMI-32 immuno-architecture) 
of M1 (here labelled as F1), showing prominent pyramidal cells in layer V, with layer III above 
(layer IV is absent in agranular cortex). Scale bar: 500 µm. Inset ii: A typical 96-electrode rigid 
silicone MEA (‘Utah’ array). Scale bar: 2 mm. The silhouette in the main panel shows a typical implant 
location. 

— Panels a and b adapted from Haines & Mihailoff, The Telencephalon, from Haines (ed.) (2017) 
Fundamental Neuroscience for Basic and Clinical Applications (Elsevier Health) 

Inset i adapted from Geyer et al (2000), Anat Embryol 202 (Springer-Verlag) 
Inset ii adapted from Campbell et al (1991), IEEE TBME 38 (IEEE press) 

Rigid MEAs also have a number of other disadvantages: 

i) Silicone electrodes are rigid, as is the square base-plate of the typical MEA. This 

means that any translational or rotational movement of the implant relative to the brain 

can put shearing stress on the surrounding neural tissue, which can be particularly 

damaging. 

ii) Once an MEA is implanted in a particular location, the recording sites cannot be 

moved, without performing another surgery and completely re-implanting the array. 
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This can be a problem if the array is not implanted correctly (which can happen for a 

variety of reasons) or if reactive gliosis makes the recording sites unusable. 

iii) Electrodes cannot be moved independently, so any adjustment to the array means 

losing all recording locations, both good and bad. 

iv) Recording sites tend to be small (to optimise isolation of single-unit recordings) so 

impedances tend to be relatively high (≥ 400 kΩ; commonly > 1 MΩ). 

Our moveable microwire electrodes (as used in this thesis; designed by A. Jackson and 

E. Fetz, and described in Chapter 1) do have a number of advantages over ‘Utah’ arrays, as 

follows: 

i) Individual electrodes are moveable, so once a recording site becomes unusable—due 

to gliosis, or neuron loss around the contact site—the electrode can be withdrawn or 

advanced into a new recording location. 

ii) Electrode impedance is relatively low, around 100–200 kΩ; reducing noise in 

recordings, which is particularly important in the LFP. 

iii) The microwire array bundle can be implanted into the skull before the electrodes are 

advanced, allowing local healing of the surgical site to take place prior to 

advancement of the electrodes. Anecdotally, this seems to reduce the inflammatory 

response to electrode insertion (A. Jackson, personal communication). 

However, despite these advantages, microwires have the considerable disadvantage 

(compared to silicone arrays) that we don’t know the precise location of the recording sites, 

even after post-mortem histology. This is because the moveable tungsten wires, whilst stiff, 

don’t necessarily take straight paths through the cortex, making tract reconstruction 

impossible. Moreover, during one monkey’s lifetime, electrodes are moved multiple times, 

and recordings are therefore made at different depths from multiple, crossing tracks. 

In order to further investigate the anatomy of the lf-LFP and SRSP we designed a ‘hybrid’ 

array. This combined the main benefit of using moveable tungsten microwires—being able to 

move electrodes and acquire new neurons—with a geometric design for recording LFPs. For 

our geometric arrays, rather than using silicone electrode technology, we used linear 

microlectrode arrays (LMAs, Microprobes for Life Sciences, Inc., MD, USA). 

As we can see from Figure 6-1b, primary motor cortex (M1; Brodmann Area 4) is not limited 

to the surface of brain. A significant proportion of M1 (in particular, forelimb and hand areas) 
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is found within the anterior (rostral) bank of the central sulcus (Geyer et al. 2000). During our 

experiments where we have inferred that cortical “depth” produces phase and polarity shifts 

within the lf-LFP/SRSP (e.g. Figure 3-6, page 44), we need to accept that our electrodes may 

not be travelling transversely through cortical layers, but rather, may be travelling down the 

anterior (rostral) bank of the central sulcus. We therefore set out to design a hybrid array that 

would allow us to record signals from the bank, as well as from the gyral convexity. 

Finally, as we discussed in Chapter 1, one potential application of lf-LFP–based decoders of 

cortical motor activity, is as control signals for ultra-low power BMIs. As well as minimising 

the sampling rate of such a device, another simple way to reduce the overall data acquisition 

rate (and hence power consumption) of a BMI is to reduce the number of channels of 

recording. This would be possible if one could work out which electrodes were critical to the 

decoding process (for example, which LFPs were essential to estimating a particular firing 

rate). We therefore also wanted to see what mixtures of electrodes, from which areas (e.g. 

surface, gyral convexity, bank of M1) were most informative for estimating firing rates. 

6.2 Aims 

Aim 1: Design and manufacture a hybrid electrode array, combining moveable 

tungsten microwires with linear microelectrode arrays. 

Aim 2: Make use of the geometric arrangement of LFP recording sites, to better 

understand the depth profile of the lf-LFP and SRSP. Specifically, study differences 

between LFPs recorded down the anterior (rostral) bank of the central sulcus, versus 

LFPs recorded perpendicular to the cortical surface, across different cortical layers in 

the gyral convexity. 

Aim 3: Analyse the optimum locations to have electrodes, given a limited number of 

recording channels. 

The reader should please note that this Chapter only represents preliminary work towards 

addressing these aims. It has not been possible to perform formal analyses of these data 

during the period of this PhD studentship, and that will therefore constitute future work. 

However, the novel hybrid electrode design is certainly relevant to this thesis, and the analysis 
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presented here is not meant to provide conclusive results, but rather, illustrative examples of 

preliminary findings, which the reader will hopefully find stimulating. 

6.3 Methods and Results 

6.3.1 Hybrid electrode design and construction 

Our hybrid electrode (see Figure 6-2) was a modification of the original moveable microwire 

design by Jackson & Fetz (2007), through incorporation of four linear microelectrode arrays 

(LMAs, made by Microprobes). 

We added two “long” (7.5 mm active area) and two “short” (4 mm active area) LMAs to a 

moveable microwire array of 12 tungsten microwires (Figure 6-2b). Each LMA had 15 

platinum/iridium contacts of diameter 25 µm (impedance 0.7–1 MΩ) plus a sharp tungsten tip 

that was also an active recording site (impedance < 0.1 MΩ) (Figure 6-2a). There were thus 

76 recording channels per array: 12 microwires + (16 × 4) LMA contacts. 

LMAs were placed in a square of sides 3 mm, with the microwire bundle in the centre of the 

square. The microwire guide tubes were aligned as described previously (Jackson & Fetz 

2007), and larger polyimide guide tubes (310 µm internal diameter, Cole Parmer, UK) were 

arranged in a surrounding square, using tungsten alignment rods (Advent Research Materials, 

UK). The components of the array, including the supplied LMAs, were then sterilised with 

ethylene oxide treatment. 

The final stage of construction took place the day prior to cortical implant surgery. Under 

sterile conditions, the microwires were inserted (as per Jackson & Fetz 2007). The four LMAs 

were then inserted in turn into their respective guide tubes, such that their contact sites faced 

inwards towards the microwire bundle, and fixed in place at the top with dental cement. The 

base and tops of the guide tubes were then sealed with two-part silicone (Kwik-Sil, World 

Precision Instruments, UK). 
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Figure 6-2  Design of dual-shank LMA plus tungsten microwire hybrid array. 
(a) Illustration of LMA shank design (constructed off-site by Microprobes For Life Science, MD, USA). 

See Appendices I & II for detailed specifications of the LMAs. 
(b) Illustration of the method of integration of four LMAs into a hybrid array. LMAs sat in front of 

(anterior/rostral to) and behind (posterior/occipital to) the 6 × 2 microwire array. The microwires were 
still moveable using forceps, as previously. 

(c) 2-D sectional illustration of the theoretical location of the four LMAs (side view so only two visible), 
and the microwire bundle, anterior to the central sulcus. The anterior (rostral) LMAs pass through the 
gyral convexity and into the white matter. The posterior (occipital) LMAs pass down the anterior bank 
of the central sulcus. Slice profile is traced from actual macaque histology, but not from the Monkey 
used in this study. 

(d) 3-D isometric illustration of the theoretical location of LMAs and microwires following implantation. 

— Slice profile in panel c adapted from an image kindly provided by C. Witham 
from Fig. 3 in Witham & Baker (2012), J Neurophysiol 108 (American Physiological Society) 
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6.3.2 Surgical implantation 

One subject (Monkey U) was implanted with this hybrid array, in the right M1. The surgical 

procedures were the same as described in Section 2.3. The array was rotated approximately 

30 degrees about the vertical axis, towards the midline, to account for the angle of the central 

sulcus. The long LMAs were implanted just anterior to the central sulcus, such that their 

shanks ran down into the anterior (rostral) bank of the central sulcus. The short LMAs were 

therefore 3 mm anterior to this, passing through the gyral convexity (Figure 6-2c,d). The 

microwires were advanced at the time of surgery, since it was felt that the cortex was well 

fixated by the placement of the four LMAs. The array and connectors were fixed to the skull 

with dental cement. A protective titanium cranial implant was fixed to the skull as described 

in Section 2.3. 

6.3.3 Task and electrophysiological recording. 

Monkey U performed the wrist-controlled torque task with her left wrist, as described in 

Section 2.1.2. Electrophysiological recordings were made using the TDT-based recording 

system, as per Section 2.4.1. Signals were referenced to a separate surface electrode (a 

de-insulated tungsten microwire). Signals were recorded in groups of 16 channels. The 

channel mapping was as per Table 6-1, and this information is also shown schematically in 

Figure 6-3. Lf-LFPs were calculated offline by low-pass filtering at 5 Hz. Spikes were 

occasionally seen transiently on LMA channels, but were very unstable. However, spikes 

were recorded successfully, as previously, on a number of microwire channels. 
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Table 6-1 (left) Channel mapping in Monkey U. Note that channels 13–16 were not connected. 

 
Figure 6-3 (right) Schematic of relative locations of recording sites in Monkey U. (To scale.) 

Long LMAs passed down the anterior (rostral) bank of the right central sulcus. Short LMAs passed 
through the gyral convexity. Note that the electrode locations are only illustrative, and not based on 
histological analysis. Tungsten tip electrodes were 17, 33, 49 and 65. 

6.3.4 Event-triggered average profiles across LMAs 

6.3.4.1 Method 

For the purposes of displaying the task-related structure of the lf-LFP data across all 76 

electrodes, we used the submovement-triggered average, as described in Hall, De Carvalho 

and Jackson (2014). Briefly, we identified submovements in the cursor trajectory during the 

wrist-torque task as peaks in the radial speed of the cursor. We used these peaks as events to 

perform event-triggered averaging of each of the lf-LFP channels, using the iterative approach 

described in Figure 3-1 (page 38), but with submovement events rather than spike events. 
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6.3.4.2 Results 

 

Figure 6-4  Example submovement-triggered average from 76 electrodes in M1 in Monkey U. 
Plot of submovement triggered averages (sMTAs), where colour depth represents amplitude of the sMTA. 

Channel numbers are given on the left, and correspond to those given in the previous figure. Unstable 
or broken electrodes can be identified by very large artefacts (e.g. channel 79). X indicates four 
channels in group one that were not recorded. In each LMA, the lowest-numbered channel is the 
tungsten tip. 

Unfortunately, we had a number of broken or unstable recording channels in the LMAs. 

These are evident from large artefacts in the submovement-triggered average. In this 

particular recording, we also saw an unusually small amount of variation in signal phase and 

amplitude across the tungsten microwires, compared to previous experience in other animals. 

The reason for this is unclear, but it may be because the microwires were all at a similar depth 

at the time of this recording. 

Most interestingly, we saw a large amount of structure in the lf-LFP in the long LMAs, which 

passed down the anterior (rostral) bank of the central sulcus. In the long-lateral LMA in 

particular (Figure 6-4, “Long L”), where there were no broken recording channels, we saw 

very clear evidence of strong changes in signal amplitude, phase and polarity across the LMA. 

This was in contrast to the short LMAs (e.g. Figure 6-4, “Short M”), where we saw relatively 

little signal variation between channels. 
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6.3.5 Estimating neural firing rates with a minimal number of LFPs 

We wanted to know the answer to the following question: if one only had a limited number of 

recording channels, due to the constraints of an ultra-low power implanted device, which 

electrodes would be optimal to record from? For example, is it better to have electrodes near 

the surface, deep in the anterior (rostral) bank of the central sulcus, in the gyral convexity, or 

distributed over multiple sites? 

Based on the findings of Chapter 4 of this thesis—that estimated firing rates may be a 

valuable form of control signal in lf-LFP–controlled BMIs—we used the estimation of the 

firing rate of a single neuron (recorded on a microwire) to quantify the importance of 

individual LFPs, and combinations of LFPs. 

6.3.5.1 Methods 

We recorded the spiking of a single neuron on a microwire (channel 2), and lf-LFPs on all 64 

LMA channels. We built models to estimate the firing rate of the neuron (as described in 

Section 3.3.5.1), but using only three lf-LFPs. We validated these models within-recording 

using Pearson’s correlation coefficient, r, on the last 25% of the data (as described in Section 

3.3.5.2). We did this for every one of the 41,664 ‘k-combinations’ of 3 LFPs from the set of 

64 LMA LFPs (using b = nchoosek(64,3) in MATLAB, where b = n!/((n–k)! k!) ). For each 

LMA channel, we took the mean r-value across all combinations which included that channel, 

and used that as a measure of the importance of that channel to the estimation of the neuronal 

firing rate. 

Note that it is the combination of channels included that determines the overall performance 

of our firing rate estimation model (for example, including channels with phase differences), 

not necessarily the inclusion of a particular channel. The mean r-value associated with a 

particular channel may therefore be misleading. We therefore also looked at which particular 

combinations of LMA channels performed well. 

6.3.5.2 Results 

We found that LMA channels on the long LMAs (down the rostral bank of the central sulcus) 

tended, on average, to be associated with better estimates of the firing rate than the LMAs that 

spanned the gyral convexity (Figure 6-5). Inclusion of deeper channels on the long-lateral 
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LMAs (e.g. 49–57) seemed to be particularly associated with good estimation performance. 

But one particular LMA contact on the long-medial LMA (electrode 69) stood out as being 

the channel associated with the highest performance of firing rate estimation (Figure 6-5). 

It is interesting to note that channels around 53–55 seem to be associated with the largest 

changes in the submovement-triggered average in Figure 6-4. However, from this finding for 

a single neuron, in a single animal, it is not possible to conclude anything comprehensively 

without further analysis. It is unclear why a uniquely high mean r-value is associated with 69, 

as this channel did not stand out as having a distinctive submovement-triggered average 

(Figure 6-4). 

To explore this in more detail, we looked at the best-performing combinations of neurons 

from across the LMAs (Table 6-2). 

 

Row ID Category Max. r-value LFP 1 LFP 2 LFP 3 

1 All 64 channels 0.375 35 53 69 

2 Both long LMAs 0.360 49 52 69 

3 Just Long M 0.352 68 69 76 

4 Just Long L 0.323 49 52 63 

5 Both short LMAs 0.264 17 20 37 

6 Just Short L 0.252 17 19 20 

7 Just Short M 0.24 36 37 38 

 
Table 6-2 Performance of the best combination of channels from each category in firing rate estimation with 

three LMA channels. 
Rows are sorted by column three (maximum r-value for that category). Remaining columns then list the 

three LFPs which produce that best r-value. 

Interestingly, with across all 64 electrodes, the best firing rate estimate was provided by LFPs 

taken from three different LMAs: two deep channels in the bank, and one deep channel in the 

convexity. In both cases where laterality was a variable (rows 2 and 5), the best model 

included at least one channel from both LMAs. Finally, the long LMAs clearly performed 

better than the short LMAs, but the cases restricted to single long LMAs (rows 3 and 4) both 

included one shallow channel. Beyond these superficial observations, it is not possible to 

make specific inferences from this limited analysis. Overall, however, it is noteworthy that the 

best combinations of three LFPs tended to include a channel that was remote from the other 

two channels (either in laterality, depth, or gyrus/convexity), and not a channel that you 

would necessarily predict based on Figure 6-5. 
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Figure 6-5  Example of using a minimal number (three) LFPs to estimate the firing rate of a single neuron 
recorded on a separate microwire. (To scale.) 
The size and colour of the sphere plotted at a particular electrode location indicates its mean r-value in 

estimating the neuron-of-interest, across all possible combinations of three LFPs that include that LMA 
channel. Numbers next to data-points indicate channel numbers, as per Figure 6-3. Because the neuron-
of-interest was recorded on a microwire, it was unfortunately not possible to know its precise geometric 
location. 
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6.4 Discussion 

In this chapter, we have shown the design, development, construction and implantation of a 

novel type of ‘hybrid’ electrode array. This array is designed to allow the stable recording of 

single neurons—using proven moveable microwire technology—with the geometric recording 

of LFPs – using linear microelectrode arrays (LMAs). 

Based on the limited findings we have presented here, the proposed applications of this array 

in future work are as follows: 

a) Investigating the depth profile of the SRSP and its components. 

To date, our lack of defined recording geometry and post-mortem histological tract 

reconstruction has limited our abilities to correlate the spike-related sources we see in the lf-

LFP with the anatomy of the cortex. In this chapter, we have not studied the SRSP (or STA) 

specifically, but it is interesting to note that the submovement-triggered average lf-LFP shows 

considerably more structure across a depth profile of the anterior (rostral) bank of the central 

sulcus, than it does across the laminar profile of gyral M1. Certainly, forearm movement-

related neurons, particularly those associated with the most distal extremities, are known to be 

found in this rostral bank (Geyer et al. 2000). Therefore, it is possible that we have 

misinterpreted our previous depth profiles (e.g. Figure 3-6, page 44) as laminar profiles, 

when in fact they are depth profiles down the rostral bank, and hence parallel with laminar 

boundaries, rather than perpendicular. Our finding that the ‘long’ LMAs are most informative 

for estimating the firing rate of an M1 neuron would also support this alternative theory. 

However, we cannot draw any meaningful conclusions from this single datum. 

Further work is needed to explore the depth profile of the SRSP across ‘short’ and ‘long’ 

LMAs. This should include analysis of SRSP components: specifically, whether different 

SRSP components have differing depth profiles, as this could hint at their origins. Multiple 

neurons will be required in at least two animals to reach meaningful conclusions. Ideally for 

this analysis, one would also know the locations of the neurons as well as the LFPs. 

Unfortunately, we have found recordings of neuronal spiking on our LMA contacts to be 

extremely rare, and generally unstable when present. 

Future array designs can be informed by some of the issues and limitations we have 

experienced in this subject. Contact sizes, materials and impedances may need to be modified 
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to maximise the chances of recording neurons on our linear arrays, as precise knowledge of 

the location of neurons would allow use to use source-localisation techniques that are 

currently not an option, for dissecting the lf-LFP/SRSP. We have also had issues with 

unstable LMA channels in this subject, perhaps suggesting poor electrical contacts or 

damaged insulation. Given the rich dataset that each LMA is able to provide, and the even 

richer possibilities of having multiple fully-functioning LMAs, it will be important in the 

future to discuss the design of LMAs with Microprobes Inc., in order to maximise the number 

of channels we can record from every implant. This is particularly important in primate 

subjects, in whom every implant is both scientifically and ethically critical. 

b) Investigating the origin of low-frequency cortical dynamics. 

There remains considerable debate in the field as to whether features within the LFP which 

vary in phase or polarity between separated electrodes represent interactions between distinct 

sources within the cortex (Ray & Maunsell 2011; Kajikawa & Schroeder 2011), or the effect 

of ‘traveling waves’ that propagate across the cortex (Rubino et al. 2006; Nauhaus et al. 2009; 

Nauhaus et al. 2012). Whilst broadly we feel our data support the former theory, we have not 

been able to investigate this specifically to date, due to the unknown geometry of our arrays. 

The use of geometric arrays of contacts, spanning both the depth of the sulcus, and laminar 

thickness of the cortex, will allow us to further investigate whether the phenomena we have 

reported here and elsewhere (Hall, De Carvaho & Jackson 2014) demonstrate evidence of 

travelling waves. 

c) Selecting electrode locations for brain-machine interfaces. 

As already mentioned, one of the dominant limitations of all BMIs—spike based or 

otherwise—is the huge bandwidth of data that needs to be streamed from the implant to the 

recording equipment. One solution is to put more of the signal processing, such as spike 

sorting, on the implant, so that a lower bandwidth of data has to be transmitted (e.g. Peng et 

al. 2009). The main solution we have proposed here, is to use very low frequency brain 

signals, either by exploiting their intrinsic dynamical features, or their relationships to 

underlying neural spiking. 

However, in this chapter, we have also demonstrated in principle, that very few LFPs 

(perhaps as few as three) might be needed to accurately provide a firing rate estimate, or other 

appropriate signal for biofeedback BMI control. If only three lf-LFP signals were needed for a 
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BMI control signal, and each of those signals could be sampled at rates as low as tens of 

Hertz, it could potentially reduce the energy demands of a simple BMI by many, many orders 

of magnitude. The critical factor is where those LFP electrodes are located. 

Here, we have shown one example, in which we have provided (admittedly, very limited) 

evidence that informative lf-LFP channels are most commonly found relatively deep in the 

rostral bank of the central sulcus. Having said this, it also seems important to combine such 

channels with at least one electrode located elsewhere. Clearly, to form firm conclusions on 

these points, significantly more analysis of existing data is needed, as well as replication of 

any findings in at least one other subject. 

We can envisage two scenarios. Firstly, if findings are very repeatable, it may be that we can 

design simple and reliable electrodes, with very few contacts, but appropriate geometry, to 

specifically target the ‘best’ locations for either firing rate estimation, or some other form of 

low-frequency feature extraction. However, between-subject variability is likely to be 

extremely high with these phenomena, due to the large number of uncontrollable variables 

and individual differences. Therefore, we may never reach a point where we can say exactly 

where the ‘best’ locations are, prior to surgery. 

The second scenario would be one in which multichannel electrodes are implanted, and 

recordings are initially performed in the lab. Analysis of these data could then allow us to 

identify the most valuable recording sites for feature extraction. At that point, we could move 

over to a neuroprosthetic device which only records and processes those channels which we 

have identified, whilst other channels are ignored. Such a device would be highly amenable to 

miniaturisation, because it could have very low power consumption, and therefore require a 

very small battery, which could even be implanted subcutaneously. 

6.5 Chapter summary 

• We have designed and manufactured a hybrid electrode array, combining moveable 

tungsten microwires (to enable acquisition of new spikes) and linear microelectrode 

arrays (to provide geometrically-arranged contacts for LFP recordings). 

• Preliminary analysis suggests that an optimal subset of LFPs for estimating firing rates 

would include contacts from deep in the rostral bank of the central sulcus, combined 

with at least one channel in another location. 
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• These arrays will be used for future experiments to investigate the physiology and 

depth profile of the lf-LFP, and to further explore the optimal locations for electrodes 

for low-power BMIs. 
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Chapter 7. General Discussion 

7.1 Summary and implications for the field 

Neural interfaces (including brain-machine interfaces, BMIs) are a technology on the cusp of 

delivering a step-change in neurology and rehabilitation: providing treatment to large 

numbers of people with a wide range conditions that cause life-changing arm and hand 

paralysis – a particularly important example being spinal cord injury. There has been 

enormous progress over the last decade in the development of chronic, ‘invasive’ neural 

interface devices, which record the spiking activity (action potentials) of hundreds of neurons 

in motor cortex using implanted electrodes, and decode these signals, to control external 

effectors, or stimulation of the muscles or spinal cord. 

However, it can legitimately be argued that the limitations inherent in using neuronal spike 

signals are placing bottlenecks on progress towards true ‘clinical’ BMIs: low-maintenance 

systems which could be used by patients in their own homes for many years or decades. 

Firstly, instability of neuronal recording means that firing rate-based decoders can be 

capricious. Secondly, the biological response to implanted electrodes means that action 

potential recordings cannot be maintained for sufficient periods. And thirdly, the high-

frequency nature of spikes places high power-demands on hardware, which means that 

sufficient miniaturisation of electronics and batteries, and development of ‘wireless’ 

solutions, is currently limited. 

Continuous, lower-frequency field recordings from the brain—LFPs (intracortical), ECoG 

(brain surface) and EEG (scalp surface)—have long been recognised as an alternative to 

spikes for decoding movement-related cortical activity, and providing control signals to BMI 

devices. However, in comparison to spikes, the origin of field potentials—from the 

underlying network activity of at least thousands of neurons—is less well understood.  

With action potentials, there is a near-universally accepted method of separating signal (spike 

events) from noise. It is also very widely accepted, that the firing rate of a neuron (or of many 

neurons) is a meaningful parameter, which reflects underlying brain function. Firing rates 

have been used as a feature of brain activity when investigating behaviours in nearly every 

imaginable modality. Finally, it is known that the firing rates of single (e.g. Fetz 1969) or 
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multiple (e.g. Ganguly et al. 2011) neurons can be subject to operant conditioning in closed-

loop BMIs. 

In contrast, there is less agreement on how to identify and separate ‘signal’ from ‘noise’ in 

LFPs. Moreover, there is not broad scientific consensus on what is the best way to extract 

meaningful features from the LFP. Finally, it is not clear which of these features might be 

most amenable to learning through biofeedback in a closed-loop BMI. 

A variety of recent studies have demonstrated that low-frequency signals (lf-LFPs; < 5 Hz; 

also termed local motor potentials, LMPs) are particularly informative for both offline 

decoding of kinematics (e.g. Rickert et al 2005) and online control of LFP-based motor BMIs 

(e.g. Flint et al. 2013), particularly if multiple channels of lf-LFP (Rickert et al. 2005) are 

available from different depths within the cortex (Mehring et al. 2004). However, there is still 

no consensus on which low-frequency features are best suited to closed-loop BMI control. 

In this thesis, we hypothesised that, if we could identify lf-LFP components in macaque motor 

cortex with a strong and consistent relationship to the firing rates of local neurons, then these 

should be amenable to operant conditioning and therefore provide useful features for closed-

loop LFP-based BMIs. Using spike-triggered averaging, we identified the presence of low-

frequency spike-related LFP features, which we termed spike-related slow potentials (SRSPs) 

(Chapter 3). We used these features to develop simple linear models of the relationships 

between multichannel lf-LFP and the firing rates of local neurons. Using such models, we 

were able to estimate the firing rates of single neurons, and our estimates typically captured 

around 25% of the variance of instantaneous firing rates and 75–85% of trial-averaged 

profiles. Further work is needed to better understand the underlying physiology of the SRSP, 

as this was limited by the unknown geometry of our microwires. Pharmacological 

experiments, including perhaps in vitro experiments, will also be required to fully understand 

the synaptic and receptor-level mechanisms that underlie low-frequency spike-related 

features. 

SRSP-based models were able to significantly estimate the firing rates of the majority of 

simultaneously-recorded local neurons, and firing rate estimates were stable over weeks to 

months (Chapter 4). On trial-averaged data, remarkably, LFP-based firing rate estimates 

performed as well as actual firing rates at reconstructing the task relationship of individual 

neurons (taking the ‘ground truth’ as the task relationship on day zero). In fact, task 
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relationships could be reconstructed from LFP-based estimates long after the actual neuron 

was lost. Furthermore, the dimensionality of LFP-based firing rate estimates was comparable 

to the dimensionality of the associated neural space, and LFP-based firing rate estimates 

generalised reasonably well across behaviours with different patterns of neural correlation. 

It is important to reiterate that we are not claiming that the SRSP reflects the contribution of a 

single neuron to the lf-LFP. Rather, it must (because of its amplitude) represent the activity of 

an ensemble of many cortical neurons, of which the activity of the selected neuron is 

representative. Our approach is therefore likely to be limited in its ability to resolve single 

units as the density of electrode arrays increases. Most likely, greater single-unit resolution 

will ultimately reveal tightly correlated ensembles beyond which SRSP-based separation 

becomes impossible. 

Despite these likely limitations, we found that our models were sufficiently accurate and 

specific to permit operant conditioning of individual neuron firing rates using realtime 

biofeedback based solely on lf-LFPs (Chapter 4). This indicates that our approach is capable 

of separating the unique task-related activity of the neuron of interest (and its ensemble) from 

the broader task-related activity of other neurons in that area of motor cortex (for either M1 or 

PMv). 

We propose a scenario in which, soon after electrode implantation, while clean spike 

recordings can be obtained from many neurons, model parameters that relate the firing rates 

of these neurons to lf-LFPs should be calculated. Such an approach may allow firing rate 

estimation also to be performed after spike recordings have substantially deteriorated. Future 

work will need to explore whether this approach proves more or less stable and reliable than 

the most common current alternative: using unsorted threshold crossings (so-called ‘multi-

unit spikes’) for BMI control once single neurons are lost (Gilja et al. 2012).  

We next endeavoured to develop a method for extracting movement-related features from 

multichannel lf-LFP without the prior need for recording spikes at all. We based this method 

on the observation that low-frequency intrinsic cortical dynamics appear to underlie the 

generation of periodic submovements in forelimb movement (Hall, De Carvalho & Jackson 

2014). We characterised the magnitude of these dynamical LFP features using ‘areal velocity’ 

(AV), and developed two methods for extracting AV-based signals from motor cortical 

lf-LFPs (Chapter 5). AV-based methods appeared to out-perform conventional methods of 
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feature extraction (band-power), particularly when the signal amplitude was very small, on 

chronically-implanted electrodes. 

A monkey was able to use these AVs (extracted using the jPCA-based method) to control a 

biofeedback BMI task in one and two dimensions, and the consistent direction of rotation, and 

largely consistent frequency of rotation within each plane, supported the hypothesis that LFP 

dynamics reflect intrinsic properties of motor cortical networks, rather than low-frequency 

artefacts resulting from overt movement. Having said this, these biofeedback experiments 

have only been reported from a single animal, and therefore further experiments and analysis 

will be required to corroborate these findings. 

The ‘areal velocity component’ (AVC) can be thought of as a novel type of signal that can be 

derived from the lf-LFP (Chapter 5). Compared to a differential signal, it is theoretically less 

sensitive to both correlated and uncorrelated noise. These are particularly useful properties for 

LFP-controlled chronic BMIs, where noise is likely to be a considerable issue. Calculation of 

the AVC can also expand the dimensionality of the LFP feature space (since N LFP channels 

yields ½N(N−1) LFP pairs). However, it is likely that activity will be constrained to only a 

small portion of this high-dimensional space. An important area of future research will 

therefore be to determine which and how many combinations of these areal velocity features 

are under volitional control. 

In order to further investigate the physiological nature of the SRSP and of low-frequency 

cortical dynamics, we developed a new type of hybrid electrode array (Chapter 6), which 

incorporates moveable microwires (to allow stable single-unit recording) and four linear 

microelectrode arrays (to provide a geometric profile of the LFP both across the layers of M1 

in the gyral convexity, and down the rostral bank of the central sulcus). We explored the use 

of a minimal subset of LFPs from the available channels. Preliminary analysis involving 

firing rate estimation of a single neuron using only three lf-LFPs, suggests that channels 

located deep in the central sulcus may be particularly informative, but particularly when 

combined with at least one channel in a different location (Chapter 6). We propose that even 

greater energy savings (on top of those achieved by using low sampling rates) could be 

achieved in BMI applications, by careful selection and recording of only an optimal subset of 

channels from those available. Further analysis, and replication in another subject, will clearly 

be required before we can formalise these ideas. Histological analysis of post-mortem tissue 

from the subjects will also be critical, to reconstruct the anatomical locations of our LMA 
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contacts, and this will also provide insights into the physiology of the SRSP and other low-

frequency phenomena. 

7.2 Future directions 

The work presented in this thesis potentially contributes towards the development of a low-

power, chronically implanted neural interface, which uses low-frequency multichannel LFP 

activity as its input, and computationally simple approaches to signal processing. 

Such a device could parsimoniously address the three main limitations of current neural 

interfaces: long-term stability, power consumption and implantability. Reducing sampling 

frequency to tens of Hertz, and using simple on-board processing could significantly help 

address the latter two limitations, because it would dramatically reduce the power 

consumption of the device, in turn reducing battery size and facilitating miniaturisation for 

subcutaneous implantation. Once the recording and processing equipment can be 

subcutaneously implanted, this paves the way for development of fully-implantable neural 

interfaces, which could produce their effects by delivering electrical stimulation to implanted 

electrodes in the muscles, or in the spinal cord, below the level of injury. An exciting area for 

future research is therefore to explore how best low-frequency signals can be decoded for 

control of such stimulation. 

Power consumption could be reduced even further by reducing the absolute number of 

channels which are needed to control a neural interface device. Our preliminary results 

suggest that this should be possible if electrodes are located in optimal locations, or if an 

approach can be developed to identify the optimal subset of electrodes from those available. 

Ultra-low bandwidth devices are a particularly exciting avenue for future work, because they 

open up the possibility of wireless communication between an implanted device and the 

outside world. 

In summary, we envisage a situation within the next twenty years, in which production of a 

fully-implantable neural interface device becomes possible, which is affordable enough to be 

offered to patients with spinal cord injury (or other conditions) via the National Health 

Service, or other healthcare systems. I hope that the research presented in this thesis 

represents a positive contribution to the body of research that allows this to happen. 



 176 

 

  



 177 

References 

Abiri, P., Abiri, A., et al., 2017. Inductively powered wireless pacing via a miniature 
pacemaker and remote stimulation control system. Scientific Reports, Article number: 
6180. 

Aflalo, T.N. & Graziano, M.S.A., 2006. Partial tuning of motor cortex neurons to final 
posture in a free-moving paradigm. Proceedings of the National Academy of Sciences of 
the United States of America, 103(8), pp.2909–2914. 

Amar, A.B., Kouki, A.B. & Cao, H., 2015. Power approaches for implantable medical 
devices. Sensors, 15(11), pp.28889–28914. 

Andersen, R.A., Burdick, J.W., et al., 2004. Cognitive neural prosthetics. Trends in Cognitive 
Sciences, 8(11), pp.486–493. 

Andersen, R.A., Musallam, S. & Pesaran, B., 2004. Selecting the signals for a brain-machine 
interface. Current Opinion in Neurobiology, 14(6), pp.720–726. 

Antonic, A. et al., 2013. Stem cell transplantation in traumatic spinal cord injury: a systematic 
review and meta-analysis of animal studies. PLoS Biology, 11(12), p.e1001738. 

Arora, P. 2016. FPGA-based design for low system power consumption. Power Electronics. 
www.powerelectronics.com; published 7 April 2016, accessed 20 May 2018. 

Asher, I. et al., 2007. Comparison of direction and object selectivity of local field potentials 
and single units in macaque posterior parietal cortex during prehension. Journal of 
Neurophysiology, 97(5), pp.3684–3695. 

Baker, S.N., Olivier, E. & Lemon, R.N., 1997. Coherent oscillations in monkey motor cortex 
and hand muscle EMG show task-dependent modulation. The Journal of Physiology, 
501(1), pp.225–241. 

Baker, S.N., Kilner, J.M., Pinches, E.M. & Lemon, R.N., 1999. The role of synchrony and 
oscillations in the motor output. Experimental Brain Research, 128, pp.109–117. 

Baker, S.N., 2011. The primate reticulospinal tract, hand function and functional recovery. 
The Journal of Physiology, 589(Pt 23), pp.5603–5612. 

Bansal, A.K. et al., 2011. Relationships among low-frequency local field potentials, spiking 
activity, and three-dimensional reach and grasp kinematics in primary motor and ventral 
premotor cortices. Journal of Neurophysiology, 105(4), pp.1603–1619. 

Barrese, J.C. et al., 2013. Failure mode analysis of silicon-based intracortical microelectrode 
arrays in non-human primates. Journal of Neural Engineering, 10(6), p.066014. 

Belitski, A. et al., 2008. Low-Frequency Local Field Potentials and Spikes in Primary Visual 
Cortex Convey Independent Visual Information. Journal of Neuroscience, 28(22), 
pp.5696–5709. 



 178 

Bellman, R., 1957. Dynamic Programming. North Chelmsford, MA: Courier Corporation.  

Bensmaia, S.J. & Miller, L.E., 2014. Restoring sensorimotor function through intracortical 
interfaces: progress and looming challenges. Nature Reviews Neuroscience, 15(5), 
pp.313–325. 

Berens, P. et al., 2008. Comparing the feature selectivity of the gamma-band of the local field 
potential and the underlying spiking activity in primate visual cortex. Frontiers in systems 
neuroscience, 2, pp.1–11. 

Bhagat, N.A. et al., 2016. Design and Optimization of an EEG-Based Brain Machine 
Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors. Frontiers in 
Neuroscience, 10, p.122. 

Biran, R., Martin, D.C. & Tresco, P.A., 2005. Neuronal cell loss accompanies the brain tissue 
response to chronically implanted silicon microelectrode arrays. Experimental neurology, 
195(1), pp.115–126. 

Boudrias, M-H., McPherson, R.L., Frost, S.B. & Cheney, P.D., 2009. Output properties and 
organization of the forelimb representation of motor areas on the lateral aspect of the 
hemisphere in rhesus macaques. Cerebral Cortex, 20, pp.169–186. 

Bradberry, T.J., Gentili, R.J. & Contreras-Vidal, J.L., 2010. Reconstructing three-dimensional 
hand movements from noninvasive electroencephalographic signals. Journal of 
Neuroscience, 30(9), pp.3432–3437. 

Brosch, M., Budinger, E. & Scheich, H. 2002. Stimulus-related gamma oscillations in primate 
auditory cortex. Journal of Neurophysioligy, 87(6), pp.2715–2725. 

Buzsáki, G., 2004. Neuronal Oscillations in Cortical Networks. Science, 304(5679), pp.1926–
1929. 

Buzsáki, G., Anastassiou, C.A. & Koch, C., 2012. The origin of extracellular fields and 
currents — EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, pp.1–14. 

Campbell, P.K. et al., 1991. A silicon-based, three-dimensional neural interface: 
manufacturing processes for an intracortical electrode array. IEEE Transactions on Bio-
medical Engineering, 38(8), pp.758–768. 

Canolty, R.T. et al., 2010. Oscillatory phase coupling coordinates anatomically dispersed 
functional cell assemblies. Proceedings of the National Academy of Sciences of the 
United States of America, 107(40), pp.17356–17361. 

Carmena, J.M., 2013. Advances in neuroprosthetic learning and control. PLoS Biology, 11(5), 
p.e1001561. 

Carmena, J.M. et al., 2003. Learning to Control a Brain–Machine Interface for Reaching and 
Grasping by Primates. PLoS Biology, 1(2), pp.194–208. 

Carracedo, L.M. et al., 2013. A neocortical delta rhythm facilitates reciprocal interlaminar 
interactions via nested theta rhythms. Journal of Neuroscience, 33(26), pp.10750–10761. 



 179 

Chao, Z.C., Nagasaka, Y. & Fujii, N., 2010. Long-term asynchronous decoding of arm 
motion using electrocorticographic signals in monkeys. Frontiers in Neuroengineering, 3, 
p.3. 

Chauvette, S. et al., 2011. Properties of slow oscillation during slow-wave sleep and 
anesthesia in cats. Journal of Neuroscience, 31(42), pp.14998–15008. 

Cherry, E.C., 1953. Some experiments on the recognition of speech, with one and with two 
ears. Journal of the Acoustical Society of America, 25(5), pp.975–979. 

Churchland, M.M. et al., 2010. Cortical Preparatory Activity: Representation of Movement or 
First Cog in a Dynamical Machine? Neuron, 68(3), pp.387–400. 

Churchland, M.M. et al., 2012. Neural population dynamics during reaching. Nature, 487, 
pp.51–56. 

Colgin L.L. & Moser E.I., 2012. Gamma oscillations in the hippocampus. Physiology, 25(5), 
pp.319–329. 

Cunningham, J.P. & Yu, B.M., 2014. Dimensionality reduction for large-scale neural 
recordings. Nature Publishing Group, 17(11), pp.1500–1509. 

Daly, J.J. & Wolpaw, J.R., 2008. Brain-computer interfaces in neurological rehabilitation. 
Lancet Neurology, 7(11), pp.1032–1043. 

Dayan, P. & Abbott, L.F., 2005. Neural Encoding I: Firing Rates and Spike Statistics. In P. 
Dayan & L. F. Abbott, eds. Theoretical Neuroscience: Computational and Mathematical 
Modeling of Neural Systems. Cambridge MA: MIT Press, pp. 1–42. 

Destexhe, A., 1998. Spike-and-wave oscillations based on the properties of GABAB 
receptors. Journal of Neuroscience, 18(21), pp.9099–9111. 

Destexhe, A., Contreras, D. & Steriade, M., 2001. LTS cells in cerebral cortex and their role 
in generating spike-and-wave oscillations. Neurocomputing, 38, pp.555–563. 

Dine, J. et al., 2014. Optogenetic evocation of field inhibitory postsynaptic potentials in 
hippocampal slices: a simple and reliable approach for studying pharmacological effects 
on GABAA and GABAB receptor-mediated neurotransmission. Frontiers in Cellular 
Neuroscience, 8, pp.1–8. 

Dlugosz, R.T. & Iniekski, K. 2006. Ultra low power current-mode algorithmic analog-to-
digital converter implemented in 0.18/spl mu/m CMOS technology for wireless sensor 
network. MIXDES 2006, Proceedings of the International Conference, Gdynia, Poland 

Einevoll, G.T. et al., 2007. Laminar population analysis: estimating firing rates and evoked 
synaptic activity from multielectrode recordings in rat barrel cortex. Journal of 
Neurophysiology, 97(3), pp.2174–2190. 

Einevoll, G.T. et al., 2013. Modelling and analysis of local field potentials for studying the 
function of cortical circuits. Nature Reviews Neuroscience, 14(11), pp.770–785. 



 180 

Engelhard, B. et al., 2013. Inducing Gamma Oscillations and Precise Spike Synchrony by 
Operant Conditioning via Brain-Machine Interface. Neuron, 77(2), pp.361–375. 

Ethier, C. et al., 2012. Restoration of grasp following paralysis through brain-controlled 
stimulation of muscles. Nature, 485(7398), pp.368–371. 

Fabiani, G.E. et al., 2004. Conversion of EEG activity into cursor movement by a brain-
computer interface (BCI). IEEE Transactions on Neural Systems and Rehabilitation 
Engineering, 12(3), pp.331–338. 

Fagg, A.H. et al., 2007. Biomimetic brain machine interfaces for the control of movement. 
Journal of Neuroscience, 27(44), pp.11842–11846. 

Fan, J.M. et al., 2014. Intention estimation in brain-machine interfaces. Journal of Neural 
Engineering, 11(1), p.016004. 

Fetz, E.E., 1969. Operant conditioning of cortical unit activity. Science, 163(3870), pp.955–
958. 

Fetz, E.E. & Baker, M.A., 1973. Operantly conditioned patterns on precentral unit activity 
and correlated responses in adjacent cells and contralateral muscles. Journal of 
Neurophysiology, 36(2), pp.179–204. 

Flesher, S.N. et al., 2016. Intracortical microstimulation of human somatosensory cortex. 
Science Translational Medicine, 8(361), p.361ra141. 

Flint, R.D. et al., 2013. Long term, stable brain machine interface performance using local 
field potentials and multiunit spikes. Journal of Neural Engineering, 10(5), p.056005. 

Flint, R.D. et al., 2016. Long-Term Stability of Motor Cortical Activity: Implications for 
Brain Machine Interfaces and Optimal Feedback Control. Journal of Neuroscience, 
36(12), pp.3623–3632. 

Flint, R.D., Ethier, C., et al., 2012. Local field potentials allow accurate decoding of muscle 
activity. Journal of Neurophysiology, 108(1), pp.18–24. 

Flint, R.D., Lindberg, E.W., et al., 2012. Accurate decoding of reaching movements from 
field potentials in the absence of spikes. Journal of Neural Engineering, 9(4), p.046006. 

Flint, R.D., Wright, Z.A. & Slutzky, M.W., 2012. Control of a biomimetic brain machine 
interface with local field potentials: performance and stability of a static decoder over 200 
days. In Conference proceedings: Engineering in Medicine and Biology Society (EMBC), 
2012 34th Annual International Conference of the IEEE. San Diego, pp. 6719–6722. 

Galán, F. et al., 2008. A brain-actuated wheelchair: asynchronous and non-invasive Brain-
computer interfaces for continuous control of robots. Clinical Neurophysiology, 119(9), 
pp.2159–2169. 

Ganguly, K. & Carmena, J.M., 2009. Emergence of a stable cortical map for neuroprosthetic 
control. PLoS Biology, 7(7), p.e1000153. 



 181 

Ganguly, K. et al., 2011. Reversible large-scale modification of cortical networks during 
neuroprosthetic control. Nature Neuroscience, 14(5), pp.662–667. 

Georgopoulos, A.P. et al., 1982. On the relations between the direction of two-dimensional 
arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 
2(11), pp.1527–1537. 

Geyer, S. et al., 2000. Functional neuroanatomy of the primate isocortical motor system. 
Anatomy and embryology, 202(6), pp.443–474. 

Gilja, V. et al., 2012. A high-performance neural prosthesis enabled by control algorithm 
design. Nature Neuroscience, 15(12), pp.1752–1757. 

Gilja, V. et al., 2015. Clinical translation of a high-performance neural prosthesis. Nature 
medicine, 21(10), pp.1142–1145. 

Green, A.M. & Kalaska, J.F., 2011. Learning to move machines with the mind. Trends in 
Neurosciences, 34(2), pp.61–75. 

Hall, T.M., de Carvalho, F. & Jackson, A., 2014. A common structure underlies low-
frequency cortical dynamics in movement, sleep, and sedation. Neuron, 83(5), pp.1185–
1199. 

Hall, T.M., Nazarpour, K. & Jackson, A., 2014. Real-time estimation and biofeedback of 
single-neuron firing rates using local field potentials. Nature communications, 5, p.5462. 

Hart, C.B. & Giszter, S.F., 2010. A neural basis for motor primitives in the spinal cord. 
Journal of Neuroscience, 30(4), pp.1322–1336. 

Henze, D.A. et al., 2000. Intracellular features predicted by extracellular recordings in the 
hippocampus in vivo. Journal of Neurophysiology, 84(1), pp.390–400. 

Hermes, D. Miller, K.J. & Wandell, B.A., 2015. Gamma oscillations in visual cortex: The 
stimulus matters. Trends in Cognitive Sciences, 19(2), pp.57–58. 

Hochberg, L.R. et al., 2006. Neuronal ensemble control of prosthetic devices by a human with 
tetraplegia. Nature, 442(7099), pp.164–171. 

Hochberg, L.R. et al., 2012. Reach and grasp by people with tetraplegia using a neurally 
controlled robotic arm. Nature, 485(7398), pp.372–375. 

Hutcheon, B., Miura, R.M. & Puil, E., 1996. Subthreshold membrane resonance in neocortical 
neurons. Journal of Neurophysiology, 76(2), pp.683–697. 

Hwang, E.J. & Andersen, R.A., 2009. Brain control of movement execution onset using local 
field potentials in posterior parietal cortex. Journal of Neuroscience, 29(45), pp.14363–
14370. 

Hwang, E.J. & Andersen, R.A., 2013. The utility of multichannel local field potentials for 
brain–machine interfaces. Journal of Neural Engineering, 10(4), p.046005. 



 182 

Hwang, E.J., Bailey, P.M. & Andersen, R.A., 2013. Volitional control of neural activity relies 
on the natural motor repertoire. Current biology, 23(5), pp.353–361. 

Intan Technologies, LLC, 2013. RHD2000 Series Digital Electrophysiology Interface Chips: 
RHD2216, RHD2132. www.intantech.com, version: 5 September 2013, accessed: 15 May 
2018. 

Ito, J., 2015. Spike-Triggered Average. In D. Jaeger & R. Jung, eds. Encyclopedia of 
Computational Neuroscience. Berlin, Germany: Springer. 

Jackson, A. & Fetz, E.E., 2007. Compact Movable Microwire Array for Long-Term Chronic 
Unit Recording in Cerebral Cortex of Primates. Journal of Neurophysiology, 98(5), 
pp.3109–3118. 

Jackson, A. & Fetz, E.E., 2011. Interfacing With the Computational Brain. IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, 19(5), pp.534–541. 

Jackson, A. & Hall, T.M., 2017. Decoding Local Field Potentials for Neural Interfaces. IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, 25(10), pp.1705–1714. 

Jackson, A. & Zimmermann, J.B., 2012. Neural interfaces for the brain and spinal cord--
restoring motor function. Nature Reviews Neurology, 8(12), pp.690–699. 

Kajikawa, Y. & Schroeder, C.E., 2011. How Local Is the Local Field Potential? Neuron, 
72(5), pp.847–858. 

Katzner, S. et al., 2009. Local Origin of Field Potentials in Visual Cortex. Neuron, 61(1), 
pp.35–41. 

Kaufman, M.T. et al., 2014. Cortical activity in the null space: permitting preparation without 
movement. Nature Publishing Group, 17(3), pp.440–448. 

Kipke, D.R. et al., 2008. Advanced Neurotechnologies for Chronic Neural Interfaces: New 
Horizons and Clinical Opportunities. Journal of Neuroscience, 28(46), pp.11830–11838. 

Kokotilo, K.J., Eng, J.J. & Curt, A., 2009. Reorganization and preservation of motor control 
of the brain in spinal cord injury: a systematic review. Journal of Neurotrauma, 26(11), 
pp.2113–2126. 

Krasoulis, A. et al., 2014. Generalizability of EMG decoding using local field potentials. 
Conference proceedings: Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. 
Annual Conference, 2014, pp.1630–1633. 

Kreiman, G. et al., 2006. Object selectivity of local field potentials and spikes in the macaque 
inferior temporal cortex. Neuron, 49(3), pp.433–445. 

Leach, J.B., Achyuta, A.K.H. & Murthy, S.K., 2010. Bridging the Divide between 
Neuroprosthetic Design, Tissue Engineering and Neurobiology. Frontiers in 
Neuroengineering, 2, pp.1–19. 



 183 

Lebedev, M.A. & Nicolelis, M.A.L., 2006. Brain–machine interfaces: past, present and future. 
Trends in Neurosciences, 29(9), pp.536–546. 

Lemon, R.N. et al., 2004. Direct and indirect pathways for corticospinal control of upper limb 
motoneurons in the primate. In Progress in Brain Research. Progress in Brain Research. 
Elsevier, pp. 263–279. 

Łęski, S. et al., 2013. Frequency dependence of signal power and spatial reach of the local 
field potential. PLoS Computational Biology, 9(7), p.e1003137. 

Leuthardt, E.C. et al., 2004. A brain–computer interface using electrocorticographic signals in 
humans. Journal of Neural Engineering, 1(2), pp.63–71. 

Levine, S.P. et al., 2000. A direct brain interface based on event-related potentials. IEEE 
Transactions on Rehabilitation Engineering, 8(2), pp.180–185. 

Logothetis, N.K., 2003. The underpinnings of the BOLD functional magnetic resonance 
imaging signal. Journal of Neuroscience, 23(10), pp.3963–3971. 

Markowitz, D.A. et al., 2011. Optimizing the decoding of movement goals from local field 
potentials in macaque cortex. Journal of Neuroscience, 31(50), pp.18412–18422. 

McFarland, D.J. et al., 2008. Emulation of computer mouse control with a noninvasive brain-
computer interface. Journal of Neural Engineering, 5(2), pp.101–110. 

Mehring, C. et al., 2004. Comparing information about arm movement direction in single 
channels of local and epicortical field potentials from monkey and human motor cortex. 
Journal of Physiology - Paris, 98(4-6), pp.498–506. 

Miall, R.C., Weir, D.J. & Stein, J.F., 1993. Intermittency in human manual tracking tasks. 
Journal of motor behavior, 25(1), pp.53–63. 

Moritz, C.T. & Fetz, E.E., 2011. Volitional control of single cortical neurons in a brain–
machine interface. Journal of Neural Engineering, 8(2), p.025017. 

Moritz, C.T., Perlmutter, S.I. & Fetz, E.E., 2008. Direct control of paralysed muscles by 
cortical neurons. Nature, 456(7222), pp.639–642. 

Nauhaus, I. et al., 2012. Robustness of traveling waves in ongoing activity of visual cortex. 
Journal of Neuroscience, 32(9), pp.3088–3094. 

Nauhaus, I. et al., 2009. Stimulus contrast modulates functional connectivity in visual cortex. 
Nature Neuroscience, 12(1), pp.70–76. 

NSCISC, 2017. National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance. 
National Spinal Cord Injury Statistical Center. Available at: https://www.nscisc.uab.edu/ 
[Accessed October 21, 2017]. 

O'Leary, J.G. & Hatsopoulos, N.G., 2006. Early visuomotor representations revealed from 
evoked local field potentials in motor and premotor cortical areas. Journal of 
Neurophysiology, 96(3), pp.1492–1506. 



 184 

Okun, M., Naim, A. & Lampl, I., 2010. The subthreshold relation between cortical local field 
potential and neuronal firing unveiled by intracellular recordings in awake rats. Journal of 
Neuroscience, 30(12), pp.4440–4448. 

Pendegrass, C.J. et al., 2008. Sealing the skin barrier around transcutaneous implants: in vitro 
study of keratinocyte proliferation and adhesion in response to surface modifications of 
titanium alloy. The Bone and Joint Journal, 90(1), pp.114–121. 

Peng, C.-C., Xiao, Z. & Bashirullah, R., 2009. Toward energy efficient neural interfaces. 
IEEE Transactions on Bio-medical Engineering, 56(11 Pt 2), pp.2697–2700. 

Penttonen, M., & Buzsáki, G., 2003. Natural logarithmic relationship between brain 
oscillators. Thalamus Relat. Syst., 2, pp.145–152. 

Perge, J.A. et al., 2013. Intra-day signal instabilities affect decoding performance in an 
intracortical neural interface system. Journal of Neural Engineering, 10(3), p.036004. 

Perreault, E.J., Kirsch, R.F. & Acosta, A.M., 1999. Multiple-input, multiple-output system 
identification for characterization of limb stiffness dynamics. Biological cybernetics, 
80(5), pp.327–337. 

Pesaran, B. et al., 2002. Temporal structure in neuronal activity during working memory in 
macaque parietal cortex. Nature Neuroscience, 5(8), pp.805–811. 

Pfurtscheller, G. et al., 2003. “Thought” control of functional electrical stimulation to restore 
hand grasp in a patient with tetraplegia. Neuroscience letters, 351(1), pp.33–36. 

Polikov, V.S., Tresco, P.A. & Reichert, W.M., 2005. Response of brain tissue to chronically 
implanted neural electrodes. Journal of Neuroscience Methods, 148(1), pp.1–18. 

Rasch, M.J. et al., 2008. Inferring Spike Trains From Local Field Potentials. Journal of 
Neurophysiology, 99(3), pp.1461–1476. 

Rasch, M.J., Logothetis, N.K. & Kreiman, G., 2009. From Neurons to Circuits: Linear 
Estimation of Local Field Potentials. Journal of Neuroscience, 29(44), pp.13785–13796. 

Ray, S. & Maunsell, J.H.R., 2011. Network rhythms influence the relationship between spike-
triggered local field potential and functional connectivity. Journal of Neuroscience, 
31(35), pp.12674–12682. 

Ray, S. & Maunsell, J.H.R., 2014. Do gamma oscillations play a role in cerebral cortex? 
Trends in Cognitive Sciences, 19(2), pp.78–85. 

Rickert, J. et al., 2005. Encoding of Movement Direction in Different Frequency Ranges of 
Motor Cortical Local Field Potentials. Journal of Neuroscience, 25(39), pp.8815–8824. 

Rosenberg, J.R. et al., 1989. The Fourier approach to the identification of functional coupling 
between neuronal spike trains. Progress in biophysics and molecular biology, 53(1), 
pp.1–31. 

Rouse, A.G. & Schieber, M.H., 2015. Advancing brain-machine interfaces: moving beyond 
linear state space models. Frontiers in systems neuroscience, 9, p.108. 



 185 

Rubino, D., Robbins, K.A. & Hatsopoulos, N.G., 2006. Propagating waves mediate 
information transfer in the motor cortex. Nature Neuroscience, 9(12), pp.1549–1557. 

Sadtler, P.T. et al., 2014. Neural constraints on learning. Nature, 512(7515), pp.423–426. 
Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393644/. 

Scheid, M.R., Flint, R.D. & Wright, Z.A., 2013. Long-term, stable behavior of local field 
potentials during brain machine interface use. In Conference proceedings: Engineering in 
Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of 
the IEEE. Osaka, pp. 307–310. 

Schwartz, A.B. et al., 2006. Brain-Controlled Interfaces: Movement Restoration with Neural 
Prosthetics. Neuron, 52(1), pp.205–220. 

Serruya, M.D. et al., 2002. Instant neural control of a movement signal. Nature, 416(6877), 
pp.141–142. 

Simeral, J.D. et al., 2011. Neural control of cursor trajectory and click by a human with 
tetraplegia 1000 days after implant of an intracortical microelectrode array. Journal of 
Neural Engineering, 8(2), p.025027. 

Slutzky, M.W. et al., 2011. Decoding the rat forelimb movement direction from epidural and 
intracortical field potentials. Journal of Neural Engineering, 8(3), p.036013. 

So, K. et al., 2014. Subject-specific modulation of local field potential spectral power during 
brain-machine interface control in primates. Journal of Neural Engineering, 11(2), 
p.026002. 

Spinal Research, 2017. Spinal Research. International Spinal Research Trust. Available at: 
https://www.spinal-research.org/ [Accessed October 21, 2017]. 

Srinivasan, R., Nunez, P.L. & Silberstein, R.B., 1998. Spatial filtering and neocortical 
dynamics: estimates of EEG coherence. IEEE Transactions on Bio-medical Engineering, 
45(7), pp.814–826. 

Stavisky, S.D. et al., 2015. A high performing brain-machine interface driven by low-
frequency local field potentials alone and together with spikes. Journal of Neural 
Engineering, 12(3), p.036009. 

Steriade, M., Timofeev, I. & Grenier, F., 2001. Natural waking and sleep states: a view from 
inside neocortical neurons. Journal of Neurophysiology, 85(5), pp.1969–1985. 

Sun, T., Xie, X. & Wang Z., 2013. Design challenges of wireless power transfer for medical 
microsystems. IEEE International Wireless Symposium (IWS), 2013, Beijing, pp.1–4. 

Suner, S. et al., 2005. Reliability of signals from a chronically implanted, silicon-based 
electrode array in non-human primate primary motor cortex. IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, 13(4), pp.524–541. 

Taylor, D.M., Tillery, S.I.H. & Schwartz, A.B., 2002. Direct cortical control of 3D 
neuroprosthetic devices. Science, 296(5574), pp.1829–1832. 



 186 

Tseng, P., Chang, Y-T., Fang, C-F., Liang, W-K. & Juan C-H., 2016. The critical role of 
phase difference in gamma oscillation within the temporoparietal network for binding 
visual working memory. Scientific Reports, 6, Article number: 32138. 

Velliste, M. et al., 2008. Cortical control of a prosthetic arm for self-feeding. Nature, 
453(7198), pp.1098–1101. 

Waldert, S. et al., 2008. Hand movement direction decoded from MEG and EEG. Journal of 
Neuroscience, 28(4), pp.1000–1008. 

Waldert, S., Lemon, R.N. & Kraskov, A., 2013. Influence of spiking activity on cortical local 
field potentials. Journal of Physiology, 591(21), pp.5291–5303. 

Wang, D. et al., 2014. Long-term decoding stability of local field potentials from silicon 
arrays in primate motor cortex during a 2D center out task. Journal of Neural 
Engineering, 11(3), p.036009. 

Wessberg, J. et al., 2000. Real-time prediction of hand trajectory by ensembles of cortical 
neurons in primates. Nature, 408(6810), pp.361–365. 

Westwick, D.T. et al., 2006. Identification of multiple-input systems with highly coupled 
inputs: application to EMG prediction from multiple intracortical electrodes. Neural 
computation, 18(2), pp.329–355. 

WHO, 2013. Spinal cord injury: Factsheet No. 384. World Health Organization. Available at: 
http://www.who.int/mediacentre/factsheets/fs384/en/ [Accessed October 21, 2017]. 

Witham, C.L. & Baker, S.N., 2012. Coding of digit displacement by cell spiking and network 
oscillations in the monkey sensorimotor cortex. Journal of Neurophysiology, 108(12), 
pp.3342–3352. 

Xing, D., Yeh, C.-I. & Shapley, R.M., 2009. Spatial spread of the local field potential and its 
laminar variation in visual cortex. Journal of Neuroscience, 29(37), pp.11540–11549. 

Young, N.A., Collins, C.E. & Kaas, J.H., 2013. Cell and neuron densities in the primary 
motor cortex of primates. Frontiers in neural circuits, 7, p.30. 

Zanos, S. et al., 2012. Relationships between spike-free local field potentials and spike timing 
in human temporal cortex. Journal of Neurophysiology, 107(7), pp.1808–1821. 

Zanos, S. et al., 2011. The Neurochip-2: an autonomous head-fixed computer for recording 
and stimulating in freely behaving monkeys. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, 19(4), pp.427–435. 

Zhang, D. 2014. Ultra-low-power analog-to-digital converters for medical applications. 
Linköping University Institute of Technology, Doctoral Dissertation. 

Zimmermann, J.B., Seki, K. & Jackson, A., 2011. Reanimating the arm and hand with 
intraspinal microstimulation. Journal of Neural Engineering, 8(5), p.054001. 

 



 187 

Appendices 

Appendix I: Specifications of dual “Long”-shank LMA 
• The following designs were sent to: Microprobes For Life Science, 18247 Flower Hill 

Way D, Gaithersburg, MD 20879, USA 

• They were produced by Brian and Martin Bak of Microprobes, to our specifications. 

• Impedances after implantation were typically in the range 300–700 kΩ at 1000 Hz. 
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Appendix II: Specifications of dual “Short”-shank LMA 
• Production and approximate impedances, as above. 
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Indices 

Index of acronyms and abbreviations 

Abbreviation Page where first defined: 
No index entries found.Cases 

1-D/2-D/3-D;  One/two/three-dimensional .............................................................................. 22 

AC,  Alternating current ........................................................................................................... 31 

ANOVA;  Analysis of variance ................................................................................................... 77 

BCI;  Brain-computer interface .................................................................................................. 1 

BMI;  Brain-machine interface ................................................................................................... 1 

CED,  Cambridge Electronic Design (recording systems) ....................................................... 30 

CNS;  Central nervous system .................................................................................................... 1 

DOF;  Degree of freedom ......................................................................................................... 91 

ECoG,  Electrocortico-gram/-graphy (dural surface) ............................................................... 13 

EEG,  Electroencephalo-gram/-graphy (scalp surface) .............................................................. 3 

EMG,  Electromyo-gram/-graphy ............................................................................................. 28 

GABAB;  gamma-Aminobutyric acid receptor type B ............................................................. 57 

jPCA;  A variant of PCA, which explicitly looks for planes in the data with rotational 
tendency. ............................................................................................................................. 109 

lf-LFP,  Low-frequency local field potential (< 5 Hz) ............................................................. 13 

LFP,  Local field potential .......................................................................................................... 6 

M1,  Primary motor cortex ......................................................................................................... 3 

MIMO;  Multiple-input, multiple-output (model) .................................................................... 40 

MRI,  Magnetic resonance imaging ......................................................................................... 26 

PC(A);  Principal component (analysis) ................................................................................... 46 

s.d.;  Standard deviation ........................................................................................................... 48 

s.e.m.;  Standard error of the mean ........................................................................................... 39 

SNR,  Signal-to-noise ratio ......................................................................................................... 7 

SRSP;  Spike-related slow potential ......................................................................................... 39 
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STA,  Spike-triggered average ................................................................................................. 37 

TDT,  Tucker-Davis Technologies (recording systems) .......................................................... 30 

TMI;  Torque modulation index ............................................................................................... 81 

 

Conventions for mathematical variables 

x(t), (italic);  Scalar variable (or function of time) 

x(t), (bold lower-case);  Vector variable 

X, (bold upper-case);  Matrix variable 

𝑥 ∈ ℝ, (blackboard bold);  Number set (e.g. x is a member of the real number set) 

x̅, (bar modifier);  Mean value of variable 

ẋ, (dot modifier);  First derivative 

â(t), (hat modifier);  Estimated variable from model 

|a|, (pipe brackets);  Absolute value of variable 

aval, (subscript ‘val’);  Indicates validation data. 
 

Index of common terms 

Common Term Page where first defined: 
Statutes 

a′n;  Areal velocity component (AVC) calculated from a pair of input signals ..................... 115 

aϱ(t);  Scalar magnitude (signed) of the areal velocity of particle ϱ in state space ................ 104 

c,  Cursor position (percentage of screen) ................................................................................ 23 

C(τ),  Spike-triggered average function (Volts), in timebase τ ................................................ 37 

D; Receiver-operating characteristic (ROC) discrimination index ........................................ 124 

Fi,j;  F-statistic from ANOVA, with degrees of freedom within and between groups as 
subscript, respectively. ......................................................................................................... 78 

H(τ);  Q-by-P finite impuse response filter kernel matrix ....................................................... 40 

h′p(τ);  Vector of six filter kernels for estimating neuron p ..................................................... 47 

hpq(τ);  Individual element of H(τ), with matrix location (p, q) ............................................... 41 
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J;  Projection matrix produced by jPCA. ............................................................................... 111 

K;  Matrix output from areal velocity component (AVC) analysis algorithm ....................... 117 

M̂;  Estimated transformation matrix describing linear dynamical system in jPCA. ............. 110 

Mp; lf-LFP reprojection matrix for estimating neuron p .......................................................... 48 

p (decimal);  Probability of Type 1 error (range 0 to 1) ........................................................... 41 

p (index);  Index of neuron in model. p = 1, ..., P .................................................................... 47 

P;  Number of neurons in model .............................................................................................. 40 

q;  Index of LFP in model. q = 1, ..., Q .................................................................................... 40 

Q;  Number of LFPs in model. ................................................................................................. 40 

r(-value);  Pearson's correlation coefficient ............................................................................. 42 

sp(t);  'Source estimate' vector for pth neuron ............................................................................ 48 

T,  Duration of the recording (seconds) .................................................................................... 37 

Ty; Y-axis (downward) torque at the wrist ............................................................................. 119 

vϱ(t);  2-d velocity vector of particle ϱ in state space ............................................................. 103 

x̂(t),  Estimated neuronal firing rate function (Hertz), from model .......................................... 24 

x(t),  Multichannel neuronal firing rate vector ......................................................................... 40 

x(t);  Actual neuronal firing rate function (Hertz) .................................................................... 23 

xϱ(t);  2-d position vector of particle ϱ in state space ............................................................. 103 

y(t),  Local field potential waveform function (Volts) ............................................................. 37 

ŷ(t),  Multichannel estimated lf-LFP vector, from model ......................................................... 41 

y(t),  Multichannel LFP waveform vector ................................................................................ 40 

y′p(t);  'Source projection' vector of LFP data for estimation of neuron p ............................... 48 

z(t);  Principal component projection of the lf-LFP space (where relevant) .......................... 116 

κp(τ),  Inverse filter kernels for estimating firing rates from 'source projections' .................... 48 

λ;  Decay constant (seconds) .................................................................................................... 23 

ϱ;  Label for a theoretical particle in higher dimensional LFP space. .................................... 102 

σ;  Proportion of spikes retained in simulation of noisy spike trains (%). ............................... 75 

τ,  Time around spike event (seconds) ...................................................................................... 37 

 


