712 research outputs found

    Information Theoretic Authentication and Secrecy Codes in the Splitting Model

    Full text link
    In the splitting model, information theoretic authentication codes allow non-deterministic encoding, that is, several messages can be used to communicate a particular plaintext. Certain applications require that the aspect of secrecy should hold simultaneously. Ogata-Kurosawa-Stinson-Saido (2004) have constructed optimal splitting authentication codes achieving perfect secrecy for the special case when the number of keys equals the number of messages. In this paper, we establish a construction method for optimal splitting authentication codes with perfect secrecy in the more general case when the number of keys may differ from the number of messages. To the best knowledge, this is the first result of this type.Comment: 4 pages (double-column); to appear in Proc. 2012 International Zurich Seminar on Communications (IZS 2012, Zurich

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Constructing Optimal Authentication Codes with Perfect Multi-fold Secrecy

    Full text link
    We establish a construction of optimal authentication codes achieving perfect multi-fold secrecy by means of combinatorial designs. This continues the author's work (ISIT 2009) and answers an open question posed therein. As an application, we present the first infinite class of optimal codes that provide two-fold security against spoofing attacks and at the same time perfect two- fold secrecy.Comment: 4 pages (double-column); to appear in Proc. 2010 International Zurich Seminar on Communications (IZS 2010, Zurich

    On the equivalence of authentication codes and robust (2,2)-threshold schemes

    Get PDF
    In this paper, we show a "direct" equivalence between certain authentication codes and robust secret sharing schemes. It was previously known that authentication codes and robust secret sharing schemes are closely related to similar types of designs, but direct equivalences had not been considered in the literature. Our new equivalences motivate the consideration of a certain "key-substitution attack." We study this attack and analyze it in the setting of "dual authentication codes." We also show how this viewpoint provides a nice way to prove properties and generalizations of some known constructions

    On the equivalence of authentication codes and robust (2,2)-threshold schemes

    Get PDF
    In this paper, we show a “direct” equivalence between certain authentication codes and robust secret sharing schemes. It was previously known that authentication codes and robust secret sharing schemes are closely related to similar types of designs, but direct equivalences had not been considered in the literature. Our new equivalences motivate the consideration of a certain “key-substitution attack.” We study this attack and analyze it in the setting of “dual authentication codes.” We also show how this viewpoint provides a nice way to prove properties and generalizations of some known constructions

    Disjoint difference families and their applications

    Get PDF
    Difference sets and their generalisations to difference families arise from the study of designs and many other applications. Here we give a brief survey of some of these applications, noting in particular the diverse definitions of difference families and the variations in priorities in constructions. We propose a definition of disjoint difference families that encompasses these variations and allows a comparison of the similarities and disparities. We then focus on two constructions of disjoint difference families arising from frequency hopping sequences and showed that they are in fact the same. We conclude with a discussion of the notion of equivalence for frequency hopping sequences and for disjoint difference families

    Authentication and Secrecy Codes for Equiprobable Source Probability Distributions

    Full text link
    We give new combinatorial constructions for codes providing authentication and secrecy for equiprobable source probability distributions. In particular, we construct an infinite class of optimal authentication codes which are multiple-fold secure against spoofing and simultaneously achieve perfect secrecy. Several further new optimal codes satisfying these properties will also be constructed and presented in general tables. Almost all of these appear to be the first authentication codes with these properties.Comment: 5 pages (double-column); to appear in Proc. IEEE International Symposium on Information Theory (ISIT 2009, Seoul, South Korea

    Perfect Secrecy Systems Immune to Spoofing Attacks

    Full text link
    We present novel perfect secrecy systems that provide immunity to spoofing attacks under equiprobable source probability distributions. On the theoretical side, relying on an existence result for tt-designs by Teirlinck, our construction method constructively generates systems that can reach an arbitrary high level of security. On the practical side, we obtain, via cyclic difference families, very efficient constructions of new optimal systems that are onefold secure against spoofing. Moreover, we construct, by means of tt-designs for large values of tt, the first near-optimal systems that are 5- and 6-fold secure as well as further systems with a feasible number of keys that are 7-fold secure against spoofing. We apply our results furthermore to a recently extended authentication model, where the opponent has access to a verification oracle. We obtain this way novel perfect secrecy systems with immunity to spoofing in the verification oracle model.Comment: 10 pages (double-column); to appear in "International Journal of Information Security

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    corecore