
Alexandre Jorge Teixeira Miranda Pinto

Applications of Kolmogorov
Complexity to Cryptography

Departamento de Ciências de Computadores
Faculdade de Ciências da Universidade do Porto

2007

Alexandre Jorge Teixeira Miranda Pinto

Applications of Kolmogorov
Complexity to Cryptography

Tese submetida à Faculdade de Ciências da
Universidade do Porto para obtenção do grau de Doutor

em Ciência de Computadores

Departamento de Ciências de Computadores
Faculdade de Ciências da Universidade do Porto

2007

Acknowledgments

I am indebted to many people who have supported me during these four years. First
of all, I want to thank my advisors Armando Matos and Luís Antunes who taught me
all the basics abouts research. They introduced me to the fields of Kolmogorov and
Computational Complexity and guided me in my first steps in these areas. I thank
them for their patience in answering my questions when all still seemed so strange
and vague. They tirelessly reviewed my work, pointing my mistakes and generally
showing me the best way to improve, and allowed me to develop and nurture my love
for Cryptography. They taught me all I know about writing papers and having fun
with science at the same time.

I wish to thank all my coauthors during these years, Luís Antunes, Lance; Fortnow,
Sophie Laplante, Armando Matos, Liliana Salvador, André Souto, for letting me use
our papers for my thesis.

I also want to thank Lance Fortnow for receiving me in Chicago and showing me how
much I had yet to learn. I took many valuable lessons from conversations with him
and from his clever proofs and ideas.

I am also enormously grateful to Sophie Laplante for letting me stay at the LRI for
almost a month. It was extremely pleasant to work with her and I owe Sophie some
important ideas for this thesis. A word of gratitude goes to all the people I met there
and with whom I had so many interesting conversations: Troy, Marc, Vincent, Loïc,
Frédéric and all the others whose names I sadly have not kept but who made this one
of the best times in my PhD. My thanks also go to Woo-Jun Park for being such an
excellent office companion while I was there.

I thank Jonathan Katz and Moses Liskov for crucial insights; Manuel Barbosa and
Pooya Farshim for many ideas and discussions regarding cryptography in general and
all the people I met at DCC during these years, in particular, Jorge, David, Hugo,
Nuno, Marco, André and Andreia. I also extend my thanks to Patrick Plouffe for
revising the French version of the abstract.

For financial support, I thank the Fundação para a Ciência e Techologia, LIACC and
the Fundação Luso-Americana para o Desenvolvimento.

I would not have survived this PhD if it had not been for the world outside resarch.
I have a bottomless debt of gratitude to my friends Plácido, César, Zé Maria, Ana
Maria, Nuno, Hélder and Ana. Our endless adventures in the worlds of D&D always

3

served as a sanity check and an escape from the sometimes hard life of research, an
outlet for fantasy and free creative thought. I cherish all the hours I spent devising the
next twist in their adventures in the Land of Mists or dealing with the moral dilemmas
of my dear Knight of Solamnia. I also want to thank Filipe, Hugo Silva and Hugo
Ferreira for all the good times and the promise of future adventures and my teacher
Carlos Teixeira for having such a high confidence in me, even more than myself. His
support was of the utmost importance for my self-esteem.

I leave for the end those to whom I owe the most, those that were always indefatigably
supporting me through the hardships. My sister Ana and my parents were the ones
who never doubted I could do it and gave me the strength to continue at those
times when all seemed lost and useless. Through the years, they taught me two very
important lessons: to listen others and value their opinion, but to analyse anything
they say before accepting it.

I can not express all the support of my wife Linda who listened to all my doubts
and conflicts. She was always understanding, a source of companionship and renewed
strength and more than anyone else the person that made me persevere and fight for
success until the end. I owe much of this PhD to her patience, trust and love.

4

Abstract

The corner stone of modern cryptography is the notion of proof of security. There
are two basic notions of security: information-theoretic security and computational
security. Schemes which have the first kind of security are unconditionally secure: no
matter how powerful the adversary is, the scheme will be secure. Schemes with com­
putational security are dependent on the validity of some computational assumption,
stating that a certain problem is hard for a resource-bounded adversary (the bound is
usually time).

Proofs of security usually try to establish that a given scheme is secure against a
specific kind of attack by stating that the advantage the attacker gains by knowing
some specific information is negligible when measured over all instances of the scheme.
This advantage is measured as the difference between the probabilities of success that
the adversary has in two situations where a single factor changes. For example, it could
be the difference between the probability of guessing a plaintext when she knows the
ciphertext or not; or it could be the difference between the probabilities of choosing
each one between two possible plaintext messages for a given ciphertext.

In this thesis, we introduce the evaluation of security of a cryptographic scheme at the
level of its instances by defining a different notion of advantage. Instead of considering
the difference of two probabilities, we define it as the difference between the amounts
of information necessary to break a particular instance when some extra knowledge
is known, where information is defined according to the theory of Kolmogorov com­
plexity. The security of the system can then be measured by the average security of
its instances, being that the system is secure if the expected value of the information
gained by the extra knowledge is low.

Our results are divided in three parts. In the first one, we analyse three systems that
have unconditional security. For these, we define the notion of individual security
and show that, if sufficiently many instances are individually secure, then the average

5

information-theoretic advantage is also low. This suggests that the individual notion
is more refined than the traditional global one.

In the second part, we show that information-theoretic commitment systems can be
built from a composition of a secure cypher and a secure authentication system. We
also show that optimal commitment systems can also be decomposed in a pair of
unconditionally secure cypher and authentication systems, thus showing that this
composition is the only way of building optimal commitment systems.

In the third part, we address the possibility of extending the analysis done in the
first part to systems that have only computational proofs of security, by comparing
different notions of computational entropy with the expected value of time bounded
Kolmogorov complexity. The aim is to find a parallel to the relation between Shannon's
entropy and the expected value of unbounded Kolmogorov complexity. We show that
at least half of this relation exists.

6

Resumo

A base da criptografia moderna é a noção de prova de segurança. Há dois tipos básicos
de segurança: segurança baseada na teoria da informação e segurança computacional.
Esquemas com o primeiro tipo de segurança são incondicionalmente seguros: o es­
quema é seguro independentemente do poder computacional do adversário. Esquemas
com segurança computacional dependem da validade de uma assunção computacional,
afirmando que um dado problema é difícil para um adversário com recursos limitados
(em que usualmente o recurso é o tempo).

Normalmente, as provas de segurança tentam estabelecer que um dado esquema é
seguro contra um ataque específico ao garantir que a vantagem que um atacante
ganha por saber uma dada informação é negligenciável quando medida sobre todas
as instâncias do esquema. Esta vantagem é medida como a diferença entre as prob­
abilidades de sucesso que o adversário tem em duas situações onde um único factor
muda. Por exemplo, pode ser a diferença entre a probabilidade quando o atacante
conhece o texto cifrado e aquela quando este é desconhecido; ou pode ser a diferença
entre as probabilidades de escolher cada um de dois possíveis textos originais para um
dado texto cifrado.

Nesta tese, apresentamos a avaliação de segurança de um esquema eriptográfico ao
nível das suas instâncias, definindo uma noção de vantagem diferente. Em vez de
considerarmos a diferença entre duas probabilidades, definimos vantagem como sendo
a diferença entre a quantidade de informação necessária para quebrar uma dada
instância nas duas situações diferenciadas pelo conhecimento adicional do atacante,
onde a informação é definida de acordo com a teoria da complexidade de Kolmogorov.
A segurança do sistema pode então ser medida pela média da segurança das suas
instâncias, sendo que o sistema é seguro se o valor esperado da informação obtida com
o conhecimento da informação extra for baixo.

Os resultados dividem-se em três partes. Na primeira, analisamos três sistemas que

7

têm segurança incondicional. Para estes, definimos uma noção de segurança individ­
ual e mostramos que, se um número suficiente de instâncias forem seguras, então a
vantagem média de acordo com a teoria da informação é próxima de 0. Isto sugere
que a noção individual é mais refinada que a versão global tradicional.

Na segunda parte, mostra-se que sistemas de compromisso seguros segundo a teoria
da informação podem ser construídos a partir de uma composição de um sistema de
cifra e um sistema de autenticação seguros. Também se mostra que qualquer sistema
de compromisso óptimo pode ser decomposto num par de um sistema de cifra e um
sistema de autenticação seguros, mostrado assim que esta composição é a única forma
de construir sistemas de compromisso óptimos.

Na terceira parte, estudamos a possibilidade de generalizar a análise feita na primeira
parte a sistemas que apenas têm provas de segurança computacional, comparando
diferentes noções de entropia computacional com o valor esperado da complexidade
de Kolmogorov limitada no tempo. O objectivo é encontrar uma relação paralela
à existente entre a entropia de Shannon e o valor esperado da complexidade de
Kolmogorov sem limites de tempo. Mostramos que pelo menos metade desta relação
é válida.

8

Resume

La cryptographie moderne est basée sur la notion de preuve de la sécurité. Il y a
deux types basiques de sécurité: la sécurité en accord avec la théorie de l'information
ainsi que la sécurité computationelle. Les schémas du premier type de sécurité sont
inconditionnellement sécuritaires, même si l'adversaire est computationellement tout-
puissant. Par contre, la sécurité des schémas avec sécurité computationelle dépend
de la validité d'une supposition computationelle affirmant qu'un certain problème est
difficile pour un adversaire avec des ressources limités, où la ressource utilisée; est, en
général, le temps.

D'habitude, les preuves de la sécurité essaient d'établir qu'un certain schéma est
sécuritaire contre une attaque spécifique en garantissant que l'avantage que l'attaquant
gagne, parce qu'il connaît une certaine information, est négligeable quand elle est
mesurée sur toutes les instances possibles du schéma. Cet avantage est la différence
entre les probabilités de succès de l'adversaire en deux situations distinctes, où un seul
facteur est changé. Par exemple, cela pouvait être la différence entre les probabilités
de trouver le texte clair quand le texte chiffré est connu et quand il ne l'est pas; ou
cela pouvait être la différence entre la probabilité de choisir chaqu'un d'entre (Unix
possibles textes clairs pour un certain texte chifré.

Dans cette thèse, nous présentons une évaluation de sécurité d'un schéma cryptographique
au niveau de ses instances, définissant une notion d'avantage différente. Elle n'est plus
la différence entre deux probabilités, mais la différence entre la quantité d'information
nécessaire pour briser une certaine instance dans les deux situations distinguées par
une connaissance additionelle de l'adversaire, où cette information est définie en accord
avec la théorie de la complexité de Kolmogorov. La sécurité du système peut alors être
définie comme la moyenne de la sécurité de ses instances, et le système sera sécuritaire
si la valeur attendue de l'information obtenue avec la connaissance additionelle est
petite.

i)

Nos résultats sont divisés en trois parties. Dans la première, on analyse trois systèmes
possédant de la sécurité unconditionelle. Pour ceux-ci, on définit une notion de sécurité
individuelle et on démontre que, s'il y a un numéro assez grand d'instances sécuritaires,
alors l'avantage moyen d'accord avec la théorie de l'information est presque zéro. Cela
suggère que la notion individuelle est plus raffinée que la version globale traditionnelle.

Dans la deuxième partie, on montre que les systèmes de compromis sécuritaires par
rapport à la théorie de l'information peuvent être produits avec une composition d'un
système chiffreur et d'un système d'authentification sécuritaires. On montre aussi que
tout le système de compromis optimale peut être décomposé en un pair d'un système
de chiffre et d'un système d'authentification sécuritaires, montrant ainsi que cette
composition est la seule façon de faire des systèmes de compromis optimales.

Dans la troisième partie, on étudie la possibilité de généralizer l'analyse faite dans la
première partie à des systèmes qui n'ont que des preuves de sécurité computationelle,
par la comparaison de différentes notions d'entropie computationelle avec la valeur
attendue de la complexité de Kolmogorov avec des limites de temps. L'objectif est de
trouver un parallèle de la relation existante entre l'entropie de Shannon et la valeur
attendue de la complexité de Kolmogorov sans limites de temps. On montre qu'une
moitié de cette relation se tient.

10

Contents

Abstrac t 5

Resumo 7

Resume 9

List of Tables 17

List of Figures 19

Index of Notat ion 20

1 Int roduct ion 23

1.1 Cryptography through history 23

1.2 Perfect security 24

1.3 Computational Security 25

1.4 Kolmogorov complexity 27

1.5 Individual security 28

1.6 Organization of the Thesis 29

2 Preliminaries 31

2.1 Notation 31

11

2.2 Number theory 32

2.2.1 Modular Arithmetic 33

2.2.2 Algebraic Structures 33

2.2.3 Galois Fields 34

2.3 Series 35

2.4 Probability Theory 36

2.4.1 Random Variables 37

2.4.2 Statistical Distance 40

2.4.3 Useful inequalities 40

2.5 Information Theory 41

2.5.1 Min-entropy 45

2.5.2 Compressibility 45

2.6 Combinatorial Designs 47

2.7 Computability Theory 49

2.7.1 Turing machines 50

2.7.2 Universal machines 53

2.8 Computational Complexity Theory 54

2.8.1 Asymptotic notation 55

2.8.2 Basic Complexity Classes 55

2.8.3 Pseudorandomness 58

2.9 Kolmogorov complexity 62

2.9.1 Prefix Kolmogorov Complexity 64

2.9.2 Two part description 66

2.9.3 Mutual Information 67

2.9.4 Universal measure 68

12

2.9.5 Time-bounded Kolmogorov Complexity 70

2.9.6 CAM Complexity 71

2.9.7 Relation with Shannon Entropy 72

2.10 Cryptography 73

2.10.1 Information-Theoretic Security 73

2.10.2 Cryptographic Algorithms 74

2.10.2.1 Symmetric Cipher Systems 74

2.10.2.2 Secret Sharing Systems 74

2.10.2.3 Authentication Systems 75

2.10.2.4 Representation of Authentication Systems 76

2.10.2.5 Some Results About Authentication Systems 79

2.10.2.6 Commitment Systems 80

3 Individual Security of Cryptographic Systems 83

3.1 Cipher Systems 84

3.1.1 Motivation 84

3.1.2 Information theoretic security of cipher systems 85

3.1.3 Instance security for cipher systems 86

3.1.4 Instance security of one-time pad 88

3.1.5 Non-uniform distribution of keys 90

3.1.6 Resource-bounded instance security of one-time pad 91

3.1.7 Weak keys 92

3.2 Threshold Secret Sharing Schemes 93

3.2.1 Motivation 93

3.2.2 Information theoretic security of threshold secret sharing schemes 93

3.2.3 Individual secrecy of secret sharing schemes 94

13

3.2.4 Instance security of Shamir's scheme 96

3.3 Unconditional Security of Authentication Codes 99

3.3.1 Information theoretic security 100

3.3.1.1 Impersonation Attack 100

3.3.1.2 Substitution Attack 102

3.3.2 Individual Security Measures 104

3.3.2.1 Impersonation Attack 104

3.3.2.2 Substitution Attack 106

3.3.2.3 Instance Security 107

3.3.3 Secure Systems 109

3.3.3.1 Auxiliary Proofs 112

4 Analysis of Commitment Systems 115

4.1 Analysis of Commitment Schemes 116

4.1.1 Security 116

4.1.2 Construction of Commitment Schemes 119

4.2 Flow Analysis 122

4.3 Optimal Commitment Schemes 125

4.4 Generalization to Galois Fields 130

5 Computat ional Entropy 133

5.1 Introduction 133

5.2 Preliminaries 136

5.2.1 Yao's Effective Entropy (Hc) 136

5.2.2 BSW's Yao-type pseudoentropy (#J a o) 138

5.3 Relations between Hc and Hj™ 139

14

5.4 Relations between Hc and K1 143

5.5 Relation between Hj™ and Kl 145

5.6 Relations for Specific Distributions 148

5.6.1 Uniform Distribution 148

5.6.2 Universal Distribution m* 149

6 Conclusion and Open Problems 155

Bibliography 158

15

16

List of Tables

2.1 a resolvable 1-design 48

2.2 An example authentication system 76

2.3 The same system, with the coded messages written as the concatenation

of the source value and the authenticator 77

2.4 The incidence matrix of the example system 78

2.5 An insecure system 78

3.1 An insecure system 106

4.1 Roles Played 119

4.2 Equivalences between systems 120

4.3 Information Flows 125

17

18

List of Figures

4.1 A Cipher Scheme 122

4.2 An Authentication Scheme 123

4.3 A Commitment Scheme 123

19

20

Index of Notation

e
E*
Z.„
71

(I)
\n\
\x\
\X\
M
AC(S,A,JCJ(k,s),g(k,(s,a)),a,p)
B P P

CM(Xty,K,V,f{k,x),g(v,k),at0)
CP{V,C,K,,f(k,p))
E X P

F P

GF(pn)
H(X)
H(X,Y)
H(X\Y)

Hc(S;n)
Hd

c(S;n)
HJ»°(S)
Hj°°+(X)

the empty word, 31
the set of finite strings formed from alphabet E, 31
the set of residues modulo n, 33
the set of positive integers not greater than n that
are coprime with it, 34
bitwise exclusive-or, 88
absolute value of a number n, 32
length of a string x, 32
cardinality of a set X, 32
the set of integers from 1 to w, 93
an authentication system, 79
the class of decision problems solvable in probabilis­
tic polynomial time with two-sided error, 57
a commitment system, 81
a cipher system, 74

the class of decision problems solvable in determin­
istic exponential time, 56
the class of functions that can be computed in
deterministic polynomial time, 138
the Galois Field of size pn, 35
the Shannon entropy of random variable X, 42
the joint entropy of random variables X and Y, 43
the conditional entropy of random variable X know­
ing random variable Y, 43
effective entropy of source S for large n, 138
the deterministic version of effective entropy, 139
computational Yao-like entropy of source S, 138
inefficient Yao-like computational entropy, 145

21

22

I(X;Y) the mutual information contained in random vari­
able Y about X, 44

IK{X : y) the information contained in y about x, 67
I(k : xyw|/Lz) the average mutual information that a group of g —

1 unqualified users can gain about the secret in a
secret sharing scheme, 96

K(x) prefix-free Kolmogorov complexity of x, 65
^(x) the time-bounded Kolmogorov complexity of x, 70
Ln(M;S) the expected length of a codeword for source S

under the encoding scheme M, 137
m(-) the universal distribution, 68
N P the class of decision problems solvable in nondeter-

ministic polynomial time, 56
P the class of decision problems solvable in determin­

istic polynomial time, 56
Pv[A] the probability of event A occurring, 36
Pd. deception probability of level i. For i = 0, this is

the probability of an impersonation attack, and for
i = 1 that of a substitution attack, 100

P P T the class of functions that can be computed in
probabilistic polynomial time, 138

Pi[X = x,Y = y] the joint probability of random variable X taking
value x and random variable Y taking value y, 39

Pr[X — x\Y = y] the conditional probability that random variable X
takes value x given that random variable Y takes
value y, 39

SS(JC,S,d,r) a secret sharing system, 75
xyq_! the concatenation of some q — 1 pairs of public and

private share of a secret sharing scheme, 93
xyw the concatenation of all public and private shares of

a secret sharing scheme, 93

Chapter 1

Introduction

1.1 Cryptography through history

The need for secrecy has accompanied mankind from the beginning of civilization.
As each society discovered writing, sooner or later it felt the need for secret writing.
The techniques invented to reach this goal have developed through the ages into what
we call today Cryptography David Kahn, in 'The Codebreakers' ([Kah96]), gives a
lengthy and exhaustive account of its development through history, and how it was
mostly driven, until recent years, by the needs of state, military or political. He
reports the emergence of steganography and cryptography in ancient times, in Greece,
Mesopotamia, Egypt and India, and gives several accounts of the techniques used or
simply theorized.

The first attempts at communicating secretly merely tried to conceal the existence of
a message, which is the objective of steganography, but better than hiding a secret is
to render it unintelligible, so that if the cover is somehow broken it will still remain
inaccessible to the adversary. Such is the purpose of cryptography: to alter the text
in a way that it becomes secret, or incomprehensible, except for a legitimate reader.
Perhaps the most famous cryptographic user of Antiquity was Jules Caesar, who used
to communicate in secret writing by replacing each letter by the one three places down
in the alphabet. Even today, ciphers that consist of simply displacing an alphabet are
called Caesar's ciphers. The counterpart to cryptography, the art of hiding messages,
is cryptanalysis, that of retrieving the hidden meaning of a ciphered message. It was
first systematically invented, and probably used, by the Arabs, and is documented in
a book from the fifteenth century by Al-Qalqashandi which credited as its main source

23

24 CHAPTER 1. INTRODUCTION

a writer of the previous century, Ibn ad-Duraihim. Thus was born cryptology, the
unification of cryptography and cryptanalysis in a single science.

Cryptology greatly developed in Europe from the Renaissance onwards. Different kinds
of codes and ciphers were proposed and a steady progress in cryptanalysis maintained
until Kerckhoffs, in the late nineteenth century, set down in writing the basic principles
of military cryptology that are valid still today: the system must be unbreakable in
practice, if not in theory; the security of the system should rest entirely on a secret key,
and not on the details of the implementation: it is safe to assume the enemy knows all
the details of its construction and operation, safe for the secret key. Furthermore, he
reinforced that any given cryptographic system could be considered secure only after
the excruciating examination of cryptanalysis.

It is this very concept of security, and especially that of theoretic security, that has
eluded cryptographers through all the history of this discipline. No system was
ever devised that could be called totally secure, or unbreakable; sooner or later, a
cryptanalyst came and penetrated the layers of secrecy woven by each system. But
there is one exception: Vernam's one-time pad, proposed during the first World War by
Gilbert Vernam and eventually instituted in the German diplomatic service between
1921 and 1923 due to the work of Werner Kunze, Rudolf Schaufner and Erich Langlotz.

What makes the one-time pad secure is that it uses a totally random key that has
the same length of the message that is going to be enciphered with the restriction
that each key is used only once. Each character is enciphered by being added to
the next character of the key. This system resists even a brute-force attack, for
all the attacker learns from the ciphertext is the length of the message. But even
though cryptographers had reached the conclusion that such a system was the only
cryptographic system that could be theoretically secure, there was still no proof of it.

1.2 Perfect security

The proof came only in the middle of the twentieth century. In 1948, Claude Shannon
inaugurated the discipline of information theory with his paper "A mathematical
theory of communication" [Sha48], where the author defined the notion of entropy and
showed that it corresponded to the amount of information associated with any given
statistical event. One year later, in another paper entitled "Communication Theory of
Secrecy Systems" ([Sha49]), he analysed secure communication and precisely defined
what it means for a system to be secure, also showing that Vernam's scheme met this

1.3. COMPUTATIONAL SECURITY 25

definition. Not only that, any cipher system that is unconditionally secure must be
isomorphic to the one-time pad.

Prom this moment on, cipher systems could be demonstrated secure or not, but there
was one inconvenience: Shannon's proof showed that for a system to be secure, it had
to use a key as long as the message, implying that to provide secure communication
of a certain amount of text, at least as much text must be previously communicated
in a completely secure fashion. This does not mean that these systems are useless, far
from it. For top-level military or national secrets, none other are advised, but they
entail a phase of pre-distribution of secrets that is sensitive and costly to perform,
often requiring other security systems than the cipher system itself.

In simple terms, when one claims a certain cryptographic system is secure, this means
that an attacker can not get more information from it than what is publicly available,
according to the definitions of the system. This is a very intuitive view that conceals
many parameters, for example, what the attacker can do to the system, how fast she
can compute, what information she is allowed to have and what she should not be
able to get. But one thing is fixed: the claim must hold when the attacker knows
everything about the system's implementation, except the private information that is
eventually held by the legitimate participants.

Meanwhile, cryptography began to be used in computer systems, which led to the
emergence of other kinds of tasks that had to be securely carried on within untrusted or
uncontrolled environments, or even in the presence of hostile and active users. Accord­
ingly, cryptology swelled to include the study of many more different tasks than just
secret communication, and today covers a whole array of different problems. Secrecy,
however, is still at its heart. For some of these tasks, it has been possible to devise
implementations with proofs of perfect security similar to that of the one-time pad.
Information theory is the ubiquitous tool used in such proofs, and accordingly, perfect
or unconditional security is also many times called information-theoretic security.

1.3 Computational Security

In the best of worlds, we would use only those cryptographic systems that we know
are secure. However, as has been described above, the notion of security is not
trivial and took the whole story of civilization to find out. Even now that we can
prove some systems secure, we have found, to our dissatisfaction, that they require
very long secret, perfectly random, keys to enjoy that security. Neither of these is

26 CHAPTER 1. INTRODUCTION

a practical requirement, meaning that they can not be carried out in situations of
frequent and lengthy traffic, as for example, military communications on the field or
the encipherment of all bank transactions occurring daily in the world. Unfortunately,
ours probably is not the best world possible and we have to live with the restrictions
imposed by reality. That includes accepting less than perfect cryptography.

Going back to Kerckhoffs's guidelines, we see that we can not use totally unbreakable
systems in our daily life. So we turn to systems that can not be broken in practice.
Unfortunately, we do not have any certainty in this field either. We have made fast
progress since the 1980s, and we have defined what it means to be secure against
practical adversaries. However, we still don't know any system that is secure according
to such definition. There are several good candidates, for many different cryptographic
problems and applications, but their security depends on the veracity of computational
assumptions that we believe are indeed true, but we could not prove yet to be so.

These assumptions are statements about the computational power of a limited adver­
sary, usually with restrictions in the maximum time available to perform its computa­
tions. Systems that are proven secure against computational adversaries, under these
assumptions, are said to have provable security, or computational security.

This concept first appeared in a paper by Whitfield Diffie and Martin Hellman in 1976
[DH76], when they proposed to build cipher systems with a break-through idea: to use
two keys instead of one. Each user of the system would have two keys, one of which
she would publicize to every one who might send her a message. For this reason, this
is called the public key. The other key must be kept secret. These two keys are such
that it is very easy to compute a cipher text for each message with the public key.
It is also easy to revert this encipherment if the private key is known, but unfeasible
otherwise. But since there must be one specific private key for each public key, the
system can not be unconditionally secure: given enough time, an adversary could test
all possible private keys and find the only one that works. Although believed to be
secure in practice, under Shannon's theory such systems are in fact extremely insecure.

The definitions of security vary according to the cryptographic task at hand, but for
any given task, the definitions of information-theoretic and computational security
are similar: they compare the probabilities an attacker has of succeeding at a given
attack when she knows some extra piece of information, and when she simply guesses
at random without knowing this extra information. The difference between these
probabilities is called the advantage of the attacker. In information-theoretic systems,
this must be 0 for all instances. In computationally secure systems, the probability

1.4. KOLMOGOROV COMPLEXITY 27

that this advantage is significant must be very low. It is in general not possible; to
outlaw the existence of bad instances, but we can design systems that, under the right
assumptions, have only a negligible fraction of such bad cases.

1.4 Kolmogorov complexity

The cornerstone of information theory is the notion of entropy, defined by Shannon
in his 1948 paper. It is a measure of the quantity of information present in a random
source, or communicated by a random experiment. It is also a good measure of the
total randomness present in a source. Since its inception, this quantity has been
recognized as extremely useful and used in innumerable applications.

However, there are some inadequacies of entropy as a measure of randomness or
information: first, it is defined for a given distribution, and therefore it gives a notion of
the uncertainty over the result of that distribution, and in this sense of its randomness,
but it can not say anything about the randomness of the individual objects in that
distribution. This is reflected, for instance, in the following experiment: if we throw a
coin in the air a hundred times and collect the results, we are as likely to get a string
with a hundred zeroes as any other string, including one that looks random. Intuitively,
though, we would be hard pressed to believe that a string of a hundred zeroes might
be called random. It is, no doubt, a possible result of a random experiment, but
intrinsically, the string contains no randomness at all. However, entropy can not
capture this. Secondly, this same all-zeroes string does not contain much information:
it is just the repetition, for a hundred times, of a single bit 0. If we compare it with a
string of the same length full of 0s and Is at irregular places, we must surely say that
the latter must have more information in itself. But once again, this kind of difference
between strings can not be determined by entropy alone.

These questions led to the development of an alternative notion to quantify information
in the sixties, proposed independently by Solomonoff, Kolmogorov and Chaitin [Sol64,
Kol65, Cha66]. This quantity is now known as Kolmogorov complexity and is defined
as the length of the shortest program that can produce a given string. Unlike entropy,
this quantity depends exclusively on the string, and not on the probability with which
it is sampled from some given distribution. As such, Kolmogorov complexity measures
the intrinsic information and randomness of a given string.

There is yet another important difference between entropy and Kolmogorov com­
plexity: entropy is absolute, in that it considers the information contained in a

28 CHAPTER 1. INTRODUCTION

source irrespectively of the computational power available to the extractor of that
information, and there is no obvious way to include these restrictions in its definition
although, as will be seen later in this thesis, there have been proposals in that direction.
Kolmogorov complexity is also absolute in the same sense, but it is much easier to
consider the effect of time restrictions in this scenario. But there is an important
drawback to Kolmogorov complexity: it is not computable, and even polynomial-time
bounded Kolmogorov complexity takes an exponential time to compute.

So far, we have highlighted the differences between entropy and Kolmogorov complex­
ity. Nonetheless, there are also important similarities between them, which will play
a crucial role in this thesis: they both are measured in bits, their theories have similar
properties, with formally equal inequalities, and it can even be shown that for a given
distribution, the average of the Kolmogorov complexity of the elements in its support
is asymptotically equal to the entropy of that distribution.

1.5 Individual security

The relation of entropy with Kolmogorov complexity and of the former with perfect
security suggests the possibility that Kolmogorov complexity can be used in proofs of
perfect security. Furthermore, since it can be easily adapted to include time-bound
limits, it is at least a priori possible that it can be used in proofs of computational
security, a field where entropy has little to say.

In this thesis, we explore the idea that Kolmogorov complexity can serve as a unifying
notion within the field of cryptography, by working at the level of the instances instead
of the distributions involved. The main objective is to provide proofs of security based
on Kolmogorov complexity for public-key systems, while at the same time bringing
the current theory of perfectly secure systems to work also under this quantity.

The approach we take is to consider and measure the security of individual instances.
Instead of evaluating the advantage an adversary gains from the ciphertext in her
probability at guessing a plaintext, we consider rather the amount of information about
the plaintext that she gains from the ciphertext. This information is not dependent
on the distribution used, but is intrinsic to the instance. Different distributions might
give low or high probability to those instances in which the extra knowledge available
to the attacker gives noticeable information about the secret. There is the potential,
then, that a certain system is shown to be almost secure, or secure up to a certain
parameter, for distributions that are not good enough according to entropy perfect

1.6. ORGANIZATION OF THE THESIS 29

security proofs.

1.6 Organization of the Thesis

We begin in Chapter 2 by giving an introduction to several subjects that are needed
to understand the thesis.

In Chapter 3, we define the notion of "individual security" using Kolmogorov com­
plexity to quantize the information leaked in each instance. We believe this is a more
realistic model of attack, since in practice, an attacker may not necessarily attempt
to break all instances of a cryptosystem, but is likely to be willing to invest a lot of
resources in breaking a single instance. We then analyse some cryptographic protocols,
in order to determine which are the truly secure instances of the cryptosystem. We
consider three basic types of information theoretically secure cryptographic systems:
cipher systems, threshold secret sharing schemes, and authentication schemes. For
each of these settings, we first give a Kolmogorov complexity based definition of
security of an individual instance. Then we prove that security in the individual sense
implies security in the traditional sense if the instances are still sampled according
to the same distributions, by showing that if sufficiently many instances of a system
are individually secure, then the system is also very nearly information theoretically
secure. Finally, we identify the high-security instances of specific systems, using again
properties derived from Kolmogorov complexity.

We note that under the notion of individual security, the perfectly secure systems that
we analyse do have instances where the adversary gains a nonnegligible amount of
information about the secret from the information she has access to and therefore the
system does leak some few bits of information, on average, even despite the assurance
that the attacker has 0 advantage according to the traditional definition. This is
unavoidable unless we skew the distribution to give 0 probability to those instances.
However, we have not analysed what would happen in this case to the information
theoretic proof.

This distinction happens because the two concepts are fundamentally différent, al­
though related. The traditional point of view considers information as the inverse
logarithm of the probability of an event, something that is not intrinsic to the event
itself but to the distribution it is sampled from. The individual view, on the other hand,
considers information as a property intrinsic to the string itself. It is a remarkable fact
that these two definitions lead to similar results.

30 CHAPTER 1. INTRODUCTION

Since Kolmogorov complexity is not computable, we also consider the polynomial-
time bounded version of Kolmogorov complexity and make an analysis based on it for
the one-time pad. This measure naturally combines information and resource-bounded
computation and can provide a natural way of bridging the gap between computational
and unconditional security. In this work, it allows us to combine information theoretic
security with a computable guarantee on the security of a particular instance of the
system, conditional on an assumption on the resources available to the adversary.

Chapter 4 focuses on perfectly secure commitment systems and shows how these can
be built from perfectly secure authentication and cipher systems. We also show that in
the case of optimal commitment systems, this composition is the only way of building
it, which means that optimal commitment systems are equivalent to a pair of a cipher
system and an authentication system. Since both kinds are analysed in Chapter 3,
this allows the individual analysis to extend over to commitment systems, although
we have not made any specific work in that direction.

Chapter 5 provides a study of computational entropy in relation to polynomial time-
bounded Kolmogorov complexity, with a view to extending the analysis of Chapter
3 to public-key systems in the future. We investigate a possible relation between
time-bounded Kolmogorov complexity and some analogue of entropy for the computa­
tional setting. We achieve only one direction of this relation, namely upperbounding
polynomial-time bounded Kolmogorov information by an affine function of Yao's
effective entropy.

Finally, we conclude with some ending thoughts and open problems in Chapter 6.

Chapter 2

Preliminaries

This chapter gives an introduction to several subjects that are needed later in the
thesis. We have tried to make the text self-contained so that the reader can find here all
that is needed to understand later chapters. The following material was gathered from
several sources, including [Sch96], [Kat02], [GB01], [Sha02], [AB07], [LV97], [Sha48],
[Ant02], [Lap97], [AH97], [Cut80], [GolOl], [CT91] and several articles on Wikipedia.

2.1 Notation

This section covers some general guidelines with respect to the notation used through­
out the thesis. More specific notations are introduced when they are first used, in
particular in the remainder of this chapter.

The function log always denotes logarithm base 2, unless explicitly stated. For some
finite set E, the notation E* indicates the set of all string that can be formed by a
finite concatenation of zero or more symbols from E. We call E an alphabet, and the
strings formed from it are called words. The length of a word is the number of symbols
it contains. The empty word has length 0 and is denoted by e. A language L defined
over some alphabet E is a subset of E*.

Random variables are denoted by Roman capital letters, usually near the end of the
alphabet, except when the letter used has some relation to the underlying concept
(example, K for keys or C for ciphertext). We often represent sets by calligraphic
type but also, on some occasions, by normal Roman capital letters. Definitions
disambiguate if a letter represents a set or a variable. Lowercase Roman letters

31

32 CHAPTER 2. PRELIMINARIES

usually represent binary strings from some set. If x represents a binary string, then
Xi represents the ith bit from the string and £[a,...,b] represents the substring of x from
bit a to b.

We use | • | to represent several things. When X is a set, \X\ represents the cardinality
of X, while the notation \x\ represents the length of string x. If the argument of | • | is a
number, then it represents its absolute value. The symbols \x] represent the smallest
integer that is not smaller than x, while [x\ represents the largest integer smaller than
or equal to x.

2.2 Number theory

The holy grail of practical cryptography is what we call a perfect trapdoor one-way
function. We give a formal definition in Section 2.8, but in simple terms, this is a
function that is easy to compute and very hard to invert.

These two properties characterize one-way functions and any one of these would
allow a sender to fabricate a secret that an attacker would be unable to find. But
unfortunately, so would the legitimate receiver. The third necessary property for
cryptography is the trapdoor aspect: the one-way function becomes easy to invert if
some particular piece of information, the secret key, is known.

We don't yet know if one-way functions, let alone trapdoor one-way functions, exist,
as their existence would imply P ■=£ NP. However, there are functions that are easy
to compute but for which we have thus far been unable to find an efficient general
inversion method. In practice, these are assumed to be trapdoor one-way functions.
Most of the practical public-key cryptographic algorithms find their presumed one-way
functions in number theory and so we present now a short introduction to this field.

When designing an algorithm for everyday use, it is not practical to consider that its
inputs are of unlimited size. After all, any real computer has a limited memory and is
unable to process instances that take more than a certain limit. For this reason, the
algorithms we consider perform computations on numbers only up to a certain size.
This is achieved by using modular arithmetic.

2.2. NUMBER THEORY 33

2.2.1 Modular Arithmetic

Modular arithmetic is done by reducing all the integers to equivalence classes by a
congruence relation. For a fixed number n > 0, which is called modulus, a congruence
class [i]n is defined to be the set of integers such that the remainder of their division
by n is i. Given a positive number n, there is a unique way in which any number m
can be written in the form m = qn + r with 0 < r < n, where all parameters are
integers.

Thus, we define [i]n = {m G Z : 3j G Z s.t. m = jn + i} for i an integer such
that 0 < i < n, and the equivalence relation a = b, called congruence modulo
some number. We say a and b are congruent modulo n if they belong in the same
congruence class, and write a = b (mod n). Equivalently, n divides (a — b). We let a
mod n denote the actual operation of taking the remainder of a by n.

Clearly, for each n > 0 there are exactly n different congruence classes. Each con­

gruence class has an infinite number of elements, so it is usual to represent it by its
lowest non­negative member. That means that all congruence classes modulo n are
represented by a single number ranging from 0 to n — 1. These elements are also known
as residues, and the set of all residues modulo n is denoted by Zn. Thus, for every
integer a, its residue modulo n is a mod n. It is easy to check that [a]n + [b]n = [a + b]n,
[a]n ­ [b]n = [a ­ b]n and [a]n ■ [b]n = [a • b]n. These make it possible to simplify
computation, by representing all operands and intermediate results with only as many
bits as needed for n. Modular arithmetic is associative, commutative and distributive,
and therefore we can employ the usual rules of arithmetic. Division is another matter,
though, as will be seen below.

2.2.2 Algebraic Structures

Definition 2.2.1 A group G is a pair G = (A, •) where A is a set and • : Ax A i­* A is
a total function that is associative, has a unique identity (also called neutral) element 1
and for every element a G A there is exactly one inverse a~l G A such that a­a~l = 1.
If ■ is commutative, the group is said to be abelian, or commutative.

The above group is written in the so called multiplicative notation. A group can also
be written in additive notation. In that case, the operation is represented by +, the
identity element by 0 and the inverse by —a. The choice of notation is irrelevant, and
is usually dependent on the context where the group will be used. The order of a

34 CHAPTER 2. PRELIMINARIES

group is defined to be \G\.

A group is said to be cyclic if there is some element in G, say g, that generates all the
other elements in the group by successive iterations of the operation of the group. The
element giving origin to all others is called the generator of the group, or primitive
element, and need not be unique.

An important example of a group is given by modular arithmetic: (Zn, +) is a com­

mutative group. Another important set is the associated Z*, for n > 1. This is the set
of numbers in Zn that have multiplicative inverse, or equivalently the set of residues
modulo n that are coprime with n. The structure (Z*, •) is a finite multiplicative
group. Its order is given by 4>(n), where (p{n) is defined below.

Definition 2.2.2 (Euler's Totient Function) The totient function of n, written
4>{n), is the number of positive integers i with i < n and gcd(i, n) = 1.

From the definition, ¢{1) = 1 and 4>(p) — p — 1 for any prime p. Furthermore, for
prime p, (t)[pk) — (p — l)pk~1 and for m and n coprime, (f)(mn) — ¢(171) ■ (j)(n).

The group Z* is cyclic if and only ifn = 2 ,n = 4 ,n = p m o r n = 2pm, for some odd
prime p and m > 0. For every element a G Z*, cfi^ = 1 (mod n).

Theorem 2.2.3 (Fermat 's Little Theorem) For p prime and any x E { 1 , . . . ,p —
1}, xp­x = l (modp).

An important consequence of this theorem is that for g and n such that g is a generator
for Z;, ga = ga mod *(n) (mod n). In fact, writing a = k<j>{n) + b, we have ga =
gk<t>(n) _ gb _ ^g4>(n)^k . gb _ ^k . gb _ gb_ ^ ^ a r j o w s ^ g p0SSibility oî reducing the

exponent before operating, just like we are able to reduce summands and multiplicands
in the other operations.

Definition 2.2.4 A field F is a triple F = (A, +, ■) such that (A, +) and (A \ {0}, •)
are abelian groups with identity elements 0 and 1 respectively and ■ is distributive over
+ .

2.2.3 Galois Fields

A field that contains a finite number of elements is a finite field, also called Galois
Field. Every finite field has order pn, where p is some prime and n is a positive integer.

2.3. SERIES 35

For every prime power pn there is a finite field with that many elements and all finite
fields of the same order are essentially the same field. This important fact allows us to
identify finite fields by their size only, so it is customary to write GF(pn) to identify
a particular Galois Field. The prime p is called the characteristic of the field. When
the order of the field is a prime p, GF(p) is isomorphic to (Zp, +, •), where + and • are
addition and multiplication modulo p with 0 and 1 as neutral elements.

However, when the order is a power of a prime, things are not so easy. The Galois Field
GF(pn) is isomorphic to a field over polynomials on an abstract variable x of degree
at most n — 1 with coefficients in Zp. The equivalent notion, among polynomials, to
prime numbers is that of irreducible polynomials. A polynomial is irreducible if it can
not be written as the product of two polynomials of lesser degree and is primitive if it
generates all the other polynomials in a field. A primitive polynomial is irreducible,
and is guaranteed to exist for every GF(pn). We still have modular arithmetic in
GF(pn), but the modulo now is a primitive polynomial of degree n for this field. We
call this polynomial the field polynomial and denote it by F(x). Then, any element
A(x) of this field is a residue modulo this polynomial, meaning that there must not be
other polynomials Q(x) ^ 0 and R(x) such that A(x) — Q(x)F(x) + R(x) and R(x)
has degree less than that of F(x).

Each polynomial can be represented as A(x) = "̂=To a%x%■< where every at G Zp, or
more succinctly by (a n _: , . . . , ai,a0) . This can also be seen as a number in base p.
Addition of polynomials is done one coefficient at a time, that is, (a n _i , . . . ,a l5ao) +
(6 n_i , . . . , bu bQ) = (a„_i + V ­ i , . . . , ai + &i, ao + &o) (mod p). To multiply two poly­

nomials A{x) and B(x), we must first multiply the coefficients of A(x) and B(x) and
then compute the remainder of the result by the field polynomial. This can be done
using the algorithm of long division. These operations are very easy when p = 2, and
an algorithm is given in [MV04].

2.3 Series

This section lists some results about series that are needed later.

Lemma 2.3.1 For positive integer n, YH=o^ = 2n + 1 • (n — 1) + 2.

Lemma 2.3.2 For any integer a, Yli>a h ~

36 CHAPTER 2. PRELIMINARIES

We end this section with an inequality that has found applicability in series, although
in its most general sense it is a result about vectors in real or complex spaces.

Theorem 2.3.3 (Cauchy-Schwarz inequality) If X\,... ,Xk and 2/1,...,¾¾ are two
sequences of real numbers, then

2.4 Probabi l i ty Theory

Probability theory is concerned with the outcomes of random experiments.

Definition 2.4.1 A finite probability space is a tuple (Cl,fi) where Í2 = {u>i,... ,u>k}
is a set of elementary events and \x is a probability function il 1—> [0,1] such that

EtiM^) = 1-

A finite probability space describes the outcome of a random experiment by stating
that an elementary event u>i will occur with probability fi(u>i). For this reason, we
often abbreviate /J,(u>i) by Pi, the probability of the ith elementary event.

In any experiment, we may consider events more complex than elementary events. For
example, consider a deck of cards. We can consider the elementary event of drawing a
specific card, or the more complex event of drawing a card from a given suit. We say
that an event A over the space (Í2, //) is any subset A Ç Í2 and define its associated
probability, denoted Pr[A|, to be the sum of the probabilities of the elementary events
belonging to A.

Definition 2.4.2 Let A Ç Q be an event over the probability space (^,//). The
probability that A occurs is

Pv[A] = $>(<").

Clearly, for any event A, we have the basic properties:

1. 0 < Pr[A] < 1.

2.4. PROBABILITY THEORY 37

2. Pr[iî] = 1.

3. Pr[0] = 0.

4. Pr[Ã] = 1 — Pr [A], where Ã represents the event "not A".

5. Pr[A UB} = Pr[A] + Pr[B] ­ Pv[A n B\.

In fact, it is easy to prove the next lemma:

Lemma 2.4.3 (Union bound) For every set of events A\, A^ .. ■, An,

Pr
n

with equality if the sets A\,..., An are mutually disjoint.

Definition 2.4.4 The probability of events A and B occurring simultaneously, called
the joint probability of A and B, is denoted by Pv{AÇ~]B]. The probability of A occurring
once B has occurred, called the conditional probability of A given B, is denoted by
Pr[A\B] and defined to be

Pv[A n B]
PT[A\B] =

Pr[B]

Definition 2.4.5 Two events A and B are said to be independent if Pr[A D B] =
PT[A] ■ Px[B}. This is equivalent to Pr[A] = Pr[A|B] or Pv[B\A] = Pr[B].

2.4.1 Random Variables

Usually, we are interested in something more than describing the outcome of an
experiment: we may need to quantify it. For example, we might be interested in
counting the number of cards drawn until a queen is drawn. To this purpose, we need
random variables.

A random variable is a way to attribute a value to each possible event of the random
experiment. This value can be taken from any conceivable set, and even be descriptive
and not quantitative. However, we will only be interested in quantitative variables and
so restrict this value to the set R. We usually denote random variables by capital letters
towards the end of the alphabet, like X, Y, S, T.

38 CHAPTER 2. PRELIMINARIES

Definition 2.4.6 A random variable X over probability space (Í7, /i) is a function
Q, t—> R. We /ei Pr[X = x] = Yli­xiu­)=x^) ^e ^ e probability that X takes value x.
For convenience, we often write px(%) instead, and may even drop the X when the
variable is understood. Usually we associate a probability function, for example v, to
a variable instead of a probability space and in this case we simply write u(x).

We usually call "probability distribution" to the function associated to probability
Px{X — x\. In technical terms this is not very correct, as this function is properly
called "probability function" which, in the case of discrete variables, is equal to the
"probability density function". The "probability distribution function" is instead
defined as Vx[x) = '^2v<x'Px{y)­ However, each function can be computed from
the other, so we'll keep referring to p as the probability distribution. When needed to
distinguish between the two, we'll do so carefully.

Definition 2.4.7 The support set of a variable X is denoted by [X] and is the set of
the values the variable can take that have positive probability. Although X is a function
that maps to set R, for finite probability spaces the support set of X is finite.

We use x ~ X to denote the sampling of an element x according to distribution X,
and x GR S if we draw x randomly and uniformly from set S. Sometimes, for some
random variable X, we use x G X as a shorthand to "x is in the support of X".
We also use the notation Pr[X e D] where X is a random variable and D is a set
to signify the probability that a random value of X belongs to D, as a shorthand to
£.g[X]Pr[*eI>].

Definition 2.4.8 The expected value of a random variable X over (il, fi), denoted
E(X), is E(X) = 5Zi=i IJ>{u>i)X(u)i). When we need to highlight the distribution func­

tion n, we write Ex~/j.{X).

An important theorem related to random variables is the following:

Theorem 2.4.9 (Linearity of Expectat ion) For any two random variables X and
Y, let X + Y represent the variable induced by (X + Y)(u) = X(u) + Y(u).

For any random variable X and a real value a, let aX represent the variable induced
by aX(u) = a ■ X(u).

Then, E(X + Y) = E(X) + E(Y) and E(aX) = aE{X).

2.4. PROBABILITY THEORY 39

Definition 2.4.10 The variance of a random variable X, denoted by Var(X) or ax,
is Var(X) = E(X ­ E(X)f = Ex€[x]Px(x)(x ­ E{X)f.

The standard deviation is written ox and defined ax — y/Vax(X).

It is easy to check that the variance is also Var(X) = E(X2) — (E(X))2.

On several occasions, we have to analyze different random variables defined over the
same probability space.

Definition 2.4.11 For two random variables X and Y defined over probability space
(Í2,//), the probability that the joint event (x,y) occurs is denoted Pr[X = x, Y = y]
and is equal to EfcXM­sandyiwO­»/*(*)■

We call the probability Pv[X = x, Y = y], also denoted pxy{%, y) or even p(x,y), the
joint probability of X and Y.

If we are given a joint probability distribution on X and Y we can easily recover the
distributions on X and Y, with Px(x) = J2ye[Y] PXY(X, y) and respectively for Y. The
distributions on X and Y are called the "marginal distributions". The reason is that
the probability on the several pairs (x, y) can be written on a table with the x labelling
the rows, for example, and the y labelling the columns. Then, if we compute the sum
for each row and the sum for each column we get respectively px(x) and py(y) for
every x and y written on the margin of the table.

There are occasions when we need to analyse joint random variables that are inde­

pendent and have the same distribution function. These variables are said to be
independently identically distributed, which is often abbreviated to "i.i.d.". We also
abbreviate the resulting joint random variable. For instance, the occurrence of k
independent variables identically distributed to some variable X can be denoted as
Xk = X x • ■ • x X. We can also define conditional distributions for random variables,

k
as we did for events.

Definition 2.4.12 The conditional probability that X takes value x when Y takes
value y is defined Pr[X = x\Y = y] = jÈ^r^ ■ We also simplify the notation here
topX\Y(x\y) orjustp(x\y).

Note that Ylxe\X\PX\Y{AV) = 1> s o Px{­\y) with y fixed is still a probability function.
However, Y,X€[x],ye[Y]Px\Y(x\y) = \[Y]\, so PX\Y{­\­) is not a probability function.

40 CHAPTER 2. PRELIMINARIES

Definition 2.4.13 Two random variables X and Y are independent if for every pair
(x,y), PXY (x,y)= p(x) ■ p(y).

2.4.2 Statistical Distance

In order to know if two distributions are close, we use the notion of statistical distance.

Definition 2.4.14 Let P and Q be two distributions over the same probability space
(0,, •). Let e be a small real constant between 0 and 1. Then, P and Q are e—close if

J2\P{x)­Q(x)\<2e.

Equivalently, we may say that for any event S Ç Q, \P(S) — Q(S)\ < e.

2.4.3 Useful inequalities

It is often necessary to estimate the probability with which a given random variable
takes values above or below a certain point. There are three kinds of inequalities that
are often used to this purpose.

Theorem 2.4.15 (Markov's inequality) For any non­negative random variable X
and k>0, Pv[X > kE(X)\ < \.

If the values that X can take are upper bounded, we can use Markov's inequality to
give bounds in the opposite direction.

Theorem 2.4.16 Let X be a random variable that takes values on [0,1]. Then, for
k>0,Pr[X<kE(X)]<^§§­y

Markov's inequality can be applied for any non­negative random variable and requires
only knowledge of its average. However, it does not usually give very good bounds. A
stronger inequality that can be used when we also know the variance of the random
variable is Chebyshev's inequality.

Theorem 2.4.17 (Chebyshev's inequality) If X is a random variable with stan­

dard deviation a, then for every k > 0, Pv[\X — E(X)\ > ka] < p .

2.5. INFORMATION THEORY 41

The last inequality is very used in computer science, and in particular in computational
complexity. It is stronger than the previous two, but it is also more stringent. It applies
only to discrete random variables on {0,1}.

Theorem 2.4.18 (Chernoff Bounds) Let X be the sum of n independent discrete
random variables Xt on {0,1}, with p{ = Pr[X, = 1]. Let 0 < S < 1. Then,

Pr[X > (1 + S)E(X)] < e-5 2 £ (x) /3 ;

Pr[A < (1 - S)E(X)} < e - á 2 £ W 2 .

A special case is when the n variables Xi are all equally distributed. Then, E(X) = np,
where p = Pr[X; = 1] for all 1 < i < n.

An alternative version (see [GolOl, TreOO]) is the following

Theorem 2.4.19 Let X be the sum of n independent discrete random variables Xi
on {0,1}, with p = Pr[X, = 1] for all i. Let 0 < S < p(l - p). Then,

X
n
X
n

-p > S
i 2 n

Pr
X
n
X
n

-p > S < g 2 p (l - p) ;

i 2 n
Pr

X
n
X
n - p < -ò < g 2 p (l - p) _

2.5 Information Theory

Information theory is a mathematical model to deal with information. It quantifies
information in function of its predictability or unlikeliness: the more surprising a
given message is, the more information it contains. Intuitively, we can reason that if
we receive a message that significantly alters the view we have of the world around
us then that message must contain a lot of information. A message that, on the
other hand, just confirms something that we are used to consider normal is pretty
uninteresting and has little information. This is a generalization of the old principle
of journalism that a news like 'Dog bit mailman' has no interest whatsoever, because
it is more or less within dogs' usual role in the world to bite mail men's legs. The
headline would be a lot more interesting, though, if it were reversed and read instead
'Mailman bit dog'. The underlying idea in this discussion is that the probability of the
first event occurring is reasonably high, and so that event, when it happens, carries

42 CHAPTER 2. PRELIMINARIES

with it little information, and of course the other way around for the second event.
This is the implicit idea in Claude Shannon's work.

Shannon initiated the field of Information Theory with his paper of 1948 [Sha48],
where he defined the core notion of entropy. Shannon describes a discrete information
source as some device that can be, at any time, in one of a finite number of states.
From each state, the device can make a transition to another state, possibly the
same. The transition taken is chosen according to a predefined set of probabilities,
and each transition produces a symbol of the output. In practice, this means that the
source generates symbols from a finite set according to certain probabilities and the
probability of each symbol depends on a finite number of previous symbols. Entropy
is then a measure of the quantity of information the source produces, or better, the
rate this source produces information at. The name entropy was chosen for similarity
of the function introduced by Shannon to that of entropy in statistical mechanics.

A source as defined above can be modelled by a random variable that produces symbols
from a finite set with a certain probability distribution. We can say the entropy of the
source is the entropy of the associated random variable. As Shannon points out, what is
important for information is not the actual content of the symbols produced but instead
the probability with which they are produced. Events with less probability carry
more information and events with high probability have less information. Consider an
alphabet of symbols X = {x\,... ,xn} and a random variable X over this alphabet,
with probabilities Pi = Pv[X = Xi\. We can define the information produced by the
source when it outputs each of these events as I(xi) = log(1/¾). This satisfies a
number of desirable properties:

• The information associated to an event is non-negative.

• The more surprising events have more information.

• If two events x\ and x2 are independent, then their joint information is I(x\ U 2¾) =
I(x1) + I(x2).

The entropy of the random variable X is just the average I(xi) for all X{.

Definition 2.5.1 Let X be a random variable over support X = {xi,... ,xn} with
probabilities Pi = Pr[X = xi\. The entropy of X is

with the convention that 0 • log 0 = 0, justified by limx^0+ xlogx = 0.

2.5. INFORMATION THEORY 43

As Shannon says in his paper, entropy is not only a measure of the information
produced but also of the uncertainty associated with the outcome of a probabilistic
source. The more symbols the source can produce, and the more evenly distributed
they are, the more uncertain we are about the output of the source. This uncertainty
is, after all, randomness, and therefore we can regard entropy as a measure of the
randomness in a given source. If for some i we have pi = 1, then there is no
uncertainty in the experiment: the outcome is always the same. Therefore, this source
is deterministic and the entropy must be 0, which indeed is verified by the definition.
It can also be proved that, for each n, H is maximum for the distribution that assigns
probability 1/n to all events, which corresponds to our intuitive notion of maximum
uncertainty. Besides, the entropy in this case increases as the source alphabet increases.
Notice that for a uniform distribution of events, H(X) = log 1^1, where X is the set
over which X is defined. It can also be seen that since H is the sum of non­negative
quantities, then it must itself be non­negative. Therefore, 0 < H(X) < log \X\.

Definition 2.5.2 (Joint Entropy) Consider variables X and Y, with support sets
X = {xi,..., xn} and y = {yi, ■ ■ ■, ym} respectively. Let p(i,j) be the occurrence of
event X = Xi,Y = yj. The joint entropy of these variables, written H(X, Y) is defined
as

n m

ff(x,y) = ­]££p(«,j)iogp(i,^

This implies that H(X, Y) < H(X) + H(Y) with equality if and only if X and Y are
independent. Similarly, we can define conditional entropy.

Definition 2.5.3 (Conditional Entropy) Consider variables X and Y, with sup­

port sets X = {x1,...,xn} and y = {2/1,...,ym} respectively. Let p(i,j) be the
occurrence of event X = Xi,Y = yj. The conditional entropy of these variables,
written H(X\Y) is defined as

n m

t= i j = i

Theorem 2.5.4 (Additivity of Entropy) H(X,Y) = H(X) + H(Y\X).

Prom Definition 2.5.2, we can see that H(X, Y) is symmetric. However, H(X\Y)
is not, since in general H(X\Y) ^ H(Y\X). We have said above that H(X,Y) =
H(X) + H(Y) if and only if X and Y are independent. Coupled with the previous
theorem, this gives another characterization of independent variables.

44 CHAPTER 2. PRELIMINARIES

Corollary 2.5.5 Consider two random variables X and Y. The variables are inde­
pendent if and only if H(X\Y) = H(X) or, equivalently, H(Y\X) = H(Y).

Since both H(X) and H(X\Y) are positive, it becomes also clear that H(X\Y) <
H(X), with equality only in the case of independence.

It is also possible to define the entropy of X when Y is known as H(X\Y = y) =
- HxexP(x\y) logp{x\y) and to show that H(X\Y) = J2y&yP(y)H(x\Y = 2/)-

The additivity of joint entropy can be generalized to conditional entropies:

Lemma 2.5.6 For random variables X, Y and Z, H(X,Y\Z) = H(X\Z)+H(Y\X,Z).

This is used to derive a chain rule of operation for the joint entropy of several variables.

Theorem 2.5.7 Let X\,... ,Xn be random variables, not necessarily independent.
Then,

H{Xl)X2,...,Xn)<YJH{Xl).
i=l

Another important concept in information theory is that of the information between
two variables. It can be defined as the distance between two distributions, but that
amounts to the following definition.

Definition 2.5.8 Let X and Y be two random variables. The amount of information
contained in Y about X is

Mr,- £ p^iog^r
xex,yey py '

There is a simpler way to compute this quantity.

Theorem 2.5.9 Let X and Y be random variables. Then,

I(X;Y) = H(X)-H(X\Y).

Additivity of entropy easily shows that I(X;Y) = I(Y;X), and for this reason, this
quantity is also called mutual information.

2.5. INFORMATION THEORY 45

2 . 5 . 1 M i n - e n t r o p y

Min-entropy is a notion related to entropy that characterizes not the exact randomness,
but instead a minimal amount of randomness that a source contains. It is a natural
lower bound for entropy.

Definition 2.5.10 The min-entropy of a random variable X, denoted H^X), is
defined as the minimum — logp(x) over all x.

Theorem 2.5.11 For any random variable X, Hoc(X) < H(X).

2.5.2 Compressibility

Entropy and information theory enjoyed a great development in the study of codes and
of the best way to encode messages to be transmitted over physical devices. One of
the important results about entropy in communications theory is that the entropy of
a source is a lower bound on the average codeword length of any code for that source.
In this section, we briefly talk about codes and state this result in more; formal terms.

A deterministic coding scheme for a source S over alphabet X is a pair of functions
e : X i-> y and d : y i-> X such that for all x G X, d(e(x)) = x. We will restrict
ourselves to binary codes here, that is, ^ = {0,1}*.

A code is uniquely decodable if for any sequence of codewords y\.. .ye there is only one
sequence of source messages X\... Xe that could be encoded to it. For example, consider
an alphabet of four source messages X = {A,B,C,D}. If e(A) = 1, e(B) = 10,
e[C) — 11 and e(D) — 0, then this code is not uniquely decodable. For message
ADBC, we have codewords 101011, which is also the encoding of BBAA.

Being uniquely decodable is often not enough. A code might be uniquely decodable
and yet be inefficient to decode. Consider the same source alphabet as before with the
following encoding function: e(A) = 0, e(B) = 01, e(C) = 011 and e(D) = 111. This
code is uniquely decodable, as 0 marks the beginning of a new codeword, except in the
case of 111. If we see three Is in a row we know for sure that is the codeword for D,
for there is no other way we can have three Is together. However, we might have more
than three consecutive Is and not immediately know where the codeword for D begins.
For example, consider the text 0111110. We have to read the message until the last bit
before we learn the first codeword. For illustration, consider the decodings for all the

46 CHAPTER 2. PRELIMINARIES

possible truncated code messages: d(0) = A, d(0l) = B, d(011) = C, c?(0111) = AD,
d(Ollll) = BD, d(Oll l l l) = CD and d(OlllllO) = CD A.

In practice we want codes where each codeword can be uniquely decoded as soon as it
is complete. Such codes are called instantaneous codes. They have the property that
no codeword is the prefix of any other codeword and for that reason they are called
prefix-free codes. There is an important inequality respecting prefix-free codes, known
as the Kraft-McMillan inequality.

Theorem 2.5.12 (Kraft Theorem) Let li,..., IN be the codeword lengths for each
of N codewords in a binary prefix-free code. Then,

N

Theorem 2.5.13 (McMillan Theorem) Let lr,... ,lN be the codeword lengths for
each of N codewords in a uniquely decodable binary code. Then,

N

^2~k < 1.
2 = 1

Since all uniquely decodable codes satisfy the Kraft-McMillan inequality, just like
prefix free codes, it is always possible to turn a uniquely decodable code into an
equivalent prefix-free code with equal codeword lengths. Thus, if there is an optimal
uniquely decodable code, there is an optimal prefix-free code which achieves the same
result. Therefore we can restrict the analysis to prefix-free codes. Now we give the
result that establishes the importance of entropy in source-encoding.

Theorem 2.5.14 (Noiseless Coding Theorem) Let L be the average codeword length
of any binary prefix-free code for a source described by random variable X. Then,
H(X) < L.

Thus, the entropy of the source is the utmost limit to which we can compress, on
average, the symbols of that source. On the other hand, although this will be of
marginal interest for this thesis, it is also possible to prove the existence of almost
efficient codes for any source.

Theorem 2.5.15 For any random variable X, there exists a binary prefix code with
average codeword length L < H(X) + 1. Such codes are called optimal codes.

2.6. COMBINATORIAL DESIGNS 47

Examples of optimal codes are the Huffman encoding and the Shannon-Fano code.
For the construction, see [CT91, GV04].

Theorem 2.5.16 [Shannon-Fano Code] Let X be a random variable over set X
with probability mass function f. Let e(x) represent the encoding of source word x by
the Shannon-Fano code. Then, \e(x)\ < logl/p(x) + 1.

2.6 Combinatorial Designs

The theory behind combinatorial designs has a long and interesting history. The
properties of designs have been often used in the design of statistical experiments.
Imagine a scenario where a number of subjects are drafted to test different varieties
of a certain product. Since it is not practical to have all subjects test all the varieties,
the researchers try to allocate a subset of them to each subject in a way that everyone
tests the same number of cases and all varieties are equally tested. Designs have been
used in cryptography to build unconditionally-secure authentication codes, but they
have applications in many other fields. Colbourn, Dinitz and Stinson give an account
of some of them in [CDS99].

In this section, we give an introduction to combinatorial designs, focused only on what
we need later. This section is mostly based on [AH97].

Definition 2.6.1 (t—designs) Let S be a set of size v whose elements are called
points. Let V be a collection of subsets of S called blocks, all of them with exactly k
elements. Let b = \V\, t < k < v and A > 0.

The pair (V,S) is a t — (v,k,X,b,r) design if every point occurs in exactly r blocks
and every subset of S with exactly t points occurs in exactly A blocks.

Most often, t = 2 and in this case, we call a design a Balanced Incomplete-Block
Design, or BIBD.

An easier way to visualize designs is to cast them onto a table with the points labelling
the columns and the blocks labelling the rows. Each cell in the table contains either
0 or 1, indicating whether a block contains a certain point. This matrix is called
the incidence matrix of a design. This matrix is not unique, since it depends on the
ordering of the points and the blocks, but that is not important for our purposes. From

48 CHAPTER 2. PRELIMINARIES

the definitions above, each row contains exactly k Is and each column has exactly r
Is. The parameters above are not totally independent. In fact,

À H
Theorem 2.6.2 If (T>,S) is a t — (v,k,\,b,r) design, then b= * . Furthermore,

\t)

each point occurs in exactly r = - ^ - .
li-J

It is easy to see that in any such design bk = vr. This can be deduced from the above
theorem, but an easier way to see it is to simply count the Is in the incidence matrix
first by columns, totalling vr, and then by rows, which gives bk.

Definition 2.6.3 A design is said to be resolvable if its blocks can be partitioned into
sets Vi called parallel classes, each with exactly v/k elements, such that the blocks in
each parallel class form a partition of S.

A resolvable l — (v, k, A, b, r) design is called affine if for any two blocks B\, B2 belonging
to different parallel classes, it happens that \B\ fl B2\ is equal to k2/v.

In such a design, we group together the blocks belonging in a certain parallel class, as
in Table 2.1. We can see that in each class, no rows have Is in the same positions and
all points have 1 in exactly one row. Clearly, there are v/k blocks per parallel class.

Table 2.1: a resolvable 1-design

A design is called symmetric if the number of blocks is equal to the number of points,
this is, b = v. The incidence matrix is therefore a square matrix, although it is not
necessarily symmetric itself. The following lemma is taken from Theorem 2.14 in
[AH97].

Lemma 2.6.4 In a symmetric t — (v, k, A, b, r) design, any two blocks intersect in
exactly A columns.

2.7. COMPUTABILITY THEORY 49

There are other kinds of combinatorial designs. The only other kind that we will use
in this thesis is transversal designs.

Definition 2.6.5 A transversal design TD(k,n,X) is a pair {V,S) such that \S\ =
k ■ n, the points in S can be divided into exactly k groups of n elements each, there
are A • n2 blocks, each of them containing at most one point from each group, and any
pair of points from distinct groups occurs in exactly A blocks.

It is easy to see from the definitions that a transversal design is not a 2­design because
two points from the same group are never contained in any block.

2.7 Computability Theory

The notion of computation is of fundamental importance in computer science, since
it basically defines what computers are meant to do. The study of the nature of
computability began in the 1930s, before the advent of computers, when many ideas
were proposed to capture the right notion of what is computation and computability.

Intuitively, computation is the process that makes us produce some output from an
input. An example is any set of successive rules to perform any given operation, like
calculating the sum of two numbers or the detailed instructions to cook a cake from
a set of ingredients. In the first case, we call these instructions an algorithm, but it is
as much a recipe to obtain a desired result as our more culinary example.

Our intuition tells us that some function for which there1 is a well­defined set of rules to
'cook up' the result must be computable. These rules have to be finite and the result
achievable in finite time. Computability theory, also known for historical reasons as
recursive function theory, is concerned with characterizing functions and problems
according to their being computable or not. And the first building stone of this theory
is to define formally what a computable function is.

Computability is defined by some underlying computation model. The most used such
model today is the Turing Machine, invented by Alan Turing in 1936 (see [Tur63]).
Other models include the definition of functions built from composition, recursion
and minimization of basic functions due to Gõdel and Kleene ([Kle52]), Church's
A­calculus ([Kle52]), and URM­computable functions ([SS63]). All these computation
models, and the associated notions of computability, have been proven to be equivalent
in the sense that they all define the same class of computable functions. However, there

50 CHAPTER 2. PRELIMINARIES

can be no mathematical proof that this class corresponds to all the functions that we
can view as computable since that is, in essence, a subjective definition. In place of a
theorem, we have what is known as Church-Turing thesis:

Definition 2.7.1 (Church-Turing thesis) Any partial function that is computable
by any algorithmic process is also computable by a Turing machine. Such functions
are called 'Turing-computable'.

In the above we could replace 'Turing machine' with any equivalent model of com­
putation. This statement can not be proven, it simply is believed to be true based
on the evidence that supports it: the equivalence of so many different computational
models, the facts that we can write a computer program for any function in this class
and that no one has ever presented an example of a function that would be accepted
in the informal sense as computable while not being Turing-computable.

2.7.1 Turing machines

Definition 2.7.2 (Deterministic Turing machine)
A Turing machine M(T, E, Q, S, qo, qaccept, qreject) is a device with a finite control, a
reading/writing head and access to a work tape that is infinite in both directions. The
tape is divided in cells and each cell can contain a single symbol from an alphabet of
symbols T. One of these symbols indicates a blank space in the tape and does not
belong to E. This is the alphabet of the inputs and is a subset of T. At the start
of computation, the tape is filled with blank symbols, except for a finite number of
contiguous cells at the starting position of the head, which is called the input.

The finite control is defined by a finite set of states Q and a transition function
5 : Q x T M Q x T x {L,R}. Time advances discretely and at any given point in
time, the machine is in exactly one state of Q and the head is scanning exactly one cell
of the tape. At the start of computation, the machine is in the initial state qo and the
head is positioned over a designated cell of the tape. In a single step of computation,
the machine looks up the symbol a under the head, matches it with the state q it is
in and finds S(q,a) = (q',a',d). Then, it writes symbol a' on the tape at the head's
position and sets the internal state to be q'. Finally, it moves the head one cell to the
left or right according to the direction d.

There can be at most one entry in the transition function for each pair (q,a). This
means the machine is deterministic. The computation stops, or halts, if the machine

2.7. COMPUTABILITY THEORY 51

reaches a final state (an accepting or rejecting state), and is undefined if it never stops
or there is no valid transition and the current state is not final. The output is whatever
is left on the tape, starting from the initial position and until the first blank. Since,
for k > 1, any tuple of Nk can be efficiently encoded to and decoded from {0,1}*, a
Turing machine defines a function M : Nfc i—► N.

Alternatively, we may consider the machine does not have final states, and instead it
stops if it reaches a state without valid transitions, accepting the input if the output is
1, and rejecting it if the output is 0.

This is a basic definition of Turing machine. It can be shown that an equivalent
definition is obtained if more tapes are added, discriminating between a read-only input
tape, a write-only output tape and read-write work tapes, if the tapes are infinite only
in one direction or using a different finite alphabet. For each of these characteristics,
for every Turing machine with the characteristic, there is another machine without
it that simulates the first, and vice-versa, and these simulations can be done in time
polynomial on that taken by the first machine. This makes this model quite robust and
allows us to restrict ourselves to binary alphabets and adopt the tapes configuration
more suitable to each problem.

Definition 2.7.3 A function f : Nfc i-> N is said to be Turing-computable if there is
a Turing machine M such that for every x, M(x) halts and outputs b if and only if x
is in the domain of f and f(x) = b.

If a Turing machine M halts for all inputs, we say the function computed by M is
total. Functions computed by Turing machines are said to be recursive. We are often
concerned with the computation of predicates, this is, functions where the result is
either 0 or 1. These can be interpreted as boolean functions, and we say a predicate
P holds for x if P(x) = 1 and it does not hold if P(x) = 0.

Definition 2.7.4 A predicate P is decidable, or recursive, if there is a Turing machine
M such that:

• M(x) = 1 if P(x) holds.

• M(x) = 0 if P(x) does not hold.

A predicate P is undecidable if it is not decidable.

52 CHAPTER 2. PRELIMINARIES

Definition 2.7.5 Consider a recursive predicate P and a Turing machine M for P.
For any x, if M(x) = 1, we say M accepts x; if M(x) = 0, we say M rejects x. The
set of x which M accepts is denoted by LM and is said to be the language that M
recognizes.

Equivalently, a language L can be associated to a Turing machine M that accepts
exactly those elements in the language.

Definition 2.7.6 A predicate P is semi-decidable, partially decidable or recursively
enumerable (often abbreviated to r.e.), if there is a Turing machine M such that:

• M(x) = l ifP{x) holds.

• M(x) does not halt if P(x) does not hold.

In what follows, we will often use the word "problem" instead of "predicate".

There are several variants of Turing machines that are important in computational
complexity and used in this thesis. These are listed below.

Definition 2.7.7 (Non-Deterministic Turing machine) A non-deterministic Tur­
ing machine (NDTM) is a Turing machine with the following difference: the transition
function is replaced by a mapping that may associate more than one transition to a
given pair of source state and tape symbol. In this case, the machine chooses the next
state arbitrarily from the possible transitions.

Definition 2.7.8 A NDTM is said to accept a language L if for every x G L there is
a computation path that accepts x. Conversely, for every x 0 L, all computation paths
for x must reach the rejecting state. The machine must be defined for all inputs.

Definition 2.7.9 (Probabilistic Turing machine) Formally, a probabilistic Tur­
ing machine (PTM) is a nondeterministic Turing machine with two transition func­
tions. At each step, the machine tosses a fair coin and chooses one or the other.

A probabilistic Turing machine can be seen as having an extra read-only tape with a
succession of truly random bits which it uses at each step to decide its next configura­
tion. We usually refer to these bits as the internal coins of this machine.

2.7. COMPUTABILITY THEORY 53

A way to think about nondeterministic machines is that if the machine accepts an
input then it is able to guess the correct path that accepts that input. In other words,
the machine accepts an input x if there is at least one computation path for x that ends
in an accepting state. On the contrary, with probabilistic machines we are specifically
concerned with the probability that an accepting path is chosen for each x.

Définition 2.7.10 (Relativized Turing machines) A relativized Turing machine
is a Turing machine which has access to free knowledge, by being allowed to ask
questions to an oracle A. Basically, this oracle is able to determine in a single step if
a certain instance x belongs to language A or not.

The machine has an extra oracle tape on which it can write a string x. Then, it enters
a query state and in the next step jumps to a YES state if x £ A or a NO state
otherwise. Relativized Turing machines can be deterministic or nondeterministic, and
are written MA, where M is the basic machine and A is the oracle it has access to.

2.7.2 Universal machines

A remarkable and important fact of the theory of computability is that the set of
computable functions is enumerable, i.e., each computable function can be associated
to several natural numbers and each natural number uniquely identifies a computable
function. This follows from the existence of an effective enumeration for Turing
machines and the fact that a given Turing machine computes one given function.

We can enumerate the set of Turing machines by defining an encoding scheme that
attributes to each machine a single unique number. A machine is completely defined
by its set of states and transition function, and since these are finite, there is a way to
effectively code and decode these onto the natural numbers. Such encodings are given
in [LV97] and [AB07]. Therefore, each machine has a tag m and these tags can be
ordered lexicographically. We attribute to each m an index i indicating its position
in the ordering and accordingly number the machines as Ti ,T 2 , . . . where % is the
machine corresponding to the ith number in the list. This process a bijection from the
set of Turing machines onto the naturals.

The effective reversal of such encodings gives us the notion of Universal Tiring ma­
chine. This is a machine U that receives as input a pair (i,x), builds the machine
T from i and then simulates it on input x. Therefore, U(i,x) = Ti(x). Based on
this, we can view a universal machine U as a general-purpose computing device that

54 CHAPTER 2. PRELIMINARIES

receives two inputs, p and x, when; we view the first as a program for U and x as
the data for that program, just like a general computer. The existence of a universal
Turing machine has fundamental implications in computability, namely, the existence
of incomputable problems. Consider the following:

Definition 2.7.11 (Halting problem.) Given a description i of a Turing machine
and an input x, is there an algorithmic process to determine ifU(i,x) stops?

It can be proven by diagonalization that such a problem is undecidable. To see this,
consider an enumeration of all Turing machines Tî, T2 , . . . and that we have a Turing
machine M such that M{x) = 1 if and only if U(x, x) stops and M(x) = 0 if and only
if U(x, x) does not stop. Now, consider a second Turing machine iV that is defined
like this: N(x) = 0 if M(x) = 0 and N(x) does not stop if M(x) = 1. Clearly, if M
exists so does N. However, if N exists, then for any x, if N(x) is defined then U(x, x)
does not stop and so Tx(x) is not defined; if N(x) is undefined, then U(x, x) stops and
so Tx(x) is defined. This clearly makes N different from every Turing machine Tx on
at least one input, so N can not exist and therefore so can't M.

But determining whether U(x,x) stops is a particular case of the halting problem, and
if this case can not be decided, neither can the halting problem be. Therefore, the
halting problem is undecidable.

2.8 Computational Complexity Theory

The main concern of complexity theory is to study problems according to the resources
necessary to solve them and how these increase with the length of the input. The
principal objective is to identify those problems that are intractable, this is, that
can not be solved in practice even with much more powerful computers than what we
currently have. However, it must be noted that all the problems analyzed in complexity
theory are still theoretically solvable: all of them are computable, although they may
require too many resources for their computation to be feasible.

The resources typically considered are time, space, randomness and communication,
but in this thesis, and in this introduction, we will focus only on time. Complexity
theory tries to categorize problems in a hierarchy of classes defined by the amount and
type of resources necessary to solve their problems. In order to make this separation,
there must be a standard model of computation, and the most basic model is the

2.8. COMPUTATIONAL COMPLEXITY THEORY 55

Turing machine. Other models have been used, like circuits, but we do not use them
here. For the Turing machine, the time a computation takes is the number of steps
executed by the machine, and the space taken by the computation is the number of
tape cells scanned. Instead of measuring the exact time or space needed, we ignore
additive and multiplicative constants and focus on the asymptotic behaviour of the
resource bounds, viewed as functions of the input size. To properly analyze these, we
use a set of specialized notations.

2.8.1 Asymptotic notation

Let / and g be functions from N to E. We say that

• / G 0(g) if there exists a constant c > 0 such that f(n) < c • g(n) for every
sufficiently large n (/ does not grow faster than g).

• / G tt(g) if there exists a constant c > 0 such that f(n) > c ■ g(n) for every
sufficiently large n (/ grows at least as fast as g).

• / G &(g) if both / G 0(g) and / G (1(g) (f and g grow at the same rate).

• / G o(g) if for every constant c > 0 and for every sufficiently large n, f(n) <
c • g(n) (f grows slower than g).

• / G u(g) if for every constant c > 0 and for every sufficiently large n, f(n) >
c ' g(n) (/ grows faster than g).

Usually, these functions are defined such that the constant c can be either negative
or positive, but we mostly use them to replace positive quantities, and so we have
specified c to be always positive in order that the resulting expressions conform more
easily to intuition. Consequently, asymptotic terms sometimes have negative signs.
We frequently abuse notation a bit and write, for example, f(n) = 0(n) instead of
f(n) G 0(n).

2.8.2 Basic Complexity Classes

A complexity class is a set of recursive functions which can be computed within a
specified bound of a given resource in a given model of computation. In this thesis,
we will consider decision problems only. These can be conveniently represented by the

56 CHAPTER 2. PRELIMINARIES

set of elements x for which the boolean function describing the problem outputs 1.
Consequently, we will view complexity classes as sets of languages instead of sets of
functions.

Definition 2.8.1 (DTIME) Let t : N ^ N be some function. DTIME[i(n)] is the
class of all languages decidable in time 0(t(n)) by some deterministic Turing machine.

Definition 2.8.2 (NTIME) Let t : N ^ N be some function. NTIME[i(n)] is the
class of all languages decidable in time 0(t(n)) by a nondeterministic Turing machine.

From these definitions, we define the following important classes, P, N P and EXP.

Definition 2.8.3 (P) P = (Jc>x DTIME[nc].

Definition 2.8.4 (NP) N P = Uc>i NTIME[n%

Definition 2.8.5 (EXP) E X P = Uc>i DTIME[2**°].

The class P is the set of those problems that can be solved within time polynomial
on the size of its input. Traditionally, it has been viewed as the definition of tractable
or feasible computation, even though it may allow exponents so high that in practice
the problem would still be unfeasible. Still, this critérium affords a clear and robust
separation between tractable and intractable problems. The class N P has another
equivalent definition given by the following theorem:

Theorem 2.8.6 For every L Ç {0,1}*, L E N P if there exists a polynomial p :
N H N and a polynomial-time deterministic Turing machine M such that for every
xe{o, i}* ,

x E L o- 3y e {0, l}p{lxl)s.t.M(x, y) = 1.

This definition highlights an important characteristic of N P problems: if an element is
in the language, there is a fast proof for that. However, we may not be able to quickly
determine if a given element belongs in the language or not. This is the difference
between verifying a solution for a problem and computing that solution. It is clear
that P Ç NP , but we still don't know if N P Ç P . This is the most famous problem of
complexity theory. N P covers the class of problems that can be solved by an exhaustive

2.8. COMPUTATIONAL COMPLEXITY THEORY 57

search and test of a solution space where the test can be applied in polynomial time,
which intuitively seems much more difficult than deterministically computing the right
answer without having to look over all possible solutions. However, in three decades
of research, we have not yet been able to prove or disprove this statement.

Sometimes, having access to true randomness can make a problem easier. Many
problems for which we do not know deterministic feasible solutions are solved in
practice with access to randomness and probabilistic arguments that show the solution
occurs with high probability. This kind of computation is modeled by probabilistic
complexity classes. We only need one of them for our purposes, B P P .

Definition 2.8.7 (BPTIME) Let L be some language over {0, l } n . Let \L(x) = 1 if
x G L and XL(%) — 0 otherwise. We say L e BPTIME[i(n)] if there is a probabilistic
Turing machine M (equivalently, a probabilistic algorithm A) running in time 0(t(n))
regardless of its random choices such that for all x G {0, l } n ,

Pr[M(x) = XL(X)] > \

where the probability is over the random coins used by M.

Definition 2.8.8 (BPP) B P P = Uc>i BPTIME[nc].

The constant | in the above definition can be replaced by any other constant larger
than 1/2 and at most 1, since for every PPT-algorithm A, it is possible to create
another PPT algorithm A' that on input x executes A(x) for a polynomial number of
times with fresh randomness in each execution and decides by majority.

Theorem 2.8.9 (Error Reduction) Suppose there is a PPT algorithm A and a
polynomial p(-) such that, for some constant c > 0, A solves language L Ç {0,1}"
with probability at least \ + -½ for every instance. Then, for every constant d > 0,
there is a PPT algorithm A' that solves every instance of the same language with
probability at least 1 — 2~n .

Proof: Let A' be an algorithm that on input x, runs A(x) for k(n) — n s times,
each with independent randomness. Then, A' will output the bit returned by most
executions of A. Let A^(x) mean the j t h execution of A(x). Since each execution uses
fresh randomness, the several Aj(y) are independently identically distributed (i.i.d.).
Define the random variable X, to be 1 iff A^(x) = XL(X) and 0 otherwise. Thon, the

58 CHAPTER 2. PRELIMINARIES

several X,- are discrete binary variables with average \ + ̂ z- We apply Chernoff bounds
to estimate the probability of failure of A'(x). Let X = Ylf=l xj b e t h e number of
successes among all the executions of A(x). Then, the answer of A1 will be correct if
X > \k(n). Let p = \ + £ and note that E(X) = \k(n) + fc(n)£. By the Chernoff
bounds (Theorem 2.4.19),

Pr X < h(n) = Pr

< exp

= exp

X
k(n)

1
P<

nc

k(n)
„2c

^ V 2 ~*~ nc) V2 nc)

n2c+d

2n 2 c
< e~nd < 2~nd. (2.i;

D

All these classes are said to be uniform, because we are considering a single machine
that solves all instances of a problem. We can instead consider a family of different
machines for each size of the input instance, and we call these classes non-uniform.
We will only refer one non-uniform class, P /Poly .

Definition 2.8.10 (P/Poly) Consider a polynomial a : N i-> N. Then, P /Po ly
is the class of all languages L such that there is a deterministic Turing machine M
and a sequence of advice strings {an}neN with an e {0, l}a(n) such that x G L <£>
M(x, ot\x\) = I, a(n) is polynomial on n and M runs in polynomial time on the size of
x.

2.8.3 Pseudorandomness

The complexity classes defined above are characterized by the amount of resources
needed to solve the worst-case instances. This is not appropriate for cryptography,
where we require that a cryptographic system be secure for most of its instances.
Breaking a cryptographic algorithm is akin to solving a difficult problem. It is clearly
not enough to assume that the worst-case instance is difficult, for it could happen
that the majority of all other instances were easily breakable. This reasoning led
to a necessary complexity-theoretic notion for cryptography, the one-way function,
suggested for the first time in [DH76].

It is convenient to define negligible functions before continuing.

2.8. COMPUTATIONAL COMPLEXITY THEORY 59

Definition 2.8.11 A function e(n) is said to be negligible if for all polynomial p and
large enough n, it happens that e(n) < -AT.

Definition 2.8.12 (Strong one-way function) A function f : {(), 1}* i-> {0,1}* is
called strongly one-way if it easy to compute and the probability that any polynomial-
time bound algorithm A inverts it is negligible. Formally,

1. There exists a deterministic polynomial-time Turing machine M such that on
input x, M(x) — f(x).

2. For every probabilistic polynomial-time Turing machine M and every positive
polynomial p(n), for sufficiently large n,

Pr[M(f(x),ln)er1(f(x))}<~-y

where the probability is taken over all the instances x chosen uniformly over
{0, l } n and the internal random choices of M.

The value n is the length of the intended output of M. The reason the argument \n

is included and written in unary is to allow the machine to run in time polynomial
on the combined lengths of its input and output. This definition avoids considering as
one-way a function f that simply shrank its input so much that time polynomial on
\f(x)\ would not be enough to print x. When \f(x)\ = \x\, this argument is redundant.

In this definition, / is not assumed to be injective, but in many cases, particularly in
number theoretic functions, this is the case and each f(x) has only one inverse.

Definition 2.8.13 (Weak one-way function) A function f : {0,1}* i-+ {0,1}* is
called weakly one-way if it easy to compute and the probability that any polynomial-time
bound algorithm A errs in computing an inverse is not negligible. Formally,

1. There exists a deterministic polynomial-time Turing machine M such that on
input x, M(x) = f(x).

2. There exists a polynomial pin) such that for every probabilistic polynomial-time
Turing machine M, for sufficiently large n,

Pv[M(f(x), r)tf-\f(x))]>-L,

where the probability is taken over all the instances x chosen uniformly over
{0,1}" and the internal random choices of M.

60 CHAPTER 2. PRELIMINARIES

The difference between these two definitions is only on the second condition, and it
seems at first glance that they characterize two very different groups of functions.
Strong one-way functions are weak by definition, but Yao ([Yao82]) showed that the
existence of weak one-way functions implies the existence of strong one-way functions.
More, it is possible to create a strong one-way function from any weak one-way
function. We still don't know if one-way functions exist at all, as their existence
implies P ^ N P .

A notion that has turned out to be intimately related to one-way functions is that of
pseudorandom generators. This notion was introduced in two papers, [Yao82, BM84],
that actually gave different definitions of pseudorandomncss. They both define pseudo-
randomness for an infinite sequence of distributions of strings. For Blum and Micali,
the defining characteristic of a random distribution is that its output in successive
iterations must be unpredictable from the output of all previous iterations.

Definition 2.8.14 (Blum-Micali) Let {gn} be a polynomial-time computable family
of functions with gn : {0, l } n \—> {0, l}m and m is a function of n with m > n. Then,
this family is (s(n),t(n)) — unpredictable if for every probabilistic Turing machine A
running in time t(n) and every large enough n,

Pv[A(g(x){1)...4]) =g(x)i+i] < - + e{n),

where the probability is over the instances x uniformly sampled from {0, l}n, i G
{ 1 , . . . , n} and the internal coins of A. If for every fixed k, {gn} is (l/nc, nk) —unpredictable
for every c > 1, then we say it is unpredictable by polynomial-time algorithms.

Yao's definition considers instead that a pseudo-random distribution must be indis­
tinguishable from a true random distribution by computationally bounded Turing
machines. He formalizes this by stating that g is a pseudorandom generator if any
polynomial-time Turing machine can not properly distinguish whether its input comes
from a true uniformly random distribution or instead is the result of the application
of g over strings coming from a true, but shorter, random distribution.

Definition 2.8.15 (Yao) Let {gn} be a polynomial-time computable family of func­
tions with gn : {0, l } n H-> {0, l } m where m is a function of n with m > n. Then,
this family is a (e(n) ,t(n))— pseudorandom generator if for every probabilistic Turing
machine M running in time t(n) and every large enough n:

r [M(y) = l]- Pr [M{g(x)) = 1] <e(n).
i , i } m xeR{Q,i}n

2.8. COMPUTATIONAL COMPLEXITY THEORY 61

We say g is a pseudorandom generator, in short, if e(n) < ^ for all polynomial p(n)
and t(n) is any polynomial. We say the output of g is pseudorandom.

Yao also proved the equivalence of both definitions. The technique he used became
known as the hybrid argument and is a centrepiece of cryptography today.

Definition 2.8.16 (Computat ional indistinguishability) Two distributions X and
Y over {0, l } n are (e(n),t(n))­ indistinguishable if for any deterministic Turing ma­

chine M running in time t(n) with access to an auxiliary truly random input string r
of size up to t(n),

Pr [M(y,r) = l]­ Pr [M(x,r) = l] < e{n).

We say X and Y are computationally indistinguishable ife(n) < ­K for all polynomial
p{n) and t(n) is any polynomial.

This definition turns out to be an analog of statistical distance. Consider the notion
of computational distance from [BSW03].

Definition 2.8.17 (Computat ional distance) Let C be a class of functions f :
S i—> {0,1}. The computational distance of distributions X and Y over S, with relation
to C, is

cdist c(X,y) = max |£ [/pO] ­ E[f(Y)}\.
/ 6 0

This can be written more explicitly, when / is deterministic, as cdistc(X, Y) =
max / e C | Ylx€S f(x) " Px(x) ~ ^2XGS f(x) ' PY(X)\­ T O better see the relation between
this notion and statistical distance, note that / actually selects a subset A from S.
Besides, this subset is a language in C, since its characteristic function is in C. So,

max
fee

max
Aasnc

J2 fw • px(x"> ­ J2 f(x) ■ PY^
IS xes

Y1PX(X)­J2PY(X

c£S

xeA xeA

max \X(A)­Y(A)\,
AcSnC

62 CHAPTER 2. PRELIMINARIES

which is a generalization of statistical distance restricting the sets we can investigate.
Now, we show how this is related to Definition 2.8.16. Yao's definition can be written
as

< e{n), max
MePTMp

Pr [M(y,r) = l]- Pr [M{x,r) = l]

where P T M P is the set of all probabilistic Turing machines running in polynomial
time. Each Turing machine actually realizes a probabilistic function f(x), that returns
1 for each x with a certain probability depending on x. We can replace the class of
probabilistic Turing machines by some class C for probabilistic boolean functions, so
we can rewrite the above as max/eC \J2ses P r [^ = s] ' f(s) ~ Ylses P r [^ = s] ' f{s) | <
e(n) or, since f(s) is probabilistic, as max / eC \E[f(Y)] - E[f(X)]\ < e(n), this is, a
statement on the computational distance.

It is easy to show that the existence of pseudorandom generators implies the existence
of one-way functions. In essence, if g(x) is a pseudorandom generator, then it must
also be a one-way function. If not, then inverting it and finding the seed would
distinguish g(x) from a truly random string of the same size. The opposite direction
was established in [HILL99]. In the same paper, the authors introduced a notion of
computational entropy that basically generalizes Yao's definition of pseudorandom-
ness, by saying that a distribution has computational entropy at least b if it can not
be computationally distinguished from a distribution with Shannon entropy b. Then,
a distribution over size n strings is pseudorandom if it has computational entropy at
least n, i.e. it is computationally indistinguishable from the uniform distribution.

2.9 Kolmogorov complexity

Shannon's theory gives an adequate measure of the randomness present in a stochastic
source. This randomness is the consequence of the outcome of the source being, a
priori, unpredictable. Consider now the simplest of random sources, a fair coin tossed
over and over, and a transcript of its results over a finite number of iterations: a
binary string. Can we say that such string is random, since it is the output of a
random source?

Perhaps the first natural answer is "yes ' \ because we are anticipating the source to
behave in a certain way. We hardly expect to see in the result string sequences like
00000000000000000000 or 01010101010101010101. We simply don't think these strings
could be the output of a random process. The idea of randomness suggests total
unpredictability and independence of each bit relative to the previous ones, and these

2.9. KOLMOGOROV COMPLEXITY 63

strings certainly don't show such traits. Compare with a similar size string obtained by
tossing a coin: 01010110111011100111. However, all of these strings are quite possible
outcomes of the experiment "toss a fair coin 20 times" and moreover, they are all
equally likely.

What this suggests is that we have an intuitive idea of the properties of random
experiments and the frequency these occur with. We do not expect to see an all-
0 string because there is only one such possible outcome. On the other hand, the
last string seems acceptable because there is no clear pattern in it and so we are
unable to distinguish it from many other similar strings. Kolmogorov complexity
seeks to quantify the randomness in a finite string according to the existence or not of
regularities that can be identified by algorithmic processes: a string must be random
if it can not be identified by some significantly shorter description. To avoid possible
paradoxes, we have to be careful in the descriptions we allow, and we restrict these to
computable functions.

Definition 2.9.1 (Kolmogorov complexity) Let M be some fixed Turing machine.
The Kolmogorov complexity of a binary string x relative to M is the length of the
shortest input that instructs M to produce x. If no such string exists, it is defined to
be oo.

, } minp{|p| : M(p) = x}, if there is such a p
oo, otherwise.

This definition is dependent on the choice of M and therefore it is not robust. However,
the existence of universal Turing machines solves this problem. To distinguish from
another variant of Kolmogorov complexity that we will be using, C(x) is also called
plain Kolmogorov complexity.

Theorem 2.9.2 (Invariance Theorem) Let U be a fixed universal Turing machine.
Then, for any other Turing machine M, Cv{x) < CM(x) + cM, where cM is a constant
depending on M but not on x.

This theorem allows us to fix some universal Turing machine for once and for all. We
thus omit the subscript from Cu(x) and write C(x) instead. This definition can be
extended to the case where we give some additional input to the program computing x.

Definition 2.9.3 (Conditional Kolmogorov complexity) Let U be a fixed uni­
versal Turing machine. Then for any binary strings x,y, the Kolmogorov complexity

64 CHAPTER 2. PRELIMINARIES

of x given y, or x conditioned on y, is C(x\y) = minp{|p| : U(p,y) = x}. For the
empty string e, C{x\e) is defined to be equal to C(x).

We can also define the complexity of two concatenated strings. Usually, we are more
interested not in the complexity of xy but in that of a reversible coding of x and y,
that is, some representation of both strings from which we can derive each of them.
This coding is represented by (x, y) and we often omit the angle brackets when they
are understood from context.

Kolmogorov complexity is uncomputable, and can not be lower bounded by recursive,
unbounded non-decreasing functions. However, we can give an upper bound to it.

Theorem 2.9.4 (Basic properties) For some constant c that does not depend on
x,

• C(x) < \x\ + c.

• For any partial computable function ¢, C{4>{x)) < C(x) + c.

• C{x\y) <C(x)+c.

Definition 2.9.5 A string x is said to be c—incompressible if C(x) > n — c, and it is
Kolmogorov-random if it is 0—incompressible.

Such strings can be seen to exist by a counting argument, as will be shown later.

2.9.1 Prefix Kolmogorov Complexity

Kolmogorov complexity as defined above does not satisfy a desirable property, namely
that for every pair of strings x,y, C((x,y)) < C(x) + C(y) + c. It seems natural
that given descriptions for x and y we have a description for (x,y). However, this
description would have to be input to a Turing machine U as a unique string, and U
would have to split it into a program for x and another for y. The problem is we do
not know where one ends and the other begins. Prefix-free Kolmogorov complexity
does not have this problem. It is defined as plain Kolmogorov complexity, with the
exception that the input to the Turing machine must be a codeword from a prefix-free
domain. In other words, for any two programs p and q for which this machine halts,
neither is a prefix of the other.

2.9. KOLMOGOROV COMPLEXITY 65

In the example above, to separate x from y we have to add some extra information.
Suppose p is a description for x and g is a description for y. We may precede pq by
the length of p. But this new string has to be itself delimited. One way to do this is
to write each bit of \p\ repeated, with the exception that the last bit is coded as 01 if
it is a 1 or 10 if it is a 0. Let n = \p\. This way, \p\ is coded in 2n < 2\ogp + 2 bits
and the whole description for (x, y) takes at most C(x) + C(y) + 2 log C(x) bits.

Definition 2.9.6 (Prefix-free Kolmogorov complexity) Let U be a universal prefix
free Turing machine. The prefix Kolmogorov complexity of a binary string x is the
length of the shortest prefix-free program that makes U produce x.

K(x) = min{|p| : U(p) = x}.
v

The above definition works because, as it happens for regular Turing machines, there
is also an effective enumeration of prefix-free Turing machines and a universal prefix
Turing machine. Consequently, the invariance theorem holds for K{x) as well.

We can define the conditional prefix Kolmogorov complexity as before, merely replac­
ing the universal machine by a prefix one. Prom now on, we will use exclusively K{x)
and refer to it simply as Kolmogorov complexity. We state the basic properties for
K(x).

Theorem 2.9.7 (Basic properties) For any binary strings x and y and some con­
stant c that does not depend on x,

• K{x) < \x\ + 2 log |a:| + c.

• For n = \x\, K(x\n) < \x\ + c.

• For any partial computable function ¢, K((f)(x)) < K(x) + c.

m K(x\y) < K(x) + c.

Prefix-freeness ensures sub-additivity of Kolmogorov complexity.

Theorem 2.9.8 For any binary strings x and y, K(x,y) < K(x) + K(y) + c.

As before, we can define random strings based on K{x).

Definition 2.9.9 A string x is said to be c— incompressible if K(x) > n — c.

66 CHAPTER 2. PRELIMINARIES

Kolmogorov complexity is an accurate measure of the inherent randomness in a given
string, independently of its being or not the outcome of any random experiment. It also
quantifies the exact amount of information necessary to produce a certain string, and
in this sense it is a quantification of the information contained therein. An important
result in the theory of Kolmogorov complexity is the existence of random strings.

Theorem 2.9.10 (Incompressibility Theorem) For each constant c, the number
of binary strings x of size n with complexity K(x) < n — c is at most 2n~c.

Proof: By a counting argument, there are at most 2n~c prefix-free programs of size
up to n — c, so at most 2n~c strings can have complexity up to n — c. D

This result holds also for the conditional case and can be strengthened to the following
result, which we will not proved here (see [LV97] for a proof).

Theorem 2.9.11 For each constant c, the number of binary strings x of size n with
complexity K(x) < n — (c — K(n)) is at most 2n~c.

2.9.2 Two part description

If we know that x belongs to some set A, then we may find that x is easier to describe.
All we have to do is to give a description of A and then an index to the position x
occupies in some ordering of A. A itself may be very easy to describe, for instance, the
set of all n—bit strings, which essentially has complexity O(logn), or very complex,
for example if A = {x}, which has complexity K(x) that may be very large. The
description of x's position within A is an index i such that 1 < % < \A\ and can be
described in at most log \A\ bits. Therefore,

Theorem 2.9.12 Let A be a partial recursive set such that x G A. Then, K{x) <
K{A) + log \A\ + 0(1), where K(A) represents a minimal description of the charac­
teristic function of A.

If A is a partial recursive set, then there is a partial recursive function <f> that enumer­
ates A, and this can be described by a program with length equal to a constant c^
independent of x. Therefore, in this case, we can write K(x) < log \A\ + 0(1).

2.9. KOLMOGOROV COMPLEXITY 67

2.9.3 Mutual Information

We can define the information in a string y about x in a way analog to that of
information theory:

Definition 2.9.13 For any two binary strings x and y, the information y contains
about x is defined as I(x : y) = K(x) — K(x\y).

Contrary to information theory, this quantity is not even asymptotically symmetric.
To make it so, we need another definition, which we denote by Kc(x), due to Chaitin.
Let x* denote the first shortest program, in a lexicographic ordering, that produces x.
Then, let Kc(x) = K{x) and Kc(x\y) = K{x\y*). This implies Kc(x,y) = K(x,y) and
K{x\y*) = K(x\y,K(y)), since K(x*) = K(x,K{x)).

Theorem 2.9.14 (Addition Theorem) For any two binary strings x and y,

Kc(x, y) = Kc(x) + Kc{y\x) + 0(1) ^

K(x,y) = K(x) + K(y\x*) + 0(l).

This result is credited to Gács (1994) in [GV04]. Now, we can redefine the information
in y about x:

Definition 2.9.15 (Mutual information) For any two binary strings x and y, the
information y contains about x is defined as

IK(x:y) = K(x)-K(x\y*).

This quantity is called "mutual information" because it is symmetric. Due to the
addition theorem, IK(x : y) = K(x) - K(x\y*) = K(x) - K(x,y) + K(y) = IK(y : x).
We use this definition in the rest of the thesis. It is worth to note the following result:

Theorem 2.9.16 Let x, y be binary strings. Then, I(x : y) < K(x) and I(x : y) <
K(y).

Proof: Consider I(x : y) = K(x) - K(x\y). Since K(x\y) > 0, the first inequality
follows easily.

To prove I(x : y) < K(y), note that K(x) < K(y,x) < K(y) + K(x\y). This implies
K(x) - K(x\y) < K(y) <* I(x : y) < K(y). D

68 CHAPTER 2. PRELIMINARIES

This is also true for IK{X '■ y) with practically the same proof. The important point
is that this does not depend on symmetry of information and means the information
x has about y can not be more that the total information x has within, and of course
can not exceed the quantity of information there is to know about y.

There are generalizations for the conditional case. The following theorem and defini­

tion are taken from [Gác88].

Theorem 2.9.17 (Conditional addition theorem) For any three binary strings
x, y and z, K(x, y\z) — K(x\z) + K(y\x, K(x\z), z) + 0(1).

Definition 2.9.18 (Conditional mutual information) For any three binary strings
x, y and z, IK{% '■ y\z) = K{x\z) + K(y\z) — K(x, y\z).

We sometimes use an extended notation of x*, namely (x, y)*, justified by this lemma:

Lemma 2.9.19 For arbitrary strings x,y,z, the following is true up to an additive
constant: K(x,y\z*) ­ K(y\z*) = K(x\(y,z)*).

Proof: K(x\(y, z}*) = K(x, y, z) ­ K(y, z) = K(z) + K{x, y\z*) ­ K(z) ­ K(y\z*) =
K(x,y\z*)­K(y\z*). D

2.9.4 Universal measure

Definition 2.9.20 A function f : A •—>■ [0,1] is called a probability measure over a
space A closed for countably many unions and intersections if /(0) = 0, /(.4.) = 1
and for any countable (possibly infinite) sequence of mutually disjoint sets En Ç A we
have /((J^Li En) = X/nLi f(En)­ It is called a semi­measure if for a sequence {En} of
disjoint sets J2n f(En) < 1. We call the measure discrete if the set S is discrete.

It is possible to define a universal recursively enumerable discrete semi­measure over
the set of all recursively enumerable discrete probability semi­measures.

Definition 2.9.21 (Universal semi­measure) Consider an enumeration of all r.e.
discrete semi­measures Pi,P2, We define the universal r.e. discrete semi­measure
m by

m{x) = YJ^
K{n)Pn{x).

n>\

2.9. KOLMOGOROV COMPLEXITY 69

This yields 2x(i l)m(x) > Pn(x) for all x and every enumerable discrete semi-measure
Pn. To simplify, we let P = Pn, K(P) = K{n) and write 2K{-P^m(x) > P(x).

If we toss n fair coins in the air, the probability that this produces any n—bit string is
l /2 n . But if we consider this string as the input to a Universal Turing machine, then
the probability that a given x is generated is instead the sum over the probabilities of
a program for x being generated. This quantity is known as a priori probability of x.

Definition 2.9.22 (A priori probability) The universal a priori probability of a
string x is defined as

Qu(x)= Yl 2-W
p,U(p)=x

where U is a fixed prefix-free universal Turing machine and the sum runs over all
programs of any size that halt producing x in this machine.

It can be seen that Qu(x) is a probability measure because YlxQuix) r u n s a s e t °f
prefix-free programs and by Kraft's inequality we get that YlxQu{x) < 1- To make
it sum to 1, we simply attribute the remaining probability to some extra word that
denotes an infinite computation, for example, some conventional way to represent oo.

It is a common principle in science to favour the simplest explanation that justifies a set
of data. This is known as Occam's razor. In algorithmic terms, this is the explanation
with lowest Kolmogorov complexity, so we can define a probability measure.

Definition 2.9.23 (Algorithmic probability) The algorithmic probability of x is
defined as R(x) =2~K^.

There is an important relation between these three notions, known as the Coding
Theorem.

Theorem 2.9.24 (Coding Theorem) There is a constant c such that for every x,

- logm(x) = - log Qu(x) = K(x)

with equality up to c.

In the rest of this thesis, we let m (re) = 2~K^ and call it universal distribution.

70 CHAPTER 2. PRELIMINARIES

2.9.5 Time-bounded Kolmogorov Complexity

A way to make Kolmogorov complexity computable is the introduction of resource
bounds. By giving the reference universal Turing machine a limit on the time or the
space it can use, we can search for all programs within those bounds that produce x
and thus compute the resource-bounded Kolmogorov complexity of x. In this thesis,
we will give our attention only to time-bounded Kolmogorov complexity.

Definition 2.9.25 (Time-bounded Kolmogorov complexity) Fix a universal prefix-
free Turing machine U and a time-constructible1 function t(n). We define the time
bounded Kolmogorov complexity of a binary string x as

K\x) =min{|p| :U*(p) =x},
v

where by Ul(p) we mean that U receives p in its input tape and computes it until
t(\x\) steps have passed. If the computation has not ended by then, U stops outputting
whatever is on the tape at that moment.

Most of the simplest properties of K(x) also hold for K^x). Namely, K{x) < Kl{x) <
\x\ +2log \x\ +0(1) . In fact, Kl{x) approaches K{x) as t(\x\) grows. We can similarly
define a conditional version Kl{x\y) and the incompressibility theorem also holds. It
is not known if time-bounded symmetry of information holds for Kl{x) when t is
a polynomial: if it holds then one-way functions do not exist. The paper [LR05]
studies this question and proposes a new version of Kolmogorov complexity for which
polynomial-time symmetry of information holds. This is discussed in Section 2.9.6. It
is also possible to define, by analogy, a quantity mt(x) = 2~K(-X\ This is a probability
function, and we can compute the corresponding distribution function, or cumulative
probability, m**(x) = ^2V<X m*(|/), The function m'(a:) is computable in time i(n)2n + 1

by simulating all programs of size up to n in time t(n). Using this, we can compute
m**^) in time t(n)22n+2 by computing all intermediate sums. Better methods of
computing these functions are still not known, thus we can't say if m^x) or m**^)
are t(n)— time computable. However, we can state a dominance theorem relating these
functions to t(n)—time computable functions.

Definition 2.9.26 Denote byVH the class of all probability distributions P* that are
computable in time t(n).

: A function / is time-constructible if some Turing machine computes f(n) within / (n) steps.

2.9. KOLMOGOROV COMPLEXITY 7L

Theorem 2.9.27 Let t(n) be a polynomial and t'(n) = nt(n). For all P with cor­
responding P* £ V*1, there is a constant cP independent of x such that for all x
2cpmt'(x) > p{x)t for cP = Kl\P) + 0(1).

When we introduce time bounds, the length of the shortest program that produces
a string x may not be the equal to that of shortest program that accepts only x.
Without time-bounds, this difference does not exist, but in the time-bound realm it
has led to two different definitions: the one we gave above and that of Distinguishing
Complexity. We do not need the latter in this thesis and so do not mention it further.

2.9.6 CAM Complexity

In [LR05], the authors defined another notion of time-bounded Kolmogorov complexity
for which polynomial-time symmetry of information does hold. This is a variant where
the program has the same computing ability as the class2 AM, where the computation
is done in probabilistic polynomial time with bounded error (Arthur), with the help
of nondeterminism (Merlin).

Definition 2.9.28 (CAM complexity) Let U be a fixed universal nondeterministic
Turing machine that takes as input a program p, a data string y and a random auxiliary
string r. Then for any string x,y E £*, for a polynomial t, the t-time-bounded AM
decision complexity CAMt(x\y) is the length of the smallest program p such that

1. for all r, U(p,y,r) runs in at most t(\x\ + \y\) steps,

2. with probability at least 2/3 over the choice of r, U(p, y, r) has at least one
accepting path, and U(p, y,r) = x on all of the accepting paths.

Theorem 2.9.29 (Polynomial-time bounded symmetry of information, [LR05])
For any polynomial time bound t, there exists a polynomial time bound t! such that

K\x,y) > CAMl\x) + CAM^^x) - 0(log3(|x| + |y|)).

2 AM is the class of decision problems for which the answer can be verified by an Arthur-Merlin
protocol: Arthur is a probabilistic polynomial time verifier who, based on the input, sends a challenge
and a series of random coins to an unbounded prover Merlin and then outputs an answer "yes" or
"no" based on Merlin's response, being that Arthur has at least 2/3 probability of answering correctly
even if Merlin cheats.

72 CHAPTER 2. PRELIMINARIES

It can also be proved that CAM2t'(x, y) < CAMt'(x)+CAMt'(y\x)+c. We can use the
programs for x and y given x to compute the pair (x, y) as we do for normal complexity.
The tricky part is to ensure that this computation has at least one accepting path with
probability at least 2/3. If we simply run the program to obtain y first and at the end
of each accepting path run the program to obtain x from y, then the probability of
having no accepting paths in the first phase is at most 1/3, and in the second is at
most 1/3 times whatever the probability is of having an accepting path on the second
phase. These bounds are not good enough, so we need a trick.

To compute (x, y), U receives a program q for y and a program p for x given y plus
some instructions to execute p and q like this: it parses q from its input string and
launches two copies of U(q, r). Each of the copies has an accepting path with at least
2/3 probability, so the pair of machines has no accepting path with probability at most
1/9. At the end of each accepting path, the master machine launches two copies of
U(p,y,r). Once again, the probability that there's no accepting paths between each
pair of machines is at most 1/9. Thus, the probability that there are no accepting paths
outputting x for this master machine is at most 1/9 + 1/9 = 2/9 < 1/3. The execution
time on a complete accepting path is at most t'(\x\ + \y\) +t'(\y\) < 2t'(|x| + \y\). So,
we have a CAM description for (x,y).

2.9.7 Relation with Shannon Entropy

There is a very close relation between Shannon's entropy and Kolmogorov complexity:
entropy is the expected value of Kolmogorov complexity for computable distributions.
In this sense, Kolmogorov complexity is a sharper notion than entropy. The following
theorem follows from Corollary 4.3.2 and Theorem 8.1.1 in [LV97]. It is given here
since we could not find it elsewhere in the literature.

Theorem 2.9.30 Let X, Y be random variables over X', y. For any computable prob­
ability distribution n(x,y) over X x y, 0 < [J2x,y^i.x^V)^{x\y) ~ ^{X\Y)\ —
K{n) + 0(1) = 0(1), since K(n) does not depend on x.

Proof: Let /J,Y and /ix be the marginal probability distributions over y and X
respectively. Similarly, denote by JIX\Y and \xy\x the conditional probability distri­
butions. For the first inequality, H(X\Y) = J2y llY(y)H(X\Y = y) which is at most
J2ylIY(y)J2xtlx\Y(x)K(x\y) = Y^x,yV(x,y)K(x\v) w h e r e the inequality follows from
the Noiseless Coding Theorem (Theorem 2.5.14), since y is a fixed string.

file:///xy/x

2.10. CRYPTOGRAPHY 73

For the second direction, Corollary 4.3.2 in [LV97] states that K(x\y) < log l/fix\Y(x\y)+
K(n) + 0(1). Therefore,

Y M*> y)K(x\y) = Y fiY(y) Y l*x\Y(x\y)K(x\y)
x,y y x

^ Yl VY(V) Y PX\Y{X\V) log l/iMX\Y(x\y) + K{II) + 0(1)
y x

= Y /*(*. y) log 1/HX\Y{X\V) + K(JJ) + 0(1)
x,y

= H(X\Y) + K(fi) + 0(1).

D

Note that K(n) is a constant cM depending only on the (computable) conditional
probability of X and Y, but not on the particular value of x [Cha75].

An analogous result for mutual information holds.

Theorem 2.9.31 ([Gác88, GV04]) Let X,Y be random variables over X,y. For
any computable probability distribution ^(x,y) overXxy, I(X;Y)­K(/J) < X^E.J/M^; 2/)­^(2

y) < I(X;Y) + 2K{fi). When fi is given, then I(X;Y) = J2x,yvfav)1^ ■ y\n) +
0(1).

2.10 Cryptography

2.10.1 Information­Theoretic Security

The base of information­theoretic proofs of security is the concept of entropy and the
related notion of mutual information of random variables. A cryptographic system
often requires that the knowledge of some public information available to an attacker
does not help her in finding anything about some secret information. This is usually
formalized by considering a random variable over the sets of public and private informa­

tion, for example, X and Y respectively, and requiring that their mutual information
be 0, or I(X : Y) = 0 <^ H(X\Y) = H(X). This means the attacker gains no
advantage by knowing the ciphertext, no matter which one this is.

We give an example with a cipher system (although there are many more kinds of
systems with information­theoretic security). The advantage of the attacker is a
function of the difference in the likelihood of each plaintext occurring for a given

74 CHAPTER 2. PRELIMINARIES

ciphertext and its a priori likelihood of occurring: considering (x, y) is a pair of
plaintext x and corresponding ciphertext y, the advantage is log l/p(x) — log l/p(x\y).

This technique, unfortunately, is not applicable to public-key systems. For example, in
the widely used RSA, each public-key uniquely determines the corresponding private
key, which means that the entropy of the plaintext when one knows the ciphertext
and the public key is exactly zero. But this is because entropy does not take in
consideration the difficulty of making that computation.

2.10.2 Cryptographic Algorithms

This section gives an introduction to the cryptographic algorithms studied in Chapters
3 and 4.

2.10.2.1 Symmetric Cipher Systems

The purpose of a cipher system is to conceal from an eavesdropper the messages that
one person sends to another.

Definition 2.10.1 A cipher system is a tuple denoted CP(V,C,K, f(k,p)) where V
is the alphabet of plaintext messages, C is the alphabet of ciphertext messages and
K, is the alphabet of secret keys. For each k G K, there is an encrypting function
fk'-V' •—► C with fk{p) = f{k,p) that is injective and defined for all p e V. For each
k, the decrypting function is gk : C i—> V defined as gk — f^1.

A cipher system is unconditionally secure if the random variables P,K,C = f(K, P)
satisfy H(P) = H(P\C).

2.10.2.2 Secret Sharing Systems

Secret sharing systems are useful when a secret needs to be split among several parties
such that a minimum number of them is necessary to reconstruct the secret. The
first implementations for this kind of system were given in 1979 independently by
Shamir ([Sha79]) and Blakley ([Bla79]). Both their systems are threshold secret
sharing schemes.

2.10. CRYPTOGRAPHY 7,r)

Definition 2.10.2 (Threshold Secret Sharing) Let q,w be positive integers, q <
w. SS(JC,S,d,r) is a (q,w) threshold scheme if d : /C —> Sw produces w shares of a
key k G /C in such a way that any q participants can compute the value of k by using
the reconstruction function r, but no group of q — 1 participants can do so.

The attribute "threshold" is used above to denote that any group of users that contains
more than a certain number of different shares, the threshold, is able to recover the
secret. This is in opposition to more complex secret sharing schemes where the users
may be divided in classes, such that, for example, 2 users of class 1 are enough to
recover the secret, but if only one is available, the other may be replaced by any three
users of class 2. These systems may be simulated with threshold schemes by giving
more shares to members of more powerful classes, but this idea can be generalized
without concerns as to how it is implemented.

Definition 2.10.3 (Generalized Secret Sharing) Let w be a positive integer.
SS()C, S, d, r, Q) is a secret sharing scheme if d : JC -* Sw produces w shares of a key
k G K. in such a way that only sets Q G Q of users can compute the value of k by using
the reconstruction function r, and no other group of participants can do so. The sets
in Q are called qualified sets.

2.10.2.3 Authent icat ion Systems

An authentication system is a cryptographic construction that guarantees the integrity
of messages. This means that if a user receives a message supposed to be from a given
sender, he can be reasonably sure that that message was indeed sent by the indicated
person and not forged by someone else, and also that the message was not altered in
the way between the sender and the receiver.

Simmons developed a detailed theory of authentication systems in, for example, [Sim85],
[Sim84] and [Sim88]. In [Sim88], he classifies authentication systems along three axis:
systems with or without arbitration, systems with or without secrecy and systems
computationally or provably secure.

In an authentication system, there are two legitimate users, which we call Alice and
Bob. There is an opponent, Oscar, who can read, suppress and inject messages in the
channel between Alice and Bob. Alice wants to send Bob one message, the source
value, from a given set known to both users. As Simmons noted in [Sim85], the way
that a system provides authentication is to create redundancy in the messages that

76 CHAPTER 2. PRELIMINARIES

Alice can send Bob: for each source value that she may send to Bob, she can send
several different messages, called coded or authenticated messages, but in a way that
Bob will accept only a few of them as valid. As such, if Oscar tries to forge a message
out of the blue and sends it to Bob, the latter will very likely reject this message.
Bob and Alice share a secret key that allows Bob to sift through the redundancy in
the system, so that Alice always sends a message that Bob accepts. This key is the
encoding rule used by Alice to transform her source value in some coded message and
then used by Bob to verify that the message he receives is within the set of valid
messages.

Authentication systems can have secrecy. In this case, the authenticated message does
not indicate the source value being communicated. Inversely, in an authentication
system without secrecy, a coded message completely reveals the source value. For an
example of why systems without secrecy are important, see [Sim88]. Authentication
systems can also have splitting. In this case, each pair key/source-value may have
several possible coded messages, and the encoding is done probabilistically. In system
without splitting, there is only one value associated to each such pair. In this thesis,
we only consider such systems.

2.10.2.4 Representat ion of Authent icat ion Systems

An authentication system can be represented by a table that shows how the several
encoding rules transform the source values into coded messages.

0 1 2
0 0 3 6
1 1 4 7
2 2 5 8
3 0 5 7
4 1 3 8
5 2 4 6
6 0 4 8
7 1 5 6
8 2 3 7

Table 2.2: An example authentication system

The example in Table 2.2 corresponds to an example authentication system presented
in [Sti02]. It is one of the smallest systems without secrecy with traditional uncon-

2.10. CRYPTOGRAPHY 77

ditional security. The header line holds the source values, the leftmost column the
secret-key, and the coded messages are the entries in the table. Notice that each
coded message appears in only one column, that is, it determines the source value
used to create it. As Stinson pointed in [Sti92], anyone knowing the system can create
an isomorphic authentication system where each coded message is replaced by the
source value and an authenticator. For ease of calculation, this authenticator can be
defined as an integer enumerating the coded messages available for each source value.
Thus, the previous code becomes the one in Table 2.3.

S
0 1 2

0,0) (1,0) (2,0
0,1) (1,1) (2,1
0,2) (1,2) (2,2
0,0) (1,2) (2,1
0,1) (1,0) (2,2
0,2) (1,1) (2,0
0,0) (1,1) (2,2
0,1) (1,2) (2,0
0,2) (1,0) (2,1

Table 2.3: The same system, with the coded messages written as the concatenation of
the source value and the authenticator

This table can be expanded into what is called an incidence matrix. We find it easier
to explain the attacks against an authentication system with this kind of table than
with a regular encoding matrix. In an incidence matrix, each column represents a
different coded message and each row symbolizes a different key. A cell can be filled
or not. In the first case, it means that there is some source value that the given key
transforms into that particular coded message. The incidence matrix of our example
system can be seen in Table 2.4. The incidence matrices of systems without splitting
have exactly one 1 for each key in each group of columns under a specific value of S,
since each pair (k, s) can generate only one coded message. Also, every column has
at least one 1 in it, otherwise the corresponding message could be excluded from the
alphabet without altering the system.

We give an example system that will be used in later sections to clarify some points
of the analysis of the security of individual instances. The system is insecure in the
traditional sense and is defined by Table 2.5. Note that the sets of source values and

78 CHAPTER 2. PRELIMINARIES

S:
A:

0
0 1 2

1
0 1 2

2
0 1 2

0
1
2

1
1

1

1
1

1

1
1
— 1

3
K: 4

5

1
1

1

1
1

1

1
1

1
6
7
8

1
1

1

1
1

1

1
1

1

Table 2.4: The incidence matrix of the example system

keys is still the same, but that there is a difference in the several authenticators and
consequently on the coded messages.

S: 0 1 2
A: 0 1 2 0 1 0 1 2 3

0 1 — — 1 1 — — —

1 1 — — 1 — 1 —

2 — 1 — 1 — — — 1
3 — 1 — 1 — 1 —

K: 4 — — 1 1 — 1 —

5 — — 1 1 — 1 —

6 — — 1 1 — 1 —

7 1 — — 1 1 — — —

8 — 1 — 1 — 1 —

Table 2.5: An insecure system

In an impersonation attack, the attacker sends a forgery (s, a) E S x A without seeing
any valid message. The probability of the receiver accepting this message as valid is

payoff {s, a) = J] Pv[K = k].
k&KL,gk{s,a) = l

In a substitution attack, the attacker knows that (si,Oi) is a valid message before
sending a forgery (s,a) G S x A. The probability of the receiver accepting this

2.10. CRYPTOGRAPHY 79

message as valid is

a-, \ ^/kelC,gk(,s,a)=l,gk(si,ai) = l L J
payoff(a,a |S l,ai) = E , P ^ .) ! Pr[AT = k] '

*—'kelC,gk(si,a.i)=l I l

Definition 2.10.4 An authentication code without arbitration, without splitting and
without secrecy is a tuple denoted AC(S, A, /C, f(k, s),g(k, (s, a)), a, (5) where S is the
set of source states, A is the set of authenticators and K is the set of the secret keys.
For each k G K, there is an infective encoding rule fk : S i-> A with fk(s) = f(k,s)
that computes the message authentication code (mac) for each source value s G S. For
each k e K, a verification function gk : S x A >-> {0,1} with gk(s, a) = g(k, (s, a)) can
be defined as gk(s,a) = 1 iff f(k,s) = a.

The value a is the maximum chance of success for an impersonation attack and (3
is the maximum chance of success for a substitution attack. Formally, for any fixed
k G JC, max(S)a)e<Sx^payoff(s,a) < a and max(S)a)i(siiai)65x^ payoff(s, a, s1, ax) < f3.

2.10.2.5 Some Results About Authent icat ion Systems

This section presents a few results about authentication systems. We give only those
results needed in later proofs and do not try to cover the whole field of authentication
systems without secrecy.

Definition 2.10.5 Let)Cs<a denote the set of keys that given s generate a, i.e., the keys
authenticating a message {s,a). Equivalently, let m = (s, a). Then, define K.m = /CS)(I.

Definition 2.10.6 Let As denote the set of authenticators that can be associated to
some source value s.

Theorem 2.10.7 In an authentication system without secrecy, the total number of
keys is equal to the number of authenticators that can be associated to each specific s
times the average number of keys validating each coded message that can be associated
with that s. Formally, \JC\ = \AS\- Es{\K,s,a\), where we define Es{\KSy0\) = a£pfc] "'" •

Corollary 2.10.8 In an authentication system without secrecy, the number of keys is
greater than or equal to the number of authenticators of a fixed source value s times
the minimum number of keys validating a message that can be associated to that s:
|/C| > |A|mina{|/Cs,a | : a G As}.

Univf

CIÊNI
[EGA

80 CHAPTER 2. PRELIMINARIES

Corollary 2.10.9 In an authentication system without secrecy, the number of keys is
greater than or equal to the maximum number of authenticators times the minimum
number of keys validating any message: \K\ > \A\ ■ mmSjCt{|/CSja| : a G A}.

Definition 2.10.10 Let JC(8>a),{8',a') denote the set of keys that given s and s' generate
respectively a and a'. Equivalently, let m — {s', a'). Then, define K.s,a,m = 1C{s,a),{s',a')

Definition 2.10.11 LetASo,s,a denote the set of authenticators generated from a source
value s0 by all the keys validating (s, a). In other words, it is the range of f(k, s0) where
k G |^­s,a| •

Theorem 2.10.12 In an authentication system without secrecy, fix a pair (s, a). Then,
for any SQ, the total number of keys authenticating (s,a) is equal to the number of
authenticators generated from So by the keys validating (s, a) times the average number
of keys validating simultaneously (s,a) and (so,ao), where (s0,ao) is a valid pair for
trie Key in use.|A^sa| |»^so,s,a| ■ ­̂ 0011^5,̂ ,80,001 • ̂ 0 t ^­50,^,1/­

2.10.2.6 Commitment Systems

A Commitment Scheme is a cryptographic system whereby one party, which we call
the "committer", wants to send a secret to another party, called the "verifier", in two
steps, committing to her choice in a first instant and revealing that choice only at
a second moment in time. They were introduced by Blum in his paper [Blu82] and
are useful when both parties want to exchange secrets "simultaneously". A real world
example is when a chess tournament match has to be adjourned, and one player seals
her move without revealing it to the other party and without being able to change it
when the game is resumed in a later session. A more serious application is when both
parties need to generate a common string of perfect randomness for a task they're
executing together without each of them being able to sway the string in her favour.

There are unconditionally and computationally secure commitment systems. Uncon­

ditionally secure commitment systems require a third participant, as defined by Rivest
in [Riv99], and this is the only model we will analyse in this thesis.

Commitment schemes with a trusted initializer allow a sender to commit to a value
and send that commitment to a receiver such that the value she committed to remains
hidden from this. In a second step, the sender reveals her commitment and the receiver
may verify that the sender is not fooling her. The third participant is required only

2.10. CRYPTOGRAPHY 81

to give the other two some information that enables them to carry out the protocol.
This third participant is completely honest and trusted by the other two. One might
consider that a simpler solution would be, then, for the committer to send her message
to the trusted party and let this send it to the receiver. However, this requires that
all three participants be present at the moment the protocol is carried out. On the
contrary, Rivest's model requires the presence of the third party only in a setup phase
used to pre­distribute some information between the participants. The actual protocol
is then carried out only between the other two parties.

A commitment scheme must satisfy a Concealing Property, i.e., the receiver can guess
the value committed to only with a probability equal to a uniform random guess. On
the other hand, the sender's commitment must effectively bind her, which means she
can not open to the receiver a value different from her commitment. As shown in
[BMSW02], a commitment system can not be completely binding, and so we say a
system is (1 ­ £)­binding if the probability of the sender deceiving the receiver is at
most e.

The system has an alphabet X of secrets Alice can commit to, an alphabet 3̂ of values
that mask the secret and that Alice can send to Bob, an alphabet /C of keys and an
alphabet V of validation tags. There is a function / that for any key k £)C and any
value x G X produces a value y — f(k, x) G y. For all k, the function fk(x) = f(k, x)
is injective and defined for all x G X. All values in y can be produced by at least some
pair (k,x). There is also another function g that for any key k G K and validation
tag v G V produces a value in {0,1}, indicating whether the key k is accepted as valid
by the tag v.

Definition 2.10.13 A commitment scheme is a tuple denoted
CM(X,y,K.,V,f(k,x),g(v,k),a,P) where X is the source states alphabet, y is the
coded states alphabet, /C is the alphabet of the committer's keys, V is the alphabet of
the verifier's tags. For each k G /C, there is an injective encoding rule /¾ : X *­»■ y
with fk{x) = f(k,x) that computes the encoding of each possible commitment x G X.
For each v G V, there is a verification function gv : K, »­+ {0,1} with gv(k) = g(v, k).

The values a and f3 are the maximum chances of success for the two kinds of attack
described in Section 4­1­1. Formally, max^jc ^2vevk Pr[V = i>] < a and

maxfc,fc,e/c EJVkiPr[v=v] < P­

These schemes were mathematically formalized and studied in [BMSW02], where the
authors prove some lower bounds on the binding probabilities and propose and analyse

82 CHAPTER 2. PRELIMINARIES

implementations of optimally secure systems. They give a general description of a
commitment scheme in Rivest's model that uses encoding and authentication keys
and also a simplified scheme where the authentication key is not necessary. Then they
offer a construction of commitment schemes based on resolvable designs and analyse
its binding probabilities. They list two open problems: finding a lower bound on the
amount of information that has to be pre-distributed to the users and sent by the
sender to the receiver; and the existence of some relation between these schemes and
authentication codes. The first of these questions was answered in [NMQO+03], while
the second was answered in [PSMA07] and is the basis for Chapter 4 of this thesis.

Chapter 3

Individual Security of
Cryptographic Systems

The aim of this chapter is to motivate the definition of notions of individual security of
cryptographic systems. We analyse three kinds of systems for which there are proofs
of unconditional security and show for each of them a definition of unconditional
security based on the Kolmogorov complexity of individual instances. We show that
if sufficiently many instances are secure according to this notion, then the system
is secure under the traditional notion of information-theoretic security. Some of the
results in this chapter appeared first in [Sal05] and [ALPS07].

Information theoretic security is based on the probabilities of guessing a given secret,
be it the plaintext of a cipher system or the source-value of an authentication code, for
example. A system is secure if the guessing probability of an attacker is not improved
by knowledge of some public information, for example, a ciphertext or a set of private
shares of a secret sharing system. These notions are usually applicable to random
variables and provide a notion of security of the system as a whole, which on some
cases means that the extra knowledge the attacker can have gives no information,
in the information theoretic sense, about the secret she wants to find. On other
occasions, we can only guarantee that the worst-case probability of success is not
greater than some lower-bound for that probability. It bears noticing that in any
cryptographic system there is always a positive chance that the attacker guesses the
secret correctly. However, even though a system is information theoretically secure,
it may have instances where the extra knowledge actually contains information about
the secret. It is true the attacker has no way of knowing this information, otherwise
the system wouldn't be secure, but we find that a secure system should not allow such

83

84 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

instances. It is very uncomfortable to have an encryption system produce a ciphertext
that is exactly equal to the plaintext.

For that reason, we analyse the security of cryptographic systems at the level of
individual instances, offering notions of security that are suitable for the instances
of each system and study in what measure the security of instances influences the
security of the system as a whole, as measured by traditional information theory. The
notions of security we use are based on Kolmogorov Complexity, which provides a way
to measure the intrinsic information of a string and the information it contains about
another string, offering a parallel with the concepts of information based on Shannon's
entropy function. We study three kinds of systems in this chapter: cipher systems,
threshold secret sharing systems and authentication systems without secrecy.

3.1 Cipher Systems

We begin this study by examining the simplest cryptographic systems: cipher sys­
tems. In this section, we show what makes a cipher system secure both with entropy
and Kolmogorov complexity and give an example system that is secure under both
definitions: the one-time pad (OTP).

3.1.1 Motivation

Suppose Alice wants to send an enciphered text to Bob and does not want Eve to know
what she's telling him. For maximum security, she uses the one-time pad. Ideally, the
text Alice sends to Bob should hide the plaintext in such a way that the former does
not reveal anything about the latter. But, what if Alice's random key turns out to
be 0000111100001111... or 010101010101... ? Or even 0000 . . . ? It's easy to see the
cipher texts will have a lot in common with the plain text. There is a simple rule
describing how one can invert one to get the other. This is surely not what Alice
wishes, for even if we exclude the extreme case where the cipher text is equal to the
plaintext, these simple keys reveal too much about Alice's message.

Traditionally, Alice knows that even if this happens, Eve will be oblivious to it. Even
if the message she holds has relevancy to the context where Alice and Eve are, it is
only one of many relevant messages, and Eve can simply list all the texts of the given
length and from these consider only those that are possible in their context... just as

3.1. CIPHER SYSTEMS 85

she could without the ciphertext. However, Eve and Alice expect the key to be random
and the ciphertext to look equally random, without any discernible pattern, since the
probability of a cipher text being (almost) intelligible is so small. Then, if such a text
appears, Eve may certainly be tipped off that something may have malfunctioned in
the key generation. She may guess that Alice is using a key that is too simple, and
that instead of the ciphertext being one possibility among all those that (almost) make
sense, in this context or not, it is actually one of the possible ciphertexts that result
from using a simple key. But simple keys are exponentially less than all keys, and Eve
can quickly make a list of all possible plaintexts under simple keys for the ciphertext
she holds. If Eve is correct in her assumptions, then the resulting set of plaintexts
will not include all the texts of the required length, much less all of the texts that are
possible in the actual context. If Eve is correct, then her uncertainty about Alice's
message is greatly decreased and the system is effectively compromised. How then can
Alice be sure that her key does not reveal information about the plaintext?

The answer is Kolmogorov complexity, and the associated notion of mutual infor­
mation. We define the security of an instance by the amount of information the
attacker needs to have to compute the plaintext and for that goal we use Kolmogorov
complexity. This kind of analysis looks at security from a different prism than the
usual one. The difference between the probabilities of guessing the plaintext with and
without knowledge of the ciphertext is replaced by the difference between the amount
of information necessary in each case. A simple key requires little information to be
learned or recovered, and is therefore not recommended.

3.1.2 Information theoretic security of cipher systems

Recall that in the analysis of a cipher system we consider three participants: a sender,
which we call Alice, a receiver, Bob, and a passive eavesdropper, Eve. Eve's objective
is to find the secret message from Alice to Bob. She can try to simply guess the
plaintext, where she will succeed with probability Pr[M = m] for the plaintext m.
However, Eve can obtain the ciphertext that Alice sends Bob, and if the cipher system
is bad, this might give her a large advantage. Her chances of guessing the plaintext,
now, are Pr[M = m\C = c\.

According to Shannon's definition, a cipher system is unconditionally secure if for
any pair (m, c) G M x C these two probabilities are equal. This implies that both
distributions are independent and leads to the following definition of security.

86 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

Definition 3.1.1 Consider a cipher system, and let M be a random variable over its
plaintext messages and C a random variable over the respective ciphertexts. Then, the
cipher system is unconditionally secure if and only if H(M\C) = H(M).

The essence of this definition is that the mutual information is 0. We can use I(M; C)
as the base of a more general notion of security, that tells us to what extent a system
may be called secure, almost secure or not at all secure. The system is perfectly secure
if I(M; C) — 0. When I(M; C) > 0, we can have an idea of the relative security of
the system by computing how far the system is from the ideal.

Definition 3.1.2 A private key cipher system has S relative security if I(M; C) < S.

This gives us a notion of security for the system as a whole. In the next section, we
explore a notion of individual security.

3.1.3 Instance security for cipher systems

Let a plaintext m G M. and a key k G /C represent an instance of a cipher system,
which we abbreviate by (m,k). Clearly, there's only one ciphertext associated to
this instance. Intuitively, (m, k) is secure if the best ad hoc attack that can find the
plaintext requires no more information than that given by this particular ciphertext
and full information about the distribution of the messages, which is available to Eve
under Kerckhoffs's principle. Of course, we cannot rule out the ad hoc attack where the
attacker already knows the message and prints it out, but this requires full information
about the plaintext.

Definition 3.1.3 Let (Ai,C,JC,e,d) be a cipher system, and fx be a distribution over
M. x /C. An instance ra,kE" of the cipher system is 7-secure, or it has 7 secrecy,
ifli<(m ■ e(k,m)\fj) < 7 .

This is very dependent on the "quality" of the key, since one can compute the plain
text from the ciphertext if one can guess the key properly. Thus,

K{m\e(k,m)) < K(k) + 0(1) < log |/C| + 0(1) = n + 0(1).

We can see from this that simple keys yield ciphertexts that give much information
about the plaintext, and that only incompressible keys, or Kolmogorov-random keys,

3.1. CIPHER SYSTEMS 87

will afford proper security. This is not surprising, as a requirement for the information­

theoretic security of this algorithm is that the key be sampled at random from all
possible keys. It is therefore a recasting of an idea into a new model based on a
different definition of randomness. We now prove that if enough instances of a cipher
system are secure, then the system is nearly information theoretically secure. This
result establishes that instance security is a sharper notion than information theoretic
security.

Theorem 3.1.4 For any private key cipher system (M,fC,C,e,d), for any indepen­

dent computable random variables M,K over M,IC with joint distribution [i, if the
probability that an instance is 7 secure is at least (1—£), then the system has 7 +
elogd­MI) secrecy, in the information theoretic sense.

Furthermore, if for any t such that 7 < t, n({m,k : /^ (m : e(k,m)\fx) = t}) < f(t),
then the system has 7 + W ^ ^ Í > 7 ^ 2 / (Í) security.

Proof:

By Theorem 2.9.31 we have that up to an additive constant, I(M; C) < J2m,k M^> m)IK(m
e(m, k)\n). We separate the sum into two parts, the secure instances and the others.
Let G be the set of 7­secure instances.

I(M;C) <] P j.i(k,m)IK(m: e(m,k)\fi,)+ ^ (i.(k,m)IK(m : e(m,k)\fi)
m,k€G m,k£G

< 7 S2 v(k,m)+ Y^ ^(k,m)[K(m\n) ­ K(m\e(m,k),/j)]
m,k£G m,k$.G

< 7+ 5Z V(k, m)K(m\fi)
m,k£G

< 7 + £log(|M|).

Considering the assumption in the last part of the theorem statement, /x({m, k : /#(ra :
e(k,m)\n) = t}) < f(t), then as before:

I(M; C) < 7 + ^ Kk,m)IK(m:e(m,k)\^i)
m,k£G

= 7 + y ^ t ■ fi{{m, k : IK(m : e(k,m)\fj) = t})
i >7

< 7 + 5 ^ ^ 7 5) ­ \Zv({m,k : IK(m : e(k,m)\fi) =t}).
i > 7

88 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

Recall that the Cauchy-Schwarz inequality (Theorem 2.3.3) states that
£ \ dibi < \ /(Z]i a?) Œ,ibï) a n d t n i s implies that

I(M;C) < 7 + £ í 2 / (í) 5 > ({ m , f c : IK(m : e(fc,m)|/x) = t})
Y í>7 Y <>7

Y í>7

D

3.1.4 Instance security of one-time pad

In the previous section, we gave a definition of security of individual instances of cipher
systems, and shown that if sufficiently many instances are secure, then the system is
secure in the traditional sense, thereby establishing that our definition is a refinement
of the standard notion of security. In this section, we consider a specific cipher
system: the one-time pad. First (Theorem 3.1.5), we identify a set of individually
secure instances. These are the keys with maximum Kolmogorov complexity, together
with messages that have no information about the key. These conditions are a direct
counterpart of the independence of the key and the message, and the randomness of
the key, in the traditional analysis. Then, in (Corollary 3.1.6), we show that this set
is indeed large enough to imply almost perfect security in the information theoretic
sense.

Theorem 3.1.5 Let n be a distribution over S n x En . Let m, k G En be an instance
of the one-time pad, i.e., e(k,m) = m © k, with K(k\fi) > n — a, and K(m,k\/j) >
K(m\/j,) + K(k\n) — P where © represents the bitwise exclusive-or of the arguments.
Then the instance has a + (3 secrecy.

3.1. CIPHER SYSTEMS 89

Proof: By Theorem 2.9.17, up to an additive constant,

K(m\m @k,fj) > K{m\m © k, K(m © k\/i), //)

= K(m\n) - K(m © fc|/z) + Kim © k\m, #(m|/ /) , //)

= K(m\/j) - K(m © k\fi) + K(k\m, if (ra|//), //)

> K(m\n) - n + K(k\m, K(m\fi), //) (using \m 0 k\ = n)

> K(m\fi) — n + K(k, m\fj) — K(m\fi)

> K(m\ft) — n + n — a — 0 (by hypothesis)

= K{m\n) — a — f3.

D

Combining this with Theorem 3.1.4, we have the following corollary.

Corollary 3.1.6 Let HM be a computable distribution over M, and [IK be the uniform
distribution. Then one-time pad is 0(l)-secure in the information theoretic sense.

Proof: Let //(TO, k) = //M(TO) • //«-(A;). Let

Ga,0 = {(TO, k) : K(k\ii) > n - a and K(m, k\fi) > K(m\fi) + K(k\it) - (3).

By Theorem 3.1.5, we know that all instances in Ga^ have a + (3 secrecy. We show
that /JL((MXK) \ Ga,p) < (2"Q + 2~0)). Observe that M x K, \ Ga3 Ç Ba U Bp, where

Ba = {(TO, k) : K(k\/.i) < n — a},

Bp = {(TO, k) : K(m, k\n) < K(m\pt) + K{k\n) - (3}.

By Theorem 2.9.10, n{Ba) < 2~a.

Claim 1 n(Bp) < 2~p.

By definition, n(Bp) = £ ^ ^ M™. *0 = E m ^ N zZk:m,keB0 ^(k). By Theo­
rem 2.9.17, K(m, k\fï) = K(m\/J,) + K(k\m,K(m\/j,),y,), so when TO is fixed, the second
summation runs over k with K(k\m, if (m|//),//) < K(k\n) - f3. By Theorem 2.9.10,
there are at most 2K(k^~13 terms in the inner summation. Therefore, using //#(&) =
2~n for all k and consequently K{k\n) < n, fx(Bp) < £ m iiM(m)2K^-fin,<{k) < 2~&',
which concludes the proof of the claim.

Claim 2 For any t, //({TO, k : ij<-(ra : e{k,m)\fj) = t}) < 2 - i .

90 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

The claim follows from the fact that

/ft-(ra : e(k,m)\(x) — K(e(k,m)\[i) — K(e(k,m)\m, K (rn\^), (.i)

< n — K(e(k, m)\m, K(m\/j,), //)

= n — K(k\m, K(m\/i), fx)

where the first equality comes from symmetry of information and the final equality
holds in the case of the one-time pad. Therefore /i({m, k : /^ (m : e(k,m)\n) — t}) <
fi({m, k : K(k\m, K(m\n), n) < n-t}) < 2 n - i -2- n = 2_ i . We can apply Theorem 3.1.4
with 7 = a + /3 and e = 2~~a + 2_/3. Therefore, the system has 7 + Je X^Í>7 Í 2 2 _ Í

secrecy. By Lemma 2.3.2, X^f>7+i ^2^ = 2\ + . This is maximum when 7 = 0, so
the system has security at most a + (3 + Võê security. If a = /3 = 0(1), then we can
conclude that the one-time pad is 0(l)-secure. D

3.1.5 Non-uniform distribution of keys

We can also analyse the case where the keys are sampled from a distribution that is
not uniform, but instead has min-entropy at least n — S.

Theorem 3.1.7 Let [iM be a computable distribution over M, and fiK be a distribu­
tion on keys with min-entropy at least n — S. Then, one-time pad is 0(2°)-secure in
the information theoretic sense.

Proof: The proof is the same as that of Corollary 3.1.6, except that now we have
to take into account the different distribution /j,K. We only list the differing points,
assuming the whole rest of the proof. The differences come from the fact that now the
probability of each key being sampled is at most 2~(n~6\ instead of being exactly 2~n.

Claim 3 n(Ba) < 2s~a.

Proof: By Theorem 2.9.10, there are at most 2n~a strings in Ba, and since all of them
have probability at most 2 " ^ " ^ , we get ̂ (Ba) < 2n~(n~^-a = 2s~a. D

Claim 4 fi(Bp) < 2s-0.

Proof: Just as before, the number of strings in Bp is at most 2K(k^~0 < 2n~$'. Then,
n{Bp) < 2n~^n-^ = 2S-P. D

3.1. CIPHER SYSTEMS 91

Claim 5 For any t, n({m,k : i/c(m : e(k,m)\n) = t}) < 2s l.

Proof: This also follows from the same reasoning as before. We get //({ra, k : /^ (m :
e(k,m)\fx) =t}) < /i({m,fc : K{k\m,K(m\n),n) <n­t})< ^­t.2­{n­t>) = 2s­t Q

Now, we apply Theorem 3.1.4. We still let 7 = a + P and e = 2~a + 2~0 and
determine that the system has 7 + J26 ■ e ^ í > 7 i225­< secrecy. This can be simplified

to 7 + 2 á j £ ^ í > 7 í 2 2 ­ * < a + (3 + 2*­\/6i. As before, making a = /3 = 0(1), we
conclude the one­time pad is 0(2á)­secure for key distributions with min­entropy at
least n — 5. D

3.1.6 Resource­bounded instance security of one­time pad

In this section, we prove that if one is willing to expend the time necessary to produce a
secure instance, then it is guaranteed to be secure against an adversary that is limited
in the amount of time at its disposal to decrypt the instance.

Definition 3.1.8 Let (Ai,C,/C,e,d) be a cipher system. An instance (m,k) of the
cipher system is 7­secure against a i­time­bounded adversary if ^{mleik^m)) >
^(m) — 7.

Theorem 3.1.9 For any polynomial time bound t, there is a time bound t' polynomial
in t such that the following holds: if m,k G S" and e(k, m) = m®k are an instance
of a one­time pad scheme, such that CAM1'(k, m) > n + Kl{m) ­ a, then the instance
has l og°^ n + a secrecy against a t­time­bounded adversary.

Proof: The proof is similar to Theorem 3.1.5, except for the application of time
bounded symmetry of information, Theorem 2.9.29.

K\m\m ®k,fx) > K\m, (m®k,n))~ K\m © k, //)
> CAM^m) + CAMl\m Q k, fi\m) ­Kl{mQ k, fi) ­ 0(log3(|x| + \y\))

> CAM2t'(m, k)­n­ 0(log3(|x| + \y\))

> K^m) ­ a ­ 0(log3(|x| + \y\)).

O

To compute the CAM complexity of a key and message pair, one could simulate all
CAM programs up to length 2n (an exponential number) to rule out the existence of
a short program. This is by no means efficient; however, it is computable.

92 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

3.1.7 Weak keys

The one-time pad is perhaps not the ideal system for the previous analysis, for an
attacker can not ever know if she has got the right key and therefore if she has all the
information needed to get the corresponding plaintext. Even a brute force attack is
useless for the attacker. But things become a little different if we suppose that the
attacker can effectively recognize when she has cracked the secret, that is, when she
has access to an oracle that answers whether its input is the true plaintext in question.
This might happen if, for example, the system was used to protect a password or a
safe combination that can not be changed after it was initially set. It is only a matter
of time until an attacker exhausts all possibilities and opens the box, but the time
required is exponential in the length of the password. Then, the box itself functions as
the oracle described above. In such a scenario, one possible attack for a time-bounded
adversary is to run through low-complexity keys, say, those strings of length n with
complexity not greater than clogn. If the actual secret key is weak, having complexity
at most clogn for some constant c, then a short program will reveal it and the secret
will be cracked in 0(nc) time.

There are other cryptosystems where, however, such oracles exist. For example, there
are known weak keys in systems like DES or IDEA and it is still a common discussion
whether the key-generation algorithms should test whether a generated key is weak.
The implicit assumption in such argument is that an attacker can actually test all
the weak keys before launching a more determined attack, since this first step can
usually be done quickly and thus does not have a real impact in the complexity of
the breaking attempt. Weak keys form a very small set of a supposedly secure cipher
system and so their complexity has to be low. They form a set of keys that share
a certain characteristic. But there may be different sets of weak keys for a cipher
system, sporting different properties that are discovered over time. That means that
the sets of weak keys known at a certain moment for a given system might not be
exhaustive, and that even if a key-generator checks for all the weak keys it knows, it
might actually be allowing some weak-key not yet discovered to be so. However, such
a weak key would surely have low Kolmogorov complexity, as said above, which means
that if the key-generator instead checks all keys with low time-bounded Kolmogorov
complexity then it is effectively ruling out all weak keys, even those that are still not
known as such.

3.2. THRESHOLD SECRET SHARING SCHEMES 93

3.2 Threshold Secret Sharing Schemes

This section is dedicated to the study of threshold secret sharing schemes, applying
the same principles outlined in the previous sections.

3.2.1 Motivation

Just like the case of a cipher system, in a secret sharing system there is a piece of
information that must be kept secret from one or more users who hold information
related to that secret. The basic requirements of security are therefore the same, and
accordingly we use in this section the same philosophy we used for cipher systems in
what regards the definition of individual secure instances.

Before proceeding, we give here a few definitions to simplify the notation in this section.

Definition 3.2.1 Let [w] — {1,2 , . . . , w} represent the set of all participants. Let
xyw = {(xi,yi),... ,(xw,yw)) represent the concatenation of all shares in the same
ordering as used for the participants.

For any B Ç [w], let x.yj
B = xyw\B be the projection of xyw onto the participants

selected by B, that is, xy^ = ((^ , ^) , . . . , (2 ¾ ^)) where B = {ii,i2, ■ ■ ■ ,¾} for
some j < w. For any instance (fc,xyw) and B Ç [w], (fc,xy§_) is a \B\ — arrangement
of the instance (fc,xyw). We also write xyq_i to represent any concatenation of some
q — 1 distinct pairs o/xyw , without considering which subset of [w] originated it.

We need a shorthand definition for the remainder of this section.

Definition 3.2.2 Fix an integer w and another integer q < w. Let the notation (^)
represent the set of subsets of [w] that have q — 1 elements. Formally, Q™\) = {B :
B Ç [w], \B\ = q — 1}. Context will dictate whether this notation is to be read as this
set or as its cardinality.

3.2.2 Information theoretic security of threshold secret shar­

ing schemes

Let V — {Pi, I < i < w} denote the set of participants of a threshold secret sharing
system, and let D ¢ V be the dealer, that is, a special participant who chooses the

94 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

value of the secret key k.

Let B = (ii," • ,ij) be any set of participants that want to reconstruct the key, where
j < w. Let d(k) — {(Xi,yi) : 1 < i < w} be the set of all shares distributed by the
dealer, where the values Xj are public and each £/, is known only by its holder. The
values Hi are determined from the secret information held by D, which includes at
least the secret k. Let X be a random variable over the possible values for Xi, and Y
be analogous for y,. Then, Y is totally dependent of X, that is, H(X, Y) = H(X). In
what follows, let K be a random variable over the possible values for k and XB be a
random variable over the public values of the users in B, and analogously for YB and
the private shares, where j = \B\.

Definition 3.2.3 A (q,w) threshold scheme (K,S,d,r) has 5 security if for a set of
attackers B we have that:

• If \B\ > q then H(K\XJ
B, Y£) = 0;

• If \B\ < q then H(K\XJ
B, Y£) > H(K) ­ S.

3.2.3 Individual secrecy of secret sharing schemes

We now give an individual analysis of perfect security based on Kolmogorov complex­

ity.

Contrary to the case of the cipher system, it is not adequate in this case to define
an instance to be simply the particular occurrence of the secret value and all the
information available to a particular attacker. This is so because in this scheme
we must consider simultaneously the attacks of all groups of users with less than
q members, not just one. As such, each instance of a threshold secret sharing system
must be described by the public and private shares of all the users of the system. The
secret could also be considered part of the instance, but it is completely determined
by the complete set of shares, so it is not required. The following definition takes all
this into account, and defines security for an individual instance of such systems.

Definition 3.2.4 Let (K,S,d,r) be a (q,w) threshold scheme and (j, a distribution
over /C x Sw, and (k, xyw) an instance of this scheme.

1. (/c,xy§~) is j—secure against an attack from B if Ix(k '■ xy§~ \fx) < 7.

3.2. THRESHOLD SECRET SHARING SCHEMES 95

2. (fc,xyw) is (7, ¢)-secure i/PrB6/[«,]\[/jf(fc : xy§ V) < 7] > 1 - 0 wider i/ie
uniform distribution over q—1 arrangements.

The first point addresses the base case of security against an isolated attack of a single
set. We have chosen to model security for the maximal sets of users that still must
not be able to recover the secret, as any smaller set will necessarily have at most as
much information as these sets. In short, the arrangement resists such an attack if the
information that the public and private shares of the colluded users contain about the
secret is less than a certain parameter.

The second point gives the notion of security for the system viewed globally. It
basically says that the probability of finding some group that has too much information
about the secret, over all maximal groups of illegal size, is very small. Using this
definition, we proceed as in the section dedicated to cipher systems, by giving first a
top-level proof that enough secure instances imply good information-theoretic security.

Theorem 3.2.5 For any (q, w) -threshold scheme where /C is the set of keys and S =
{(xi,yi) : 1 < i < w} the set of all shares, for any variables K,SW over K,SW with
distribution yu(xyw) over the total shares of the users, where the several public shares
are i.i.d., if the probability that any given instance is (7,0)-secure is at least (1 — e),
then the system has (7 + (e + ¢) log |/C|) secrecy, in the information theoretic sense.

Proof:

1. By definition of (q, w)-threshold secret sharing scheme, if \B\ > q and all el­
ements of B have different shares, the attackers can effectively compute the
secret merely by pooling their private and public shares. This means there is a
function that computes K from any set of q distinct points (xi, yi), and therefore
H(K\xyw\B)=0.

2. Let xyw = ((#1,2/1),..., (xw,yw)) represent a particular legal instance of the
system. Since this includes all the shares, xyw uniquely determines the secret
and we can consider the complete instance (fc,xyw).

We show that I(K;Xq~1Yq~1) is bounded above by 7 + (e + 0)log|/C|, using
the upper bound given by Theorem 2.9.31, as the average of Kolmogorov mutual
information. We first consider fixed instances of the scheme, then take the
average over all instances. For any instance (k, xyw) , let

ï(k : xywl^) = EB^unw]\(IK(k : xyw \B |//))

96 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

represent the average mutual information that an unqualified group of q—1 users
can gain about the secret. Let / / be derived from /i as the marginal distribution
of /t, with k being uniquely determined from xyw . Let G be the set of instances
that are (7, ¢) secure. Then, for all (fc,xyw) G G,

/(/c:xyw | / i) = ^2 fJL,(k,xyyf\B\x.y^)IK(k : xyw|~B|/i)
S:/K(fe:xywrS)<7

+ ^2 fi'(k,xyw\B\xyw)IK(k:xyw\B\n)
B:7x(fc:xywrB)>7

< y + Pi[B:IK(k:xyw\B)>i\-K(k\fjl)

< 7 + 0-log|/C|.

The average value of I(k : xyw |/i) over all instances is

^xyw~/./(/c : xyw |//) = E^w„pEB^w\IK{k : xy*\B \t*)
= Ek,xy^1^^IK(k : xyq_! |/i).

By Theorem 2.9.31,

IiK-.X*-1,^-1) < Ek^y^^lKik-.xy^lfi)
= Exym^J(k :xyw\fM)

= EXyw~J{k : xyw | / i ,xyw G G)

+Exyvr^J(k : xyw | / / ,xyw G- G)

< 7 + 0 • log |/C| + e • log |/C|

= 7 + (0 + e)log|/C|.

I I

3.2.4 Instance security of Shamir's scheme

As we did for the one-time pad, we now study a particular implementation of a secret
sharing system. The Shamir (q, ̂ -threshold scheme (see [Sha79]) in Zp, with p >
w + 1, has two phases:

Initialization phase D publicly chooses w non-zero elements of Zp, denoted by Xi,
1 < i < w. For 1 < i < w, D gives the value X{ to Pi.

3.2. THRESHOLD SECRET SHARING SCHEMES 97

Share distr ibution Suppose D wants to share a key k G Zp. D secretly chooses
independently at random q — 1 elements of Zp, Oi, . . . ,ag_i and constructs a
random polynomial a(x) = K + X^j=i Oj^mod p, where a(x) € Zp[x] of degree
at most g — 1. Then, for 1 < i < w, D computes the secret share yt = a{xi) and
gives it to participant Pi.

For 1 < i < w, every participant Pj obtains a point (xl,yi) on this polynomial where
all the coefficients a0,..., ag_i are unknown elements of Zp and a0 = fc is the key. A
set of users B ÇV,B = {Pij} I < ij < w,l < j < q} can reconstruct the key by means
of polynomial interpolation like the Lagrange formula, which is an explicit formula
to recover a(x) given q points (xn,yn),..., (xlq,yiq) on the polynomial. We identify
the secure instances of Shamir's scheme as the ones where the key and the shares are
independent according to Kolmogorov complexity.

Lemma 3.2.6 Let (k, xyw) be an instance of the Shamir secret sharing scheme. For
any set B Ç [w] with \B\ = q - 1, if K(k,xy^~1\fj) > K(k\n) + |xyg_1 | - a then
/ ^ (A ; :xy§ -V)<« + 0(1).

Proof: By assumption,

tf(fc,xyjj-V) > # (%) + W 1 ! - <*,

and symmetry of information brings

< Jxyg-1! + ^ I x y g ^ . ^ x y g - V) . / 0 + 0(1).

Therefore,

K(k\fj) + Ixyg"1! - « - 0(1) < K(k\xy«-\ ^(xyg"1!//),//) + Ixyg"1!

«. ^(fclxyS^.^xyg- 1^) ,^) > /f(fc|/i) - « - 0(1)

& J * (f c :xyg -V)<a + 0(1).

[1

For Shamir's scheme, we can infer information theoretic security from instance security,
as follows.

98 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

Theorem 3.2.7 Under the uniform distribution over the random shares and a com­

putable distribution over the secret, Shamir's secret sharing scheme is (log logp + 1)
secure in the information theoretic sense.

Proof: For a given instance (fc,xyw), and any x y § ­ 1 arrangement derived from xyw ,
K(k,x.yw) < K(k,x.y^~1) + | x w _ q + i | where x w _ q + 1 = {xi,x2, ■.. ,xw)\([w] \B), that
is, the public shares of all users not present in B. This is because if we are given the
description of q — 1 private shares and the secret k we can recover the secret polynomial
and from there, using the remaining public values, compute all the missing private
shares. Then,

AT(xyw|/i) = K{k,xyw\fj) < min K(/c,xy§_1|/x) + |xw_ q + i | .
BC[w],\B\=q­l

This means that if if(fc,xyw|p) > K(k\fx) + |xy§~ | + | x w _ q + i | ­ a, then for all
arrangements xy^~ of q — 1 users made from (k, xyw)

K(k\xy^~1,fj,) > K(k\fi) + |xy§_ 1 | + | x w _ q + i | ­ a ­ | x w _ q + i | <̂>

K{k\^.yB­\y) > K{k\n) + \xy%­*\­a

which implies, by Theorem 3.2.6, IK(k : xy§_1|/x) < a + 0(1). Then, by definition,
this instance will be (a, 0) secure.

Using K(fc,xyw|p) = K(xyw\n), the probability that (k,xyw) satisfies the above
condition is:

Pr [K(xyw\(i) > K(k\n) + |xyg_1 | + |xw_q+1] ­ a] = V Z4(xyw)
(x y w) xyweW

for W = {xyw : AT(xyw|/z) > K{k\n) + |xy§_ 1 | + | x w _ q + i | ­ a}.

In Shamir's scheme, the key and the public shares are all drawn independently from
the same alphabet /C. Also, by construction, any q distinct private shares are also
independent. So, a whole instance may be coded by a string with just (w + q) logp bits.
Then, |xy§_ 1 | = 2(q ­ l)logp, |xw_ q + 1 | = (w ­ q+ 1) logp and |xyw | = (w + q)logp.

Now we apply Theorem 2.9.10 to find there is at least a traction 1 2(9+m)iogP

1 — jjj of secure instances, where we used the fact t h a t K(k\/J,) < logp. Finally, let
a = log logp and apply Theorem 3.2.5 with e = ­^­, 7 = log logp and 0 = 0. Then,
the system has security log logp + 1. □

3.3. UNCONDITIONAL SECURITY OF AUTHENTICATION CODES 99

3.3 Unconditional Security of Authentication Codes
Without Secrecy

This section addresses systems that have a different kind of security from the ones
previously studied. In an authentication system, the attacker does not want to find
a secret, she wants to forge an illegal message. The requirement of security can no
longer be expressed as the value of mutual information between two strings or random
variables. Instead, security is measured by the chances of an attacker being successful.

In this section, we make a brief summary of the main results in the literature about
unconditionally secure authentication systems without splitting nor secrecy. Then, we
propose an individual notion of security, as was done in previous sections for other
systems, and analyse the relation between this and the classical notion.

Simmons described the two basic attacks, impersonation and substitution, and showed
that there are no authentication systems that can prevent forging with absolute
certainty. To do this, he analysed the possibilities of success of each attack and
gave lower bounds for them that are always positive. One of these bounds was
simultaneously and independently published by Brickell ([Bri84]). These bounds were
functions of the entropies of the random variables representing the system. Stinson,
in [Sti87] and [Sti92], gave combinatorial lower bounds for the same probabilities, for
systems without splitting, both with and without secrecy. He also gave constructions
for systems of both kinds.

These attacks were extended in the literature to cases where Oscar sees some legitimate
messages before he launches his attack. Massey ([Mas86]) defines a spoofing attack
of order i as Oscar's attempt to forge a new message after having seen i legitimate
messages from Alice. This notion generalizes the basic impersonation and substitution
attacks which are, respectively, a spoofing attack of order 0 and a spoofing attack
of order 1. Constructions and bounds for these generalized attacks are given, for
example, in [dS90] and [Sti88]. Maurer ([MauOO]) has a slightly different terminology,
considering that in the generalized impersonation Oscar sees i — 1 messages sent by
Alice and lets them go through to Bob and then he forges an ith message and hopes
Bob accepts it; in the generalized substitution, Bob sees i messages sent by Alice
but lets only the first i - 1 reach Bob. He then alters the ith message and sends this
modified one to Bob. Usually, Oscar is not worried in forging a message that will make
Bob accept a specific source value: Oscar wins if the source value Bob sees is different
from the one Alice sent. Maurer, in [MauOO], was the first to analyse attacks that are

100 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

successful only if Oscar makes Bob accept a specific source value or if he learns the
value Bob uncovers.

3.3.1 Information theoretic security

In this thesis, we are only interested in the basic impersonation and substitution
attacks against an authentication system without secrecy, splitting or arbitration.
Following, we give a summary of the bounds in the literature for the impersonation
and the substitution attacks. We use the notation P^. to represent the probability of
success for a spoofing attack of order i. Therefore, Pd0 represents the probability of
an impersonation attack and P^ that of a substitution attack.

3.3.1.1 Impersonat ion Attack

The probability that Bob accepts (s, a) £ S x A as authentic is

payoff (s, a) = Pr[a = ek(s)] = J] P r ^ = k}.

To maximize his chance of success, Oscar chooses the (s, a) that maximizes his payoff (s, a).
Hence, Pd0 = maxjpayoff (s, a) : s G S, a G A}.

Lemma 3.3.1 Let m = (s, a) be an instance of an authentication system without
secrecy. Then, payoff (s, a) = Pr[A = a\S = s].

Proof: Let KS)a = {k £ K : ek(s) = a}. We can write Pr[M = m] = Pr[S = s,A =
a] = Pr[S = s] ■ Pr[A = a\S = s] and by definition of payoff, we have that

Pr[M = m} = Pr[S = s] ■ J^ Fv^K = k^

= Pr[S — s] ■ payoff (s, a).

This implies payoff (s, a) = Pv[A = a\S = s], □

Simmons has shown that in any authentication system this probability is always
positive:

Theorem 3.3.2 ([Sim85])

For any authentication code (S,A,1C, e) without splitting where the key is chosen
independently from the source value, Pdo > 2~H^+H[-K\A^ = 2~H{-A],S\

3.3. UNCONDITIONAL SECURITY OF AUTHENTICATION CODES 101

Proof: We prove this in two steps. First the relation to H(A\S). Let p(s,a) and
p{a\s) be simplified notations of PrL4 = a,S = s] and Pv[A = a\S = s}. Then,
Pdo = maxs,a[p(a|s)] & ­logPdo = ming,a[­logp(a|s)]. This implies that ­ logP d o <

Es,a[­fog p(a\s)] = ­J2s,aP(S>a)l°èP(a\S) = H(A\S) w h Í c h Í n t U m b r i n g s l og P<k ^
­H(S\A) <=> Pdo > 2"H (5 | / l) . Finally, we prove the equality.

­H{K) + H(K\S, A) = H{K\S, A) ­ H{K)

= H(K, A, S) ­ H(S, A) ­ H(K)

= H(K) + H (A, S\K) ­ H(S, A) ­ H(K)

= H{S\K) + H{A\S, K) ­ H{S) ­ H(A\S)

= H(S)­H(S)+0­H(A\S)

= ­H(A\S).

The fourth equality follows because of independence of the source­value and key, and
the fifth follows because knowing the source value and the key the authenticator can
be unambiguously computed. LJ

Stinson ([Sti88, Sti92]) has given combinatorial bounds for this attack and we list them
next.

Definition 3.3.3 Denote by Pr[KSA] the sum of the probabilities of the keys that
associate the source­value s to authenticator a, that is, Pr[KSia] — Ylk€K3,a ^V[K = h]­

As seen before, PT[KSA] = payoff (s, a).

Theorem 3.3.4 In an authentication code (S,A,JC, e) without splitting, Pdo > ­pjj.

Proof: Fix some source­state s. Then, Y,aeA, Pr[^«,a] = *• Clearly,
Y^ses^2aeA P r [^ , i] = l<5|. Dividing by \M\, we get the average probability of the
payoff of an impersonation attack. By an averaging argument, there must be a message
with payoff greater than or equal to this average, therefore Pdo > |«S|/|Ai|. □

Other bounds can be given that correspond closely to Simmons lower bounds. We
give a counterpart to logPd0 > H(K\S, A) — H(K):

Theorem 3.3.5 For an authentication code (S,A,JC, e) without splitting Pdo >
£ s , q (| f l " . , a |)

\K\

102 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

Proof: From Theorem 3.3.4,

\S\ \S\\K\
P*>>

\M\ \M\\K\

\M\\K\
E \K I

D

Another theorem, present in [Sti92], shows that the determinant factor for the security
against an impersonation attack is the number of available authenticators. Stinson has
shown Pd0 > 1/\A\. We give other versions for when the number of authenticators
for each source value is not constant. All these variants are counterpart to the bound
log jPd 0>tf(A|S):

Theorem 3.3.6 For an authentication code (S,A,JC, e) without splitting, PdQ >
l

Es\As\­

Proof: Note that \M\ = E s |A|­ From Theorem 3.3.4, Pdo > j ^ = ^ ¾ = EJA.\)­

D

Corollary 3.3.7 For an authentication code (S,A,K, e) without splitting, P<i0 >

min s \As\'

Proof: Since mins \AS\ < ES\AS\, then Pdo > Es(|
x

A|) > m i n
1

| ^ | ■ □

3.3.1.2 Substi tut ion Attack

Now we examine the substitution attack. There is a perfect parallel between this and
the impersonation attack, coming from the fact that in both of them the objective is
the same, and the only changing factor is the knowledge of a valid message.

Fix a message m = (sj, a\) sent from Alice to Bob. Then, the chance of success of a
substitution attack for a message (s, a) is

payoff (s, a,m)

= Pr(a = efc(s)|ai = efc(sx)).

3.3. UNCONDITIONAL SECURITY OF AUTHENTICATION CODES 103

By a similar reasoning to that of Lemma 3.3.1, payoff (s, a, TO) = Pv[A = a\S = s,M =
TO]. AS before, we define Pdl = max{payoff(s, a, TO) : s € 5, a G A, m G M}.

Brickell was the first to give a lower bound for the probability of success of this attack:

Theorem 3.3.8 ([Bri84]) F°r anV authentication code (S,A,IC, e) without splitting
Pd > 2~H^S'M) > 2~HWMK

We give a proof similar to that of Theorem 3.3.2.

Proof: Let p(s,a\m) and p(a\s,m) be simplified notations of Pv[A = a, S = s] and
Pr[A = a\S = s]. Then,

Pdl = max[p(a|s,m)] <̂>
s,a,m

- l o g P d l = min[-logp(a|s,m)] =>
s,a,m

- log Pd! < Es^m[- logp(a\s,m)]

= — V^ p(s, a, TO) logp(a\s, TO) = H(A\S, M) ^>
s,a,m

log Pdl > -H(S\ A, M) o

Next, we prove the inequality H(K\M) > H{A\S,M). We develop H(K,A,S\M) in
two ways. First,

H(K, A, S\M) = H{K\M) + H {A, S\K, M)

= H{K\M) + H(S\K, M) + H(A\S, K, M)

= H(K\M) + H(S\M)

where the last line follows from independence of S and K given M and the fact
that knowing the source value and the key the authenticator is completely defined.
Secondly,

H(K, A, S\M) = H{A, S\M) + H(K\A, S, M)

= H(A\S, M) + H(S\M) + H{K\A, S, M).

Gathering everything, we have

H(A\S, M) + H(K\A, S, M) = H(K\M) =>

H{A\S,M) <H(K\M) =>

Pd > 2~H(A\SM) > 2~H{KlM).

104 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

D

An analysis similar to the combinatorial bounds of Section 3.3.1.1 can be made for
the impersonation attack. We merely list the following result, which offers a parallel
to Theorem 3.3.5.

Theorem 3.3.9 For an authentication code (S,A,IC, e) without splitting where the
keys are uniformly distributed, and the number of keys validating each message is
constant and equal to \Km\, Pdl > £ s , a ' ^ , a , m l ■

Proof: By definition, payoff(s,a,m) = E^^Pr[K=k] = ^­" l / l f l = |K s a m | / | /Cm | .
z^keKm I*­*»!/!*­! . . i / i

Since Pdl = maxSia)m payoff (s, a, m) it must happen that Pdl > "'""T^T ■ D

Definition 3.3.10 From the previous lower bounds, an authentication code is said
to have perfect security if those bounds are attained, i.e., Pdo = 2~H(A\S^ and Pdl =
2~H(A\S,M)

We generalize the notion of security in the following definition:

Definition 3.3.11 An authentication code (S,A,JC, e) has (S,S;) security if

1. logPdo<­H(A\S)+S;

2. \ogPdl <­H{A\S,M) + 6'.

3.3.2 Individual Security Measures

We now focus strictly on the security of individual instances. The bounds of Section
3.3.1 have shown that the fundamental quantity for security is the probability of
guessing a good authenticator for some source state s. Using this and the insight of
previous sections, we let the complexity of computing an authenticator be the main
measure of security against an attack.

3.3.2.1 Impersonat ion Attack

Definition 3.3.12 The difficulty of an impersonation attack for a source value s is
the amount of information needed for computing the right authenticator for it: K(a\s).

3.3. UNCONDITIONAL SECURITY OF AUTHENTICATION CODES 105

To turn a difficulty measure into a security measure, it must be compared to a fixed
security threshold. Instances with difficulty very near the threshold are considered
secure, whereas other instances are insecure. To do this, we need to find a value that
can be intuitively seen as an appropriate threshold for K(a\s). An authenticator a
can be described by its index in the set As to which it belongs. Thus,

K(a\s) < K(As\s) + log \AS\.

Since Oscar knows the encoding table of the whole system, he can easily compute As

from s so K(As\s) = 0(1). Thus, the maximum value of K(a\s) is at most log \AS\.
However, if \AS\ is very low, for example 1 in the extreme case, then the instance is
surely not secure, as the chance of success is at least 1/|AS|. So we can not use \AS\
as the comparison value.

From the bounds in Section 3.3.1, we can view the quantity \M\/\S\ as a measure of
the redundancy introduced in the system by the designer and consider it as the cost
paid to guarantee a lower bound on the success probability equal to IS'l/IM]. This has
been seen to be equal to the average number of authenticators per source value so by
an averaging argument, the maximum number of authenticators is at least as big as
IMI/ISI- Each As is a subset of the largest As, i.e. A, and therefore the maximum
\AS\ is \A\. This value has several advantages as the security threshold:

• Since log |A| is the maximum of all log \AS\, no K(a\s) can be greater than that,
except up to a small additive constant. Thus, the difference log \AS\ — K(a\s) is
always positive, again up to a fixed additive constant.

• From the reasoning in Section 3.3.1.1, for a fixed source value the less authen­
ticators exist the highest will the lower bound of the success probability be.
Inversely, the largest \A\ the more can the designer of the system expect to reduce
the probabilities of success. The system can still be badly designed enough to
not take advantage of it, but the potential is there anyway.

Example 1 Consider again the example system of Table 2.5. The maximum number
of authenticators is A, giving the -potential to design a system with a lower bound on the
success probability of 1/4. However, the authenticators are mostly wasted because two
of the three source messages do not use all of them. We can be sure that the probability
of success for source value 0 is at least 1/3 and for source value 1 it is at least 1/2. By
the way, the more general lower bound \M\/\S\ is 1/3. But if the system has to provide
enough bits to distinguish between 4 different authenticators, it could have used them

106 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

all for every source value without increasing the length of the coded messages. Thus,
optimal systems will have the number of authenticators equal to maximum for all s.

3.3.2.2 Substi tut ion Attack

The analysis of the substitution attack is similar to the previous one. Following the
same reasoning as before, it can be said that the difficulty of a successful substitution
attack is the difficulty of finding the authenticator a for a chosen source value s such
that Bob will accept the message (5, a) as valid given that a valid message m = (si, Oi)
is known.

Definition 3.3.13 The difficulty of a substitution attack for a source value s, given
that a valid message m was sent by Alice to Bob, is the difficulty of computing the
right authenticator for it: K(a\s,m).

As done before, we compare this measure with a suitable threshold. Recall the
example system given above (Table 3.1). There are two coloured columns under

Table 3.1: An insecure system

source value 0, corresponding to two possible authenticators. The keys that generate
these authenticators are highlighted with the same colour, and so are the messages
for different source values that those keys validate. Suppose Alice sends Bob message
(0,2), the second coloured column. Then Oscar knows Bob has key 4, 5 or 6. But
looking at the columns for source values 1 or 2, he also sees that whatever the key
Bob has, the right authenticator for the source value chosen is always the same,

3.3. UNCONDITIONAL SECURITY OF AUTHENTICATION CODES 107

this is, he has absolute certainty of fooling Bob. If Alice had sent message (0,0)
instead, corresponding to the first coloured column, Oscar would have a harder time
deciding what message to send, but still far from ideal. For source value 1, Bob could
accept either message, depending on whether he has key 7 or one of the other two.
Oscar would probably send message (1,0) since this is validated by two possible keys
instead of one. But for source value 2 Oscar's chances are better. Out of the four
possible messages, Bob will certainly reject two. Oscar only has to choose between
the remaining two. The crucial point here is that the message sent by Alice and the
source value picked by Oscar determine a set of possible authenticators that make
valid messages. Call this set As>m. And just as in the impersonation case the security
hinged on the number of elements of As, now it depends on the number of elements
in Aa>m. And when \As,m\ < |AJ | , the particular instance (s,m) is not secure.

As such, we can immediately see that in the previous example there is no security if
Alice sends any message with source value 0, because each of them is validated by
three keys only which are insufficient to cover the four authenticators for source value
2. In this scenario, Oscar will be able to exclude always at least one possible coded
message. Message (0,2) is absolutely insecure, because for s = 1,2, it happens that
1̂ 8,(0,2) I = 1 giving Oscar total certainty in his attack. In this respect, message (1,0)
would be the most secure against a substitution attack for it wouldn't allow Oscar
to exclude any possible authenticator for either of the other source values. However,
it is still extremely insecure against an impersonation attack. As was done for the
impersonation case, the security threshold we use is the maximum possible value of
\A8,m\, that is, \A\.

3.3.2.3 Instance Security

The previous discussion for the basic attacks allows us to give the following definition.
For technical reasons, we have altered the quantities discussed in Section 3.3.2 to
include in the conditional knowledge of the probability distribution that rules the
system. We can assume this distribution is known under Kerckhoffs's principle.

Définition 3.3.14 Let (S,A,JC, e) be an authentication code without splitting and fi
a distribution over S x K.

• an instance (s, a) is 7 secure against impersonation ifK(a\s, K(s\fi), /1) > log(|.4|)-

7-

108 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

• an instance (s, a, m) is 7' secure against substitution ifK(a\s, m, K(s, m\fi), yLt) >
iog(|.A|)-y.

Note that K(a\s, m) < log |.4s,m| and so log |^4s>m| must be at least log \A\ — 7' for an
instance (s, k, m) to be secure. The following theorem allows us to relate the deception
probabilities to Kolmogorov based security of instances.

Theorem 3.3.15 For any authentication code (S,A,JC, e) without splitting, for any
independent variables S, K over S, /C with computable distribution // and any large
enough polynomial time bound t,

1. for any instance (s,a) of the authentication code,

o-maxs^isT'tals^sljii),/*) < p < í2-m\rís<aKt(a\s,K(s\^),fj,)

2. for any instance (s, a, m) of the authentication code,

n—-may.at3,mKt(a\s,m,K{s,m\n),n) <- p ^ o - mina,.,,m Kt(a\s,m,K(s,m\fx)</^)

Proof: For the first statement,

maxK t(a\s,K(s\n),n) > y^p(s, a)Kt(a\s, K(S\/J,), n)
s,a

> H{A\S)

> log(l/Pd0)
> minKt(a\s, K(s\fi), fi).

s,a

The first inequality is trivial; the second follows from Theorem 2.9.30. The third is
Theorem 3.3.2. Finally, the last inequality follows by using the Shannon-Fano code,
which encodes a source {(x,p(x))} with codewords of length log l/p(x). This encoding
can be carried out in polynomial time if the distribution \x is given.

Similarly, for the second statement (using Theorem 3.3.8 instead of Theorem 3.3.2)

m a x ^ (a j s , m, K(s, m|/i), JJL) > > p(a, s, r r ^ i ^a l s , m, K(s,m\fi), /j)
a,s,m ' J

a,s,m

>H{A\S,M)

>log(l /P d l)
> min Kl(a\s, m, K(s, m\fi), /i).

D

3.3. UNCONDITIONAL SECURITY OF AUTHENTICATION CODES 109

Corollary 3.3.16 For any authentication code (S,A,JC, e) without splitting,

1. if all instances (s,a) are 7-secure against an impersonation attack and

2. if all instances (s,a,m) are 7'-secure against a substitution attack,

then the authentication code is (7,7')-secure in the information theoretic sense.

3.3.3 Secure Systems

Even though Lemma 3.3.16 only says that an authentication system is unconditionally
secure if all, and not most of, its instances are unconditionally secure, there is still
some interest in identifying the secure instances of a system known to be uncondi­
tionally secure according to traditional analysis. We show that given some reasonable
assumptions about an instance, we can say it is secure in the individual sense. This
theorem does not identify all secure instances, but gives sufficient conditions for an
instance to be secure.

Theorem 3.3.17 For an instance (k, m) of an authentication system without secrecy,
without splitting and without arbitration, where m = {s,a), if the key k and s are
independent, the key is Kolmogorov random and the number of keys authenticating m
is not much greater than the minimum number of keys authenticating any m, then the
instance is secure against an impersonation attack.

Formally, ifK(k,s) > K(k) + K(s) - 0(1) and K(k) > \k\ - 0(1) and if
\Ks>a\ <0 (l) -min{ |A S i a | : (s,a) € M}, then K(a\s) > log |A| - 0(1).

Proof: By Lemma 3.3.19, K(a\s*) > IK{k : m) - 0(1). Then,

K(a\s*) > K(k) - K{k\m*) - 0(1)

>K(k)- log 1 ^ 1 - 0 (1) (3.1)

>\k\- log \Ks,a\-0(l)

> l o g \ K \ - \og\Ka,a\ - 0 (1) (3.2)

where (3.1) follows from K(k\{s,a)*) < K(KSta\(s,a)) +log \KaJ < log |A'„,„| + 0(1).
Also (3.2) follows from the fact that if a set has log \K\ elements, then at least log \K\
bits are needed to describe them (we tacitly assume all elements in a set are of the

110 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

same size). Now, by Corollary 2.10.9, log \K\ > \og\A\ +\ogmm{\KSia\,{s,a) G M}
and so (3.2) is greater than or equal to

log|A| + logmm{|Ks,a |,(s,a) € M} - \og\Ks,a\ - 0(1) >

l o g | A | - 0 (l)

where the last line follows from the assumption

|JC,a| < 0(1) • min {\Ks,a\ : (s,a) G M}.

D

We now show that some reasonable assumptions about an instance imply that it is
secure against a substitution attack.

Theorem 3.3.18 For an instance (k,m = (s,a),mi = (si,Oi)) of an authentication
system without secrecy, let k be the key, m\ be the valid message known to Oscar and
m be the message that Oscar wants Bob to accept as valid. If,

K{k,sl)>K{k) + K{s1)-0{\), (3.3)

K(k, s\ml) > K{k\m\) + K{s\m\) - 0(1), (3.4)

K(k)> log \K\-0(l), (3.5)

\Ksuai\ < 0(Eai (\KSuat\,ai e Aai)), (3.6)

|-^s,a,si,ai I S {J\hiai \\i\s,ai,si,ai\i^i C / i S S i a i J J , [Ó. I)

| ^ | < 0 (| A S ; S 1 , a i |) , (3.8)

then K(a\s, mi) > log \A\ - O(l).

In plain English, the previous conditions mean that the key and the source value of
the known valid message are unconditionally independent (3.3); the key and the source
value of the attacking message are independent in the presence of the known valid
message (3.4); the key is maximally random (3.5); the number of keys validating
(si,ai) is not much more than the average number of keys validating messages for
source value s\ (3.6); the number of keys validating both (s, a) and (s\, a-\) is not much
more than the average number of keys validating (si,ai) and any other message for
source value s (3.7) and the number of authenticators possible for (si, Oi) and s is not
far from the maximum (3.8).

Before we give the proof, we present the following claim.

file:///og/A/

3.3. UNCONDITIONAL SECURITY OF A UTHENTICATION CODES 111

Claim 6 In an authentication system without secrecy, if K(k,si) > K(k) + K(sx) —
0(1), then we have K(ai\sl) > K(k) - K{k\m\) - 0(1).

Proof: Take the alternative representation of K(mx\k*), K(s1,a-i\k*). By application
of the addition theorem and the fact that the authenticator can be computed from the
key and the source value, we get K(mi\k*) = K(si\k*) up to an additive constant.

By assumption, we have K(mi\k*) = K(s1\k*) > K(s{) - 0(1). This brings

K(k) = K(k,mX) - K(mX\k*)

<K(k, ml)-K(sl) + 0(1)

= K(k\m\) + K{mx) - K(sx) + 0(1)

= K{k\m\) + K(su oi) - K(si) + O(l)

= ^ 1 ^) + ^ (0 1 ^) + 0(1).

D

Proof: (Of Theorem 3.3.18) By assumption and Claim 6, K(k\m*l) + K(al\s\) >
K(k) > \og\K\ - 0(1). By Theorem 2.10.7, log|AT| = \og\ASl\Eai {\KSuai\,at G A81)
and by assumption this brings \og\K\ > log \ASl\ + log \K3uai\ - 0(1). Plugging this
above, brings

K(k\m\) + K(al\s*1) > log \A9i \ + log \Ktl,ai \ - 0(1) «-

K(k\ml)>hg\Ksuai\-0(l) (3.9)

where the last line follows from K(a1\s*1) < log \ASl \ + 0(1).

By assumption (3.4) and Lemma 3.3.20, we can write

K(a\(s,m1)*) > IK(k : m\m{) - 0(1) =

K(k\ml) - K(k\(m,m1y) >

K(k\ml)-\og\Kmimi\-0(l),

and joining with (3.9),

A-(o | (a ,mi)*)>log | i i : a i , B l | - log | / i r m i m l | -0 (l) . (3.10)

By Corollary 2.10.9 and assumption (3.7)

log|tf,1>ai| > log |A S i S l , a i |+ log | i i : s , a , S l , 0 l | -0(l) . (3.11)

file:///og/K/
file:///og/K/

112 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

Joining (3.10) and (3.11) we get

K(a\(k,si)*) >log|^S i S l i a i |+log|K s > a j S l i a i | -log|tffli0)81iai| - 0 (1) &

K(a\(k,Sl)*)> log\A s ,Sua i | - 0 (1) = ^

K(a\(k,Sly)>\og\A\-0(l)

where the last line follows from assumption (3.8). D

To exemplify these theorems, we present an unconditionally secure authentication
system given by Stinson in [Sti02]. Fix some prime p. Then, let K. = {0 ,1 , . . . ,p2 —
1},«S = A = {0 ,1 , . . . ,p — 1}. Interpret k as a vector (i,j) where j — k modp and
i = (k — f)lp. Define efc(s) = is + j mod p. If the keys are uniformly distributed, this
system is unconditionally secure. Every s has the same number of authenticators, every
message is validated by the same number of keys and any two messages corresponding
to different source values are validated by the same number of keys. Algebraically,
this is:

\AS\ = \A\ =p, Vs G S;

\JCm\=p, VmeM;

\JCm,mi 1 = 1, Vm = (s, a),171! = (si, ai) e M,s^ s1.

Such a scheme easily satisfies assumptions (3.6) to (3.8) of Theorem 3.3.18 for all
instances. The remaining assumptions are natural and occur with high probability, as
can be shown following similar reasonings to those used for the one-time pad.

3.3.3.1 Auxiliary Proofs

Lemma 3.3.19 If a key k and a source value s of an authentication system without
secrecy are independent, that is, K(k,s) > K(k) + K(s) — 0(1), then up to an additive
constant K(a\s*) > Ixik : m) — 0(1), where k is a key that authenticates m = (s,a).

Proof: We can develop K(k, m) in two ways:

K(k, m) = K(k, a, s)

= K(k,s) + K(a\(k,s)*)

= K(k,s) + 0(l)

> K(k) + K{s) - 0(1)

3.3. UNCONDITIONAL SECURITY OF AUTHENTICATION CODES 113

since a is completely determined by k and s.

K{k,m) = K(m) + K(k\m*)

= K(s,a) + K(k\m*)

= K(s) + K{a\s*) + K(k\m*).

Joining both we have

K{k) - 0(1) < K(a\s*) + K{k\m*) - 0(1) <S>

K{k) - K{k\m*) - 0(1) < K{a\s*) - 0(1) =►

IK(k : m) - 0(1) <K(a\s*).

D

Lemma 3.3.20 For an authentication system without secrecy where m,\ is a valid
message and k is the secret key held by Alice and Bob and if the source value and
the key are still independent after a valid message is known, then up to an additive
constant:

K(a\(s,miy) > IK{k : m\m\) - 0(1).

Formally, we state the assumption as K(k, s|m^) > K(k\m\) + K(s\ml) - 0(1).

Proof: Similarly to what was done in Lemma 3.3.19, we develop K(m, k, mi) in two
different ways:

K(m, k, mi) = K(a, s, k, mi)
= K(s,k,mi) + K(a\(s,k,mi)*)

= K(s, k,mi)

= K(k\(s,m1)*) + K(s,m1)

since the authenticator a is completely determined from the source value and the key.
Also,

K(m,k,mi) = K(m,mi) + K(k\(m,mi)*)

= K(a,s,mi) + K(k\{m,mi)*)

= K{a\ (s, mi)*) + K(s, mi) + K(k\(m, mi)*).

Joining both derivations, we get

K(k\(s,mi)*) = K(a\(s,mi)*) + K(k\(m,mi)*). (3.12)

114 CHAPTER 3. INDIVIDUAL SECURITY OF CRYPTOGRAPHIC SYSTEMS

By Lemma 2.9.19, K{k,s\m\) — K{s\m\) = K(k\(s,m,i}*) and coupled with the
assumption of the theorem, this gives

K(k\(s,mi)*) >K{k\ml)-0{l).

Continuing from (3.12),

K(k\m\) - 0(1) < AT(a|(s,mi)*) + K{k\(m,m1Y) &

K(a\(s,mi)*) > K{k\m{) - K{k\{m,m1Y) - 0(1)

= K(k\m\) - K(k, m, m^ + K(m, mi) - 0(1)

= K(k\ml) - (K(k,m\ml) + K{mx)) + {K{m\m\) + K{mx)) - 0(1)

= K[k\m\) + K(m\m\) - K(k, m\m\) - 0(1)

= IK(k:m\m\) - 0 (1) .

[J

Chapter 4

Analysis of Commitment Systems

In Chapter 3, we have analysed the individual security of cipher and authentication sys­
tems. This chapter is devoted to commitment systems. Instead of analysing individual
instances of such systems, we show how these can be simply seen as a composition of
cipher and authentication systems. The results in this chapter appeared in [PSMA07].
The main results in this chapter are (Theorem 4.1.4) that an unconditionally secure
commitment scheme with trusted initializer can be built from

• a composition of an unconditionally secure authentication code without secrecy,
without splitting and with no arbitration

• and an unconditionally secure cipher system.

and this decomposition is unique for optimal commitment systems (Theorem 4.3.7).
This relation suggests an attack already referred in [NMQO+03] that is the counterpart
of the impersonation attack of an authentication system. We give two lower bounds
for this attack, one based on entropy and the other merely on counting, similar to
Stinson's bounds for authentication. The first of these bounds is already present in
[NMQO+03] but while their proof used techniques from hypothesis testing, ours uses
only the definition of mutual information and the log sum inequality.

We begin by analysing the possible attacks against commitment schemes in Section 4.1
and then show how these can be built from a cipher system and an authentication code.
In Section 4.3, we define the notion of optimal commitment scheme and show that such
a scheme is a resolvable design commitment scheme as proposed in [BMSW02]. We
follow with the main results of this chapter, showing that optimal systems must be
resolvable design commitment schemes and that all of these can be decomposed into

115

116 CHAPTER 4. ANALYSIS OF COMMITMENT SYSTEMS

a cipher system and an authentication code. We then propose a generalization of
the affine plane commitment scheme in [BMSW02] that is efficiently implementable
in both hardware and software by allowing an alphabet of source states with size
15*1 = 2n rather than having \S\ = p for prime p. In the former case, the needed
arithmetic operations reduce to bit shifts and bitwise logical operations, which have
very fast hardware and machine-code implementations. We show that this is possible
for every n, by building an appropriate Transversal Design and using a result due to
Stinson ([Sti87]), to turn it into an unconditionally secure authentication system. Our
commitment scheme follows from composition with the one-time pad cipher system.
By the previous results, this scheme is optimal.

4.1 Analysis of Commi tmen t Schemes

This section presents an analysis of the possible attacks against a commitment scheme
and shows how to build such schemes from a cipher and an authentication scheme.

4.1.1 Security

In a commitment scheme, both participants can launch attacks.

Bob's Attack The attack available to Bob is uncovering Alice's commitment before
she reveals her secret. The security of a commitment scheme can be measured by the
probability that Alice has of cheating Bob, while at the same time imposing that Bob
can not guess Alice's commitment with more than a priori probability. This means
Bob's chances at guessing each x should not be altered by his knowledge of v and y,
i.e., for all triples (x, y, v), p(x\y, v) = p(x), which can be summarized using Shannon's
entropy with H(X) = H(X\Y, V).

Alice's Attacks Suppose Alice commits to a value x and sends y = f(k, x) to Bob,
where k is her secret key. Alice cheats Bob if she can reveal a k! ^ k such that
/^(y) = x' with x' 7̂ x, and Bob accepts k' as valid, i.e., gv(k') = 1. It is proved in
[BMSW02] that a commitment scheme can not be invulnerable against all of Alice's
attacks: Alice can compute the set 14 = {v <E V : p(v\k) > 0} of all the tags that Bob
may have. She then picks the tag v0 e 14 that maximizes p(v\k). Let a = p(v0\k). By
an averaging argument, a > 1/|14|. Now, Alice picks two values x ^ x' and computes

4.1. ANALYSIS OF COMMITMENT SCHEMES 117

y = f(k,x). But by the concealing property, there is a key k' such that f(k',xf) = y
and g(v0,k') = 1 which allows Alice to cheat successfully if Bob's tag is v0. The success
probability of this attack is the probability that Bob is holding the tag chosen by Alice,
a. It is shown in the same paper that the average probability of this attack is at least
2~H(V\K) a n c j therefore there's at least one instance with at least this probability of
success.

The attack described above is the counterpart to a substitution attack in an au­

thentication system. There is yet another attack that Alice can perform, which has
been pointed in [NMQO+03]. This is the counterpart of an impersonation attack.
These relations are a consequence of the construction of commitment schemes from
authentication codes. In the previous attack, Alice makes the best possible use of her
private information, but she can also launch an attack ignoring it altogether. To do
this, Alice simply computes for each key the probability that Bob accepts it, i.e., for
a fixed key k she finds

7(*) = J>(«). (4­1)
v£Vk

She then picks the key that maximizes the above sum and reveals it to Bob in the
revealing step. We give two combinatorial lower bounds for this attack when the
distribution of the keys and tags is uniform.

Theorem 4.1.1 There is some k G /C with probability of success j(k) > n W) where
E(\KV\) signifies the average number of keys that each tag validates.

Proof: Consider j(k) as defined above. Its average value is

keK vevk

I/\JC\J2K\P(V) =
vev

E(\KV\)
|/c| ■

Then, by an averaging argument, there is some k which has j(k) > nq ■ D

Corollary 4.1.2 There is some k G K, with probability of success ^y(k) > L > where
25(1141) signifies the average number of tags that validate each key.

Proof: It suffices to note that YlkeK 1^1 = 5^ev 1^1­ ^

We can show an analog result with Shannon's entropy:

118 CHAPTER 4. ANALYSIS OF COMMITMENT SYSTEMS

Theorem 4.1.3 There is some k G ÏC with probability of success

7 (f c) > 2 - 7 ^) .

Proof: By definition of mutual information (see [CT91])

-mv). £ Pik,vnog&^.
*-^ p[k,v)

keK,vev r v ' ;

For each k € /C, p(k, v) = 0 for every v ÇÉVk- Thus, the above can be written

P(k)p{v)
p(k,v) fce/c uGVfc

The log sum inequality (see [CT91]) states that

Applying (4.3) to (4.2),

p(k)p(v)
-I(V;K) = J2J2p(k>vîhZ' p(k, v)

<(EE*4»ÍT# Efce,cE<;evfcK*0K^)
.ev», / ^keK^vevkP(k>v)

= 1 • log ^] T p{k)p(v)
fce/C v€Vk

= log^2 p(k)j{k)
keK

= log E(j(K))

where E(j(K)) is the average value of the success probability for each k. By an
averaging argument, there is at least one k that has probability greater or equal to the
average value. For this ft: 7(ft) > E(j(K)) > 2~I{K'V). D

A commitment scheme is said to be unconditionally secure if it is perfectly concealing
and the maximum probabilities of success for these two attacks are equal and meet
the lower bounds. This implies H(K) = H(V\K) + H(K\V).

4.1. ANALYSIS OF COMMITMENT SCHEMES 119

4.1.2 Construction of Commitment Schemes

This section presents a proof that an unconditionally secure commitment scheme
can be built using an unconditionally secure cipher system and an unconditionally
secure authentication system without secrecy as building blocks. Each user in these
systems has a function to play. We call that function a "role". In composing a
commitment scheme with two different systems, the users of the former will have to
play the different roles of the latter at different steps, so we refer to these roles by
writing the abbreviation of the system followed by the role played, all within square
brackets. In the remainder of the paper, CP stands for "cipher system", AC stands
for "authentication system" and CM stands for "commitment system". The cipher
system consists of three roles: [CP.Alice], [CP.Bob] and [CP.Eve]; the authentication
system has roles [AC.Alice], [AC.Bob] and [AC.Oscar].

As previously mentioned, in a commitment scheme there are two kinds of attacks.
The first is against secrecy: Bob must not learn the secret value Alice committed
to before the right time, so Alice sends it enciphered. The second attack is against
authentication: Alice must not send a fake opening key, so she must send it through
an authentication scheme. In the first step, Alice uses a cipher system without
receiver. She merely sends Bob an encrypted message, but he must not be able to
open it. Essentially, Bob takes the role of [CP.Eve]. After Bob receives a key in the
revealing step, he takes the role of [CP.Bob] and opens the ciphertext learning Alice's
commitment. In the second step, Alice sends Bob the key to open the encrypted
message he has, but Bob needs to be sure it is the right key, distributed to her in the
initial phase. Essentially, Alice acts as a relay between Ted and Bob. Since she reads
what the initializer sends and has a choice of relaying that message or changing it
for another one altogether, she has complete control over the channel. In this phase,
Ted plays the role [AC.Alice], Alice plays the role [AC.Oscar] and Bob plays the role
[AC.Bob]. We summarize the above in Table 4.1.

User Commit t ing Step Revealing Step
Alice [CP.Alice] [AC. Oscar]
Bob [CP.Eve] [CP.Bob] / [AC.Bob]
Ted [AC. Alice]

Table 4.1: Roles Played

Theorem 4.1.4 Given an unconditionally secure cipher system CP{V,C,K, f(k,p))

120 CHAPTER 4. ANALYSIS OF COMMITMENT SYSTEMS

and an authentication system without secrecy AC(S, A, £, h(e, s),g(e, (s, a)), a, (3) with
S = K, there is a commitment scheme with initializer (per Rivest's model) CM(V, C,Sx
A,S,f(s,p),g{e,(s,a)),a,p).

Proof: The several components of the commitment scheme are obtained from the
cipher and the authentication system as shown in Table 4.2. Because we have used

Cipher Commitment Authent icat ion
V X
C y
K S

K S x A
V £

/(M f(k,x)
g(k,v) g(k,(s,a))

Table 4.2: Equivalences between systems

letters given in the initial definitions, there are two different alphabets labelled /C. They
are not to be confused. For each k G CP.K, there are \A\ different k! 6 CM.JC, all
with the same behaviour in the cipher system. Considering the analysis in [BMSW02],
these | .A | keys form a parallel class of keys in the combinatorial design used as basis
for the resolvable design commitment scheme. The protocol is as follows:

1. Initialization: Ted chooses uniformly at random an encryption key s G S and
an authentication key e £ Í , computes the authenticator a = h(e, s) and sends
(s, a) to Alice and e to Bob.

2. Commit t ing Step: Alice commits to x by sending Bob the encryption y =
f(k,x).

3. Revealing Step: Alice sends Bob a possibly false key {s',a'). Bob checks if
ge{{s', a')) = 1 and if so, he decrypts x' = f~,l{y).

This construction yields a commitment scheme that follows Rivest's model, as is shown
next. The crucial point of this construction is that the source value that Ted wants
to send Bob in the revelation step is the actual key that the latter must use to open
Alice's commitment. The figures in Section 4.2 can help to understand this. It is
easy to verify that the families of functions f(k,p) and g(k, (s,a)) satisfy the formal

4.1. ANALYSIS OF COMMITMENT SCHEMES 121

requirements of the commitment scheme. Now we check the concealing and binding
properties.

Concealing Let x0 be the value Alice committed to, k0 the key she holds and y0 =
f(k0,x0) the value Bob received. Let e0 be Bob's tag. Let Xyo = {x G X : 3k G
/C s.t. f(k, x) = y0} be the set of possible plaintexts for the ciphertext Bob holds,
JCeo = {k G JC : 3a G A s.t. h(e0, k) = a] be the set of possible Alice's keys and let
Xyo<eo = {x G X : 3k G /Ceo s.t. f(k,x) = y0} be the set of possible values for Alice's
commitment given the information Bob knows. Because the authentication system
does not have splitting, for each possible k £ /C and e G £, there is exactly one a G A
such that h(e, k) = a. Therefore, all the keys can be associated to each particular e,
and so /C = /Ceo, implying that Xyo = Xy0teo.

Bob's probability of guessing Alice's commitment without or with knowledge of e0 is,
respectively, p(x0\y0) = T,keic,nk,x0)=y0P(k) ^nd p{x0\y0,e0) = 52keKeoJ{k<Xo)=yop{k)
and by the above reasoning they're equal. Then

H(X\Y, E) = Ey,e(H(X\Y = y,E = e))

= Ey^(^2p(x\y,e) log I/p(x\y,e))
xex

= Ey(^2p(x\y) log l/p(x\y))
xex

= Ey(H(X\Y = y))

= H(X\Y).

If follows, by assumption, that H(X\Y,E) = H(X) and this commitment scheme
satisfies the concealing property.

Binding Let x0 be the value Alice committed to and (k0, a0) be the key/authenticator
pair that she holds. In order to reveal a value x' ^ x0, Alice needs to make Bob accept
a key k' ^ k0. Alice can make two kinds of attack, as described in Section 4.1.1. Her
chances of success are, for the first attack:

max >^ p(e).
(k',a')eKxA £-^

ee£,g(e,(k',a')) = l
This corresponds to the impersonation attack against the authentication system and
so this probability is at most a. Likewise, for the second attack:

z2e<E£,g(e,(k',a')) = l,g(e,(k0,a0)) = lP(e)
m a x = ; T-r ,

(k',a>),(ko,a0)elCxA,k>jik0 l^eeS,g(e,(k',a'))=l P(e>

122 CHAPTER 4. ANALYSIS OF COMMITMENT SYSTEMS

which corresponds to a substitution attack and is at most /3. Thus, this commitment
is (1 — max(a, /5))-binding. D

Corollary 4.1.5 Given an unconditionally secure cipher system and an uncondition­
ally secure authentication system without secrecy there is an unconditionally secure
commitment scheme with initializer (per Rivest's model).

Next, we show how the different flows of information in the three systems arc related.

4.2 Flow Analysis

In the conclusion to the paper [BMSW02], the authors suggest a possible relation
between commitment schemes and authentication schemes with arbitration, but point
that the information flows between these systems are different. Here, we analyse the
different flows of information in a commitment scheme, and how these are realized
through the flows present in the cipher and in the authentication systems. We under­
stand by information flows the data that is sent from one user to another user. The
following pictures help visualize the flows in the different systems. In these figures,
there are blocks representing each participant in the system and arrows representing
the messages sent by them, this is, the flows of information between users. Within
some blocks is another name within square brackets. This represents the name of the
user of the commitment scheme that will be playing the role indicated by the block.
For instance, when Alice sends her commitment to Bob, he is playing the role of Eve
in the cipher scheme: he receives a ciphertext but can not read it. Next is shown

Cipher Scheme

Alice
y = f(k,x)

Bob Alice Bob

Eve
[Commit.Bob]

Figure 4.1: A Cipher Scheme

how each flow is used to implement the flows of the final commitment scheme. When

y = f(k,x)

4.2. FLOW ANALYSIS

Authentication Scheme

Alice
[Commit.Ted]

(s,a) Bob
[Commit.Bob]

...▼

Alice
[Commit.Ted]

Bob
[Commit.Bob]

...▼

(s.a)"
Oscar

[Commit .Alice]
(s',a')

Figure 4.2: An Authentication Scheme

Commitment Scheme

y = f(k.x)

Figure 4.3: A Commitment Scheme

124 CHAPTER 4. ANALYSIS OF COMMITMENT SYSTEMS

necessary, we describe roles with the same notation of Section 4.1.2. In the following
list, we describe the flows in each system and identify them with a name between
brackets that indicates the system the flow belongs to and the step when it takes
place. When some steps have two similar flows, these are further distinguished with
letters 'a' and 'b'.

(CP1) Alice (a) and Bob (b) receive a secret key by some secure channel. This
includes the case where they create a key themselves and exchange it.

(CP2) A message is sent from Alice to Bob (a) and possibly also read by Eve (b).

In an authentication system as described above, there are the following flows:

(AC1) Alice (a) and Bob (b) receive a secret key by some secure channel.

(AC2) A message is sent from Alice to Oscar (a), who may change it before relaying
it to Bob (b). Note this is just a simplified model. In reality, Alice sends the
message to Bob, but Oscar may intercept and alter it or not.

In a commitment scheme, there are the following information flows:

(CM1) Ted gives a key to Alice (a) and a verification tag to Bob (b).

(CM2) Alice sends her commitment to Bob.

(CM3) Alice sends her key to Bob to open her commitment.

The information flows of the commitment scheme are carried out by the information
flows of the other systems like this:

• Flow (CMl.b) is achieved by flow (ACl.b). Flow (ACl.a) is ignored because
Ted does not need to remember the key after he creates a valid message to send
Alice. Flow (CMl.a) is achieved by flow (AC2.a), that is, Ted takes the role
[AC.Alice] and sends a message to Alice ([AC.Oscar]). Due to the nature of the
construction, namely because the authentication system does not have secrecy,
flow (AC2.a) includes flow (CPl.a), because Alice now has a key for the cipher
system.

• Flow (CM2) is achieved by flow (CP2.b).

• Flow (CM3) is achieved by flow (AC2.b). From this message, Bob deduces a
key, completing flow (CPl.b), and opens the commitment by flow (CP2.a).

4.3. OPTIMAL COMMITMENT SCHEMES 125

Cipher Commitment Authent icat ion
(CPl.a) (CMl.a) (AC2.a)

(CMl.b)
(ACl.b)
[(ACl.a)]

(CP2.b) (CM2)
(CPl.b)
(CP2.a)

(CM3) (AC2.b)

Table 4.3: Information Flows

4.3 Optimal Commitment Schemes

In [BMSW02], the authors propose a general commitment scheme which they call
"resolvable design commitment scheme". In this section, we define optimal commit­
ment schemes and show that they are resolvable design affine commitment schemes.
Then, we close the circle showing that all resolvable design commitment schemes can
be viewed as the composition of a cipher system and an authentication system. For
simplification, in what follows, consider that the source values, keys and verification
tags are distributed uniformly, since this maximizes uncertainty and therefore security.

Definition 4.3.1 A commitment scheme CM(X,y,lC,V, f(k,x),g(v,k),a,(j) is op­
timal if it is unconditionally secure, \X\ = \y\ and has the minimum number of keys for
a fixed number of source states and the desired security level. Besides, the probability
of Alice's cheating should be equal to the probability of Bob's cheating.

Lemmas 4.3.2 and 4.3.3 give some properties that an optimal commitment system
must have. Lemma 4.3.4 excludes BIBDs as the possible minimal system, and this is
necessary because such systems are not resolvable. This means that there can be pairs
of blocks with empty intersection and so these are counted in Lemma 4.3.5. After these
lemmas, we're ready to give the two main theorems: that an optimal commitment
system must be affine resolvable and that a resolvable commitment scheme can be
decomposed into a cipher system and an authentication system.

Lemma 4.3.2 If a commitment scheme CM(X,y,K.,V, f(k,x),g(v,k),a,fi) is opti­
mal, then a = (3 and |V| = (1/a)2 .

Proof: By definition,

a = max\Vk\/\V\>E{\Vk\)/\V\,

126 CHAPTER 4. ANALYSIS OF COMMITMENT SYSTEMS

and by optimality of the system the above holds with equality. Then, |Vfc| is constant
for all k. Likewise, and by Theorem 4.1.1, \KV\ must be constant. By definition,

Fr[g(v,k) = l,g(v,k') = l}
8 = max — ' . /—rr^—7T

k^k'eK. Pr[g(v,k') = 1]
m a x \{veV-.9^) = 9^,1^) = 1)1

fc^fe'e/c \{v G V : g(v, k) = 1}|
[Vfcnvfc,|

= max ————.
kyik'eIC |Vfc|

Let n = max.kjtk'eK \Vk f! Vfc'|. Then

/? =
|Vfc

The value /i can not be 0 because if so each tag would verify exactly one key and Bob
would be able to cheat Alice with absolute certainty, so 8 is minimum if // = 1 and

a = |V*|/|V|,

0 = l/|Vfc|.

We show that 7 is minimum when a = 8. Let |14| and |V| be such that a = 8 = 7.
Then |Vfc|2 = |V|. Denote by a0 and 70 the values of a and 7 respectively in this case.
Assume for contradiction that there is some combination of values |Vfc| and |V| such
that 7 = max(«,/3) < 70. Assume w.l.o.g that a > 8. Then

a = 7 < 7o = «0 =>

|Vfc|/|V| < |V|1/2/|V| <* l/|Vfc| > 1/lvi1/2 =*

8 > «o > a.

Thus we have a contradiction, and so the minimum 7 is achieved when a = 8. This
implies that l/|Vfc| = |Vfe|/|V| and |V| = |Vfc|2 = (l /a) 2 . D

Lemma 4.3.3 If a commitment scheme CM(X, y, /C, V, f(k, x),g(v, k),a, 8) is opti­
mal, then \X\2 = \K\ = |V|.

Proof: Let v be Bob's tag and y the coding of Alice's commitment. Define
Xyv = {x : 3 k G JCV s.t. fk~l{y) } to be the set of possible commitments for
Alice given the information Bob holds. Then, \XVtV\ < |/C„|. Because \KV\ is constant,

4.3. OPTIMAL COMMITMENT SCHEMES 127

by Lemma 4.3.2,

H(X\Y,V)= £ Pv(y,v)H(X\Y = y,V = v)
yey,v€V

< Yl Pr(y^)iogi^i
y<Ey,veV

< Y^ Pr(y,v)\og\K.v\
yey,vev

= log|/C„|
and by optimality of the system log \1CV\ > H(X) = log \X\.

By the proof of Corollary 4.1.2, \JC\ ■ \Vk\ = |/C„| • |V| and using Lemma 4.3.2, this
brings |/C| = \JCV\ ■ \Vk\ > \X\ • |14|. But since the system is optimal and the number
of keys is minimal, then it must be that \fCv\ = \X\. Bob's chance of guessing Alice's
commitment is 1/\X\, by definition of security. From Lemma 4.3.2, Alice's chance
is l/|Vfe|. Because in an optimal system Alice's chance of success is equal to Bob's,
l/|Ar| = l/|Vfc| <^ | * | = |Vfc| which implies |/C| = | * | 2 = |V|. □

Lemma 4.3.4 If a commitment scheme CM(X, y, /C, V, f(k, x),g(v, k), a, /i) is opti­

mal, then its incidence matrix can not be a Balanced Incomplete Block Design (BIBD).

Proof: By Lemma 4.3.3, |V| = |/C|. Suppose the incidence matrix of the commitment
scheme is a 2 ­ (v, k, A, b, r) Balanced Incomplete Block Design. Then the design is
symmetric and by Theorem 2.14 in [AH97], any two keys have exactly A tags validating
them. By the proof of Lemma 4.3.2, the maximum intersection between any two
lines should be 1, so A = 1. Then, by Theorem 2.6.2, each tag validates exactly
r = (v­ 1)/(k ­ 1) keys and by Theorem 2.14 in [AH97], r = k. This brings b = v =
k2 — k + 1 where b = \K\ and v — |V|. By definition, r = \KV\.

By Lemma 4.3.3, | /C| / |* | = \fCv\. Then, b/k must be an integer, but

b k2 ­ k + 1
k~ k

= k­l + l/k

and this can not be an integer for k > 1. □

Lemma 4.3.5 Letp= \X\. If a commitment scheme CM(X,y,IC,V, f(k,x),g(v, k), a, (3)
is optimal, then the sum of distinct pairs of keys that don't have any tag in common
isp2­(p ­ 1) / 2 .

128 CHAPTER 4. ANALYSIS OF COMMITMENT SYSTEMS

Proof: Consider a square matrix where cell (i,j) contains the value \Vkt PI Vfe. | where
ki 7̂ kj G /C. There are p2 ■ (p2 — 1) filled cells. We count the pairs that have a
non­empty intersection. Each key has tag v\ in common with p—1 different keys and
since it is validated by p tags, each key contributes with p(p — 1) to the total of the
sum

*'=E E l^n^l­

Therefore, a' = p3(p — 1). But this sum counts each pair twice, so the total number
of distinct intersections is a = p3(p — 1)/2. We can find the total number of distinct
key pairs that don't intersect, recalling that in this particular case all filled cells are
either 0 or 1, which means that a is the sum of all Is in the table. As before, only
a half of the matrix needs to be considered. Then, the number of distinct key pairs
without tags in common is

(p4 ­ p2)/2 ­p\p­ 1)/2 = p2­(p­ 1)/2.

D

Theorem 4.3.6 If a commitment scheme CM(X, y, /C, V, f(k, x),g(v, k), a, (3) is op­

timal, then it is an affine resolvable commitment scheme, and all keys in each parallel
class encrypt each value x G X to the same value y G y. That is, the function
V = f{k, x) depends only on the index of the parallel class containing k, and not on k
itself

Proof: Let p — \X\. From the previous results, there are p2 keys. Fix some XQ £ X.
The concealing property implies that there must be exactly p keys transforming x0

into each possible value y G y. Then, the keys can be grouped in p groups such that all
keys kij in group i satisfy f(kij,xo) = y%­ There are exactly p keys validated by each
verifier tag. For each two keys ki and kj validated by the same tag, it must happen
that f(ki,x0) 7̂ f(kj,xo) or else there won't be enough keys to hit all the values in
y. But by Lemma 4.3.5 and a counting argument, this implies that all pairs of keys
in different groups must have exactly one common tag. Since there are p disjoint keys
in each group, each validated by p tags, each group forms a partition of |V| and is
therefore a parallel class. The design is therefore resolvable and since the maximum
intersection between two keys is 1 = k2/v it is also affine.

4.3. OPTIMAL COMMITMENT SCHEMES 129

Now consider a value X\ G X different from x0. Suppose there are two keys ki,kj in
different groups that code xi in the same way. That is:

f(k,x0) ^f{kjtXo)
f(ki,xi) = f(kj,xi)

\vklnvkj\ = i.

Following the same reasoning as above, if /(/¾, xx) = f(kj,Xi) then they can not have
any tag in common, contradicting the previous division in groups. Therefore;, keys in
different groups code x in different ways and by a counting argument all keys in the
same group transform x into the same y. Repeating the argument for any xt G X and
for all groups, it must happen that all keys kz, kj in the same group satisfy

f(ki,xi) = f{kj,xi)

and so the theorem is proved. Q

Theorem 4.3.7 A resolvable design commitment scheme obtained from a resolvable
1 ­ (v, k, A, b, r) design (£>, S) is a composition of a perfectly secure cipher system and
an authentication code with Pd0 = k/v and Pdi = ma*l^ing2l for all distinct BX)B2e V.

Proof: Let B be Alice's block and w be Bob's tag in the above system. Then w G B.
By Theorem 2.6.2, b = r ■ v/k. Then, w can be seen as a number between 0 and v — 1.

By definition of resolvable design, B belongs to some parallel class. Then, B can be
written (i,j), where i is the index of the parallel class and j is the index of the block
within the parallel class. The pair (i,j) can be interpreted as a pair source value /
authenticator.

When Alice commits to x0 G ZP, she sends Bob y0 = (x0 + i) mod r. Then, x0 can
be seen as a symbol in alphabet E = Zr and y0 as a displacement of i positions over
that alphabet. This corresponds to applying a Ceasar's cipher to the secret message
XQ. In general, Ceasar's cipher is not secure, but here the message is composed of only
one symbol, which means its size is equal to the size of the key. In this situation, it is
equivalent to the one­time pad and is unconditionally secure. Since all blocks in the
same parallel class encipher x0 in exactly the same way, the index of the parallel class
represents the cipher key used by Alice.

Now we show that the design used to check the validity of the value revealed after the
commitment can also be used to make an authentication scheme with r source states,

130 CHAPTER 4. ANALYSIS OF COMMITMENT SYSTEMS

v/k possible authenticators for each source state and v encoding rules. Any block from
the design can be identified by a pair (i,j), where i is the index of the parallel class it
belongs to and j its index within that class. Let B be the set represented by a block
with indices (i,j). Then, B can be interpreted as belonging to an authentication code:
i represents the source code and j the respective authenticator. Each element w G B
contributes for the definition of an encoding rule in the following way: f(w,i) — j .
Since each w belongs to exactly one block in each parallel class, there is a unique
value associated to each pair (w,i). Since there are k elements in each block, there
are exactly k encoding rules associating i to j .

The probability of an impersonation attack is the maximum probability of finding
the right authenticator for a specific pair key / source state. There are a total of v
encoding rules. The number of rules that associate some source state Î to a given
authenticator j is, by construction, k. Thus, for all such pairs (i,j),

payoff (z, j) = ^2 l/v = k/v
weS:f(w,i)=j

and because this is constant for all pairs, it is the probability of an impersonation
attack. For the substitution attack, suppose the attacker knows that the secret
encoding rule associates i\ to j \ ­ By construction, there are k such keys. For any
pair (i,j), the probability of success is

payoff(i, j , iujx) = n , J ; x
2^weS:f(w,ii)=jlP\W >

I D p. p I
_ \JDi,i ' ' ­"nj'il

k
where Bij is the block of the design indexed by (i,j). Then, the probability of the
substitution attack is max|^ ini?21 over all Blt B2 G V, Bx ^ B2. □

4.4 Generalization to Galois Fields

As noted in [BMSW02], affine resolvable 2­designs are optimal among the resolvable
designs in terms of binding probabilities, however not many classes of such designs
are known to exist. Notwithstanding this, there are other kinds of designs that can
achieve the same goals, namely Transversal Designs.

This section addresses this question by showing how to construct a resolvable Transver­

sal Design TD(2n, 1, 2n), for any n, that is also a 1 — (22n, 2n, 1) affine resolvable design.

4.4. GENERALIZATION TO GALOIS FIELDS 131

Prom such a design, we then build an unconditionally secure authentication code and
an unconditionally secure commitment scheme.

Theorem 4.4.1 For any positive integer n, it is possible to construct a Transversal
Design TD(2n,l,2n).

Proof: The order of any finite field can be written pk, where p is a prime and k > 1
is an integer (see [LN83]). Let GF(pn) represent one such field. For any finite field
GF(pn), there is a primitive polynomial of degree n and coefficients modulo p ([LN83]).
For composite orders pn, the elements of the field are considered to be polynomials
and the operations of the field are addition and multiplication of polynomials modulo
the prime p. Addition is denoted by © and multiplication by 0. Fix some n and some
primitive polynomial for GF{2n). We build a table with 22n rows and 2" columns. The
rows are divided in 2" groups of 2n elements each, and uniquely identified by a pair
(a, b) where a, 6 € Z2«. Each column is labelled by a number x G Z2n. Cell ((a, b), x)
holds the value a 0 x © b, which is a number in Z2n.

We show this table represents a TL>(2n,l,2n) transversal design. Consider the set
of points V = { 0 , l , . . . , 2 2 n ­ 1 } and divide them in 2n groups of 2n points. Each
row represents a block with 2n points, one from each group. For row j , the ith value
represents the index of the point in the ith group that belongs to the j t h block. By
construction, each block has one point in each group. Finally, each two points from
distinct groups can occur in only one block. To see this, let (x0,yo) and [x\,y\) be two
points from distinct groups, where XQ ^ X\. For both points to be in the same block,
there must be a pair (a, 6) such that a 0 x0 © b = y0 and a 0 X\ © b = y^. Then,

a Q x0 ­ y0 = a Q Xi ­ yi ■&

aO(x0 ­xi) = y0 ­2/1.

Since (xQ ­ xi) and (y0 ­ y{) are defined and (x0 ­ Xi) ^ 0, then a is completely
determined, and so is b. That means there is only one pair satisfying both equations,
which means both points can belong to only one block. This concludes the proof. D

This design originates an authentication code AC(2n, 2n, 22n, l /2 n , l /2n) , as proved
in [Sti87]. With such an unconditionally secure authentication scheme, and using
the one­time pad as a perfect cipher system, we can build an unconditionally secure
commitment scheme as outlined in section 4.1.2. Let S = {0, l } n . The protocol is as
follows:

132 CHAPTER 4. ANALYSIS OF COMMITMENT SYSTEMS

1. Initialization: Ted chooses randomly a pair (a, b) G S xS and a number x\ G S,
computes y\ = a © X\ © b and sends the pair (#1,2/1) to Bob and the pair (a, 6)
to Alice.

2. Commit t ing Step: Alice commits to x0 G S by enciphering ?/0 = ^0 © « and
sending y0 to Bob.

3. Revealing Step: Alice sends (a', b') to Bob, who checks that a' 0 xi © b' = y1.
If so, he computes x'Q = y0 © a' and accepts XQ as Alice's commitment.

The resulting commitment scheme is a generalization of the affine plane commitment
scheme. It uses the one-time pad as cipher system, which is very fast to implement
both in software and hardware. Besides, it allows the use of a complete alphabet
of strings of size n, whereas in the affine plane with order p, the alphabet of allowed
values does not coincide with any alphabet of all strings of a given size. In general, the
latter systems will be less efficiently implemented in hardware and software because
the basic instructions are more oriented to a fixed size of bits than the corresponding
arithmetic value.

Chapter 5

Computational Entropy

In this chapter, we investigate a parallel of the notion of entropy for the computational
setting and its relation with a time-bounded version of Kolmogorov complexity. The
aim of this approach is to devise an analysis analogue to the one made in Chapter 3 that
can be applied to systems which have only proofs of security based on computational
assumptions. We could not reach this ideal goal yet, because we were not able to lower
bound the expected Kolmogorov complexity of the plaintext given the ciphertext by
an appropriate function of computational entropy. But we established the opposite
relation and we are confident that further work can close this gap. The results in this
chapter appeared in [Pin07] and were accepted for publication in a special issue of the
Journal of Theory of Computing Systems.

In the case of information theoretic security, the justification for the use of Kolmogorov
complexity was the asymptotic equality between Shannon's entropy and the average
value of Kolmogorov complexity, and on the other side the formal similitude of the
theory of both quantities. But to analyse cryptographic systems with computational
security, we must be able to consider the limitations in the computational power of
the attacker. Accordingly, we study a parallel to the information theoretic case in the
present chapter, by considering notions of computational entropy and using polynomial
time-bounded Kolmogorov complexity and the relations between them.

5.1 Introduction

Randomness is an essential concept in computer science. It is fundamental in cryptog­
raphy and has been used extensively to provide fast algorithms for otherwise seemingly

133

134 CHAPTER 5. COMPUTATIONAL ENTROPY

difficult problems. Unfortunately, it is hard, if not impossible, for classical computers
to produce true random bits. For this reason, it is necessary to simulate randomness by
deterministic methods, but the distributions thus generated are only useful if they are
'random enough', or pseudorandom. The definition of pseudorandomness is based on
computational indistinguishability from a truly random distribution, as was referred
in Chapter 2.

The randomness of a distribution is measured by its entropy, introduced by Shannon
in [Sha48]. A related concept is that of minimum entropy (also min-entropy), which is
a lower bound on the entropy of some distribution. It is natural to try to extend these
objective measures to the computational case, thus defining notions of computational
entropy. The first such definition is due to Yao ([Yao82]), but the most used is due
to Hâstad, Impagliazzo, Levin and Luby ([HILL99]). Barak, Shaltiel and Wigderson
provide definitions for computational analogues of min-entropy in [BSW03]. In Infor­
mation Theory, randomness is tightly related to compression, in the sense that the
output of a random distribution cannot be noticeably compressed. Shannon's entropy
establishes a bound on how much a random source can be compressed, while at the
same time Kolmogorov complexity gives the ultimate bound to the compression that
can be achieved for an individual string.

Yao's definition of effective entropy has not been much studied. Goldberg and Sipser
([GS85]) analyse languages that can be compressed efficiently by a probabilistic ma­
chine, which is the computation model considered by Yao, but do not mention any
notion of computational entropy. The notion of pseudoentropy appears in [HILL99]. In
[BSW03], the authors introduce an analogue of min-entropy that closely resembles that
in [HILL99]. For this reason, they call it HILL-type pseudoentropy (written H™LL).
They introduce a similar notion, metric pseudoentropy (written H^etnc), and present
a measure based on a compression idea which they called Yao-type pseudoentropy
(written Hjao). They show that for some models of computation, metric entropy is
equivalent to HILL-type entropy. Wee ([Wee04]) studies compressibility, improving on
a result from [GS85] that separated compressibility from pseudoentropy in an oracle
setting and giving a separation between BSW's metric pseudoentropy and Yao-type
pseudoentropy. Whereas the source used in [GS85] was not samplable by uniform
polynomial circuits, Wee demonstrates the existence of an oracle relative to which there
exist samplable sources with low-entropy that nevertheless can not be significantly
compressed by polynomial size circuits. In Wee's opinion, this result suggests pseu­
doentropy is not the right lower bound for the size of the compression on polynomially
samplable sources. Another paper, by Trevisan, Vadhan and Zuckerman ([TVZ05]),

5.1. INTRODUCTION 135

also continues the work began in [GS85]. They give a method to compress sources that
are uniform on their support and have efficient membership oracles that uses a different
technique from the one used in [GS85]. The difference between compressibility and
indistinguishability is further studied in [HLR07], where the authors define conditional
notions of computational min-entropy and show an example of two distributions X and
Z such that X has high Yao-type entropy but low HILL-type entropy when conditioned
on Z.

This chapter focuses on these measures, comparing Yao-type pseudoentropy, effective
entropy and the expected value of the time-bounded Kolmogorov complexity. Effective
entropy is by definition the lower bound for the average length of a codeword of any
probabilistic compression scheme for a polynomially samplable source and because
time-bounded Kolmogorov complexity is the lower bound for a description of any single
word in a fixed time, it seems reasonable that its expected value be related to effective
entropy. We show that all three are equivalent for the uniform distribution. We also
show that for the distribution m', Yao-type pseudoentropy and effective entropy have
very different values. This result depends on a standard complexity assumption and it
can be applied to H^etTic, thus giving a clear separation between pseudoentropy (by a
connection of if£

Metric to Hflhh given in [BSW03]) and effective entropy. We note that
if we remove the randomness in the encoder then the result is unconditional.

Our results are as follows: in Section 5.3, we show that Yao's effective entropy (Hc) is
at least as large as Yao-type pseudoentropy (Hj30) when considering efficiency to be
represented either by F P or P P T . For the class FP , we do this in two steps: first, a
general theorem states that if Hj30 is larger than a function of n and a parameter
i, then Hc will be larger than another function of n and i; then, we show that
this implies that Hc is larger than a function of Hj™. In Section 5.4, it is shown
that the effective entropy is at least as large as the average of the resource-bounded
Kolmogorov complexity. We prove this relation first for a deterministic version of
Hc and then show how it also holds for the original version of Hc if there are hard
functions in EXP . Section 5.5 shows that Hc is not necessarily larger than Yao-
type pseudoentropy, although it is always larger than a variant thereof, by showing
a computable distribution that is a counter-example to that relation. In Section 5.6,
we consider two specific distributions, uniform and ml. We show that for the uniform
distribution, the three notions are equivalent, while for mÉ there is a difference between
the values of metric and Yao-type entropy of [BSW03] on the one hand, and that of
the expected Kolmogorov complexity, and under a reasonable complexity assumption,
Yao's effective entropy of [Yao82], on the other.

136 CHAPTER 5. COMPUTATIONAL ENTROPY

This comparison of computational entropies is new in the literature, and our results
regarding the values of these entropies for the universal distribution offer more evidence
that with polynomial time bounds, pseudorandomness and maximal compressibility
are not measured by the same quantity.

5.2 Preliminaries

Throughout this chapter, we use the same notations used in the original papers: Hc

for Yao's effective entropy. i ^ e t n c and Hjao, where e is a real parameter, for BSW's
metric and Yao­type pseudoentropies respectively. We now give the definitions of
computational entropy used.

5.2.1 Yao's Effective Ent ropy (Hc)

Definition 5.2.1 Consider a fixed finite alphabet E and the language L = E + . A
source S is a random variable defined over L with probability distribution p subject
to the restriction that 'Yllx£Lp{^)\^\ converges. A source ensemble S is a sequence of
sources Si, £2, . . . with probability distributions Pi,P2, ■ ■ ■ such that for some positive
constants í i , í 2 with t2 > t\, pn(y) > 0 implies n*1 < \y\ < nt2.

To simplify the notation in the rest of the chapter, we define a constant A = nk when
n and k are understood from the context.

Definition 5.2.2 Let S* = Sn x • • • x Sn be the random variable over X — nk inde­

A times
pendent draws of Sn.

Definition 5.2.3 A (t,k) —encoding scheme for S is a triple of probabilistic polyno­

mial algorithms M = (MA, MB, Mc) such that:

• MA receives as input a parameter n and a "text" x composed of X words of
L. These words are independently identically sampled from Sn. Then, x =
(wi,w2,... ,w\) has probability of occurring equal to p^(x) = pn(wi) ■ pn{w2) ■
... ■ pn(w\), i.e., x is sampled from S^.

• For all sufficiently large n, for all x G S^, Px[MB(MA(n,x)) 7̂ x] < l/n1, where
the probability is over the random coins of MA and MB­

5.2. PRELIMINARIES 137

• Let b > 0 be any fixed constant, and let u = 0(nh). For all sufficiently large n and
all X\,x­i,... ,xu where each Xi is independently distributed from S* with prob­

ability Pn(xi), Pv[Mc{n, Z\ZÏ ■■■ zu) ^ zrz2 ■ ■ ■ zu] < 1/n*, where zt = MA(n, x%)
and the probability is over the random coins of M A and Mc­

Informally, MA is an encoder algorithm for sequences of symbols of 5", or put another
way symbols of source S%, into finite binary strings. MB is the respective decoder.
Since both algorithms are probabilistic, a negligible chance of error is allowed in
retrieving x from a corresponding encoding.

The last property basically states that to code a whole text we can encode different
blocks of it and concatenate the results, because Mc is able to separate its input
into the encodings corresponding to the original blocks so that each of them can be
correctly decoded. Roughly, the code is uniquely decipherable.

Yao considered that also Mc could fail in breaking up the encodings of different texts,
and so he required that this probability were equally negligible. This is not much of
a problem, since usually Mc will perform without errors. In the sequel, we don't use
Mc so this issue can safely be ignored.

Definition 5.2.4 Let Ln(M;S) represent the average number of bits per symbol of
source S that the (t,k)—encoding M = (MA,MB,MC) achieves. The parameter n is
a scale value upon which the success probabilities of the algorithms and the length of
their inputs depend.

Since all the algorithms are probabilistic, for a fixed input the algorithm MA may
return different outputs. Let then \MA(n, x)\ represent the expected length of MA(n, x)
over all possible random values that MA uses internally. Then,

. (A/r Q, Eses^(*)lM4(n,x)|
Ln{M,D) — ­ .

Definition 5.2.5 A (t, k) — entropy­sequence for S is a sequence s\, s 2 , . . . such that
there exists a (t, k) — encoding scheme M for S with Ln(M; S) = sn.

The above definition is perhaps too general, and it might be a bit cumbersome. In
particular, the parameter t could be forgotten by simply requiring that the scheme
makes no mistakes neither in the decryption process nor in the breaking of the encoded
text into blocks, for example, making MB and Mc deterministic. Also, for k = 0, A

138 CHAPTER 5. COMPUTATIONAL ENTROPY

becomes equal to 1 and S„ — Sn, and in this case, we recover the more common
definition of encoding over single symbols of a given source.

Definition 5.2.6 (Effective Entropy) We say that a source S has effective entropy
HC(S; n) < g(n) if there exists a (t, k) — entropy sequence (sn) for S such that sn < g(n)
for sufficiently large n.

Similarly, Hc(S;n) > g(n) if for every pair (t,k), every (t,k) — entropy sequence (sn)
for S satisfies sn > g(n).

This definition is very general, since it not only allows the encoder and the decoder
to be probabilistic but it also considers the effect of patterns occurring in a longer
text that would not be detected if the compression acted on each word individually.
For this to be feasible, the definition considers the text has at most a number of
words that is polynomial on the scale parameter n. This makes Hc hard to compare
with the other notions of computational entropy, which are concerned with individual
words. As such, Hc(S;n) is to be compared with Hjao(S*) and E(K\S^)). All these
functions are based on inputs of A times the length of a symbol of S, but Hc is scaled
down by dividing by A. To properly compare these measures, we consider instead the
unsealed version of Hc, that is, A • Hc(S;n).

5.2.2 BSW's Yao­type pseudoentropy (#Ja o)

Definition 5.2.7 Let C be a class capturing the notion of efficiently computable func­

tions. Let S be a random variable representing the output of a random source. For
any two functions (c,d) G C defined as c : [S] —► {0,l}e and d : {0,1}£ —> [S], let
D = {x G S : d(c(x)) — x} and call this the codeset of c and d. Denote by C{£) the
class of all such functions and by V{i) the class of all such D.

Random variable S has computational e­Yao­like entropy at least k, written Hjao(S) >
k, if for all I < k and all D e V(£) it happens that Pr[S E D] < 2l~k + e for
some e > 0.

This definition is often invoked in this chapter. Note that the class C is a parameter
that can be instantiated by several classes. In this chapter we consider two of them:
the class of functions computable in polynomial time, F P , in Theorems 5.3.3 and 5.3.5,
and the class of functions computable in polynomial time with the help of randomness,

5.3. RELATIONS BETWEEN Hc AND HjAO 139

P P T , in Theorems 5.3.7 and 5.3.8. Note that these functions are not restricted to
giving values in {0,1}. The reader should note that the notation for the previous
entropies may be a bit misleading. Despite Hj™ having the word Yao as a parameter,
this notion is due to Barak, Shaltiel and Wigderson. Yao's effective entropy is Hc.

5.3 Relat ions between Hc and Hjao

Given that these two definitions are analogues of entropy and min­entropy, it is
interesting to find if the order relation between them still holds in the computational
setting. That is, is it true that Hj™ < Hc? This section investigates the answer to
this question. We begin by giving a deterministic analog of Hc.

Definition 5.3.1 H^(S;n) is defined as Hc(S;n), with deterministic MA and MB­

It is clear that if a deterministic encoding scheme achieves entropy g(n) for some source
S, then adding randomness to this scheme can only improve the compression, so

Hc(S;n)<H^S;n).

The following lemma will be needed in the sequel:

Lemma 5.3.2 Given any language L over {0, l } < n , it is possible to build another
language L' isomorphic to this such that all words in V have length n. Furthermore,
the isomorphism can be computed and reverted in linear time.

Proof: For any string x G L, define /{0, l } < n ■­> {0,1}" : f(x) = O"­!*!­1^. It is easy
to check that this construction can be made and reverted quickly. Now, it is necessary
to show that all words thus formed are distinct. For any two words £1,2:2 G L of
distinct sizes, /(21) and f(x2) have the leftmost 1 at different positions, so they are
different. For any two distinct strings x­[,x2 of the same size, the prefix appended to
both strings is equal, so f(xi) ^ /(2:2) because x1 ^ x2. □

We give an outline of this section. First, Theorem 5.3.3 relates the deterministic version
of Hc, Yao's effective entropy, with /fJao, the notion of min­entropy. It shows that if
/ ^ (, ¾) is greater than A • g(n) +i +1 for i > 1, then H*(S; n) will be lower bounded
by a fraction of g(n) that approaches 1 exponentially fast as i increases. However, if
i = 0, this result is meaningless, for it simply implies that H% > 0. To solve this case,

140 CHAPTER 5. COMPUTATIONAL ENTROPY

we employ a different technique in Theorem 5.3.5. The result is parallel to that of the
previous theorem , showing that if if/ao(S^) > A • g(n) + 1, then HJ(S;n) is at least
greater than g[n) minus a small factor. Corollaries 5.3.4 and 5.3.6 show that in each
case Hf is greater than an affine function of Hjao. These theorems and corollaries
can be used almost without changes for the randomized version of Hc instead, which
establishes the relation sought in this section.

Theorem 5.3.3 Consider the definition of Yao-type pseudoentropy (Def. 5.2.7) and
instantiate the class C in that definition as F P . If there are a function J : N H IR+
and an integer i > 0 such that Hjao(S^) > A ■ g(n) + (i + 1) for sufficiently large n,
thenHd

c{S-n)> (l-±)g(n).

Proof: The proof is by the counter-positive. Suppose that H^(S;n) < (l — ^-) g(n).
Then, there is a (t, A;)—encoding scheme M = (MA, MB, MQ) that, for sufficiently large
n, satisfies Ln(M;S) < (l — ^-) g(n). Then, for sufficiently large n, this condition is
equivalent to

Y. Pn(x)\MA{n,x)\ < A • M - i J g(n).

Define the set D = {x G S* : \MA(n,x)\ < A ■ g{n)}. Then,

X-(l-^)g(n)>J^px
n(x)\MA(n,x)\>] T px

n(x)\MA(n, x)\

> A • g(n) ■ Pr[SA £ D]

=* Pr[Sn
A £ D] < (l - i) .

This means that Pr[SA eD]> ±. To show that Hjao(S*) < A • #(n) +i + 1, it suffices
to give a pair of functions d, d' G C(\ ■ g(n) + 1) and respective codeset D' such that
PrfS^ G D'] > 2lg^n"+i+1 +£ = i + £. Since every x e D can be compressed to a string
of length at most A • g(n), by Lemma 5.3.2 we can efficiently compute a set D' that is
isomorphic to D and such that every element y G D' has length \-g(ri) + l. The reverse
operation is also efficient. Let f be this isomorphism. Then, let c'(x) = / (MA(W, X))

and (f(y) = MB(f'\y)). Since Pr[SA G D] = Pr[S£ G D'], the theorem follows. D

Corollary 5.3.4 Let g(n) be some function from N to R+ sttc/i í/iaí Hj80^*) = A •
y(n)+(i+l) for some integer i > 0. 7%en, A • H*(S;n) > (l - £) (Hjao(S*) - i - l) .

5.3. RELATIONS BETWEEN Hc AND H) 141

Proof: By Theorem 5.3.3, H%(S;n) > (l ­ £) g(n) ^ A • H?(S;n) > (l ­ £) • A •
^) = (1 ­ ¾ . (^ ­ (5 ^) ­ 2 ­ 1) . D

If i = 0, the last theorem does not say much, since it simply implies that in this case
Hç > 0. We can get a more meaningful bound with a different technique:

Theorem 5.3.5 Consider the definition of Yao­type pseudoentropy (Def. 5.2.7) and
instantiate the class C in that definition as F P . If there is a function g : N \—► R+

such that Hj^iS*) > A • g(n) + 1 for sufficiently large n, then H*{S; n) > g(n) ­ 1/A.

Proof: Fix any efficient deterministic encoding scheme M = (MA, MB, MC). Let c(x)
be the restriction of MA(TI,X) to the domain R = {x G S^ : |M^(n,x)| < A • g(n)}.
Then, d(x) = MB(x). Using Lemma 5.3.2, there are functions d,d' and D = { i G
S* '■ d'(c'(x)) = x} such that all and only elements in R are in D and \c'(x)\ = A • g(n)
for all x E R. Then, by assumption, Pv[X G D] < 2l^+1 = 1/2 ^ Pr[\MA(n,x)\ >
A ■ g(n)] > 1/2, and Ln(M; S) can be estimated:

A­Ln(M;S)= J2p(x)\MA(n,x)\
xesï

> Y,v(x)\MA(n,x)\ + 1/2 ■ A • g{n). (5.1)
xefí

The objective of the proof now is to show a lower bound for Ln(M; S). The worst case
happens when the x £ S„ that have shortest \MA(n,x)\ descriptions have maximal
probability. The first half of (5.1) is studied next.

For any i < A • g(n), let MA(JI, x)\i be the restriction of MA to those strings x that are
transformed into strings of length I. This new restriction is also an efficient coding for
the strings in its domain. The result for other strings is not defined, for example we
can assume they are all transformed into the empty string. Then we have

Pr[\MA{n,x)\ =£}< 2l/2x^n)+1 (5.2)

Px[\MA(n,x)\ <£}< 2l/2Xa(n)+\ (5.3)

the first by the assumption on Hj™ and the second by the same assumption after using
Lemma 5.3.2. We can write ^xeRp{x)\MA(n,x)\ = £ ^ = ¾ 7 ° ^ ■ Pv[\MA{n,x)\ = i}.

To find a lower bound to this sum, we must attribute maximal probability to the lowest
values of i. Respecting bounds (5.2) and (5.3), we find that the maximal value for each
Pr[\MA(n,x)\ = i] must be 2V2A,fl(n)+1. Then, Pr[\MA(n, x)\ < A • g(n)] = \ ­ 2,Jn)+1

142 CHAPTER 5. COMPUTATIONAL ENTROPY

which is as close to the upper bound \ as possible while respecting the assumption on
Hjao. Now,

\­g{n)­l

^p(x)\MA{n,x)\= Yl i­Pr[\MA(n,x)\ = i]
x€R i—0

A­.9W­1 2i

2_y l ' 2A­.?(n)+l
i=0

But then, X­Ln(M; S) > X­g(n) — 1. Since this must happen for any encoding scheme,
it follows that A • Hf{S; n) > X ■ g(n) ­ 1 => #c

d(S; n) > p(n) ­ l/A. D

Corollary 5.3.6 Let g(n) be some function from N to E + such that Hj*0^*)
X ■ g(n) + 1. Then, Hd

c(S]n) > / /£
Y a o(^) ­ 2.

Proof: By Theorem 5.3.5, A • H*(S; n) > X • g(n) ­ 1 = Hjao(S*) ­ 2. D

The previous results concern the deterministic version of Hc. That is because we
have made C = F P . It is commonly accepted today that the class of probabilistic
polynomial time algorithms (PPT) may be a better representation of real­world
efficiency. Letting C equal to that class, the previous results all hold for Hc using
essentially the same proofs.

Theorem 5.3.7 Consider the definition of Yao­type pseudoentropy (Def. 5.2.7) and
instantiate the class C in that definition as P P T . If there are a function g : N t—>■ K+

and an integer i > 0 such that Hjao(S^) > X ■ g(n) + (i + 1) for sufficiently large n,
then HC(S; n) > (l ­ £) g(n).

Theorem 5.3.8 Consider the definition of Yao­type pseudoentropy (Def. 5.2.7) and
instantiate the class C in that definition as P P T . If there is a function g : N i—>■ R+

such that Hjao(S^) > X ■ g(n) + 1 for sufficiently large n, then HC(S; n) > g(n) — 1/A.

The corresponding corollaries also hold. These theorems establish the expected rela­

tion, that up to a multiplicative constant, the effective entropy is at least as large as
Yao­type pseudoentropy.

5.4. RELATIONS BETWEEN Hc AND KT 143

5.4 Relat ions between Hc and Kl

By definition, Yao's effective entropy identifies the probabilistic polynomial encoding
scheme that achieves the best compression. This section shows that despite the
randomness available to the encoding schemes, the average time-bounded Kolmogorov
complexity is still a lower bound for Hc. Since Kl is defined for deterministic Turing
Machines, we first compare Kl with the deterministic version of Hc and then address
the general case.

Theorem 5.4.1 A • H*(S;n) > E(K*{S*)) - 0(1), for some polynomial t(-).

Proof: Let H*(S; n) = g(n) and M = (MA, MB, Mc) be any (r, fc)-encoding scheme
for S that achieves Ln(M; S) = g(n), where r is some positive constant1. Then every
x G S can be computed by MB and a codeword output by M A- Furthermore, these
algorithms all run in time polynomial on n, say q(n). Since MB is fixed, its size is a
constant and therefore so is its shortest description. If we input this to a universal
Turing machine, this is able to decode B's description, say in time s(|M#|), and
simulate it with at most a polynomial increase in its running time. Fix a polynomial
t(n) that upper bounds the running time of the simulation of B. Then, for all x G S*,
Kl(x) < \MA(n,x)\ + KS{MB) = \MA(n,x)\ + 0(1).

But then,

E(K\S*))=Y/Pn(x)Kt(x)

< J2px
n(x)\MA(n,x)\+0(l)

= X-Ln(M;S) + 0(l)
= \-H*{S;n) + 0(l).

Since for all large enough n such an M exists, the theorem follows. D

To allow for probabilistic machines, we consider a program for x that has access to
a quick-pseudorandom generator (PRG), according to the terminology of Nisan and
Wigderson ([NW94]). The existence of such a PRG is equivalent to the existence of
a hard function in EXP . Recall that the class E X P contains all languages that can
be decided within time 2"c, where n stands for the length of the output and c is any
positive integer.

1 Recall that this defines the probabilities of error in the operation of algorithms MA, MB or Mc-

144 CHAPTER 5. COMPUTATIONAL ENTROPY

Theorem 5.4.2 Fix a (r, k) —encoding scheme (MA', MB] MC) for S as guaranteed by
the definition of Hc(S;n), with r > 2 and let q(n) > v2n be a polynomial upper
bounding the execution time of these algorithms on input (n; •).

If there is a function f : {0,1}* i—>■ {0,1} in E X P such that for some constants
k,c > 0 and large enough n with ncl2 > q(n), for all circuits Cn of size at most nc,
PT[C(X) f /(z)] > (nc)-k, then A ■ HC(S; n) > E(/r*(S*)) - 0(1), for some polynomial
t(-) (to be defined in the proof).

Proof: Since MB is a probabilistic algorithm that runs in time q(n), there is a
probabilistic circuit CB of size at most q(n)2 that computes exactly like MB using
at most q(n) random bits.

By the construction of [NW94], the existence of f implies that there is a function G :
logn (-> q{nf such that for any circuit Cn of size at most q(n)2, | Pr r6r0 n^n)" [Cn(r) =
1] - Pr2€{0,i}iogn[Cn(G(^) = 1]| < l/q(n)2.

Let PMB(y) be the probability that MB(n;y) does not output the correct source
element for the codeword y. By definition, PMB < l/nT and by construction this
is the probability that at least one bit in the output of CB is wrong. Let CB be a
circuit that returns the ith bit of CB • This CB is of the same size as CB and returns a
boolean function. By hard-wiring y in it, we get a circuit CB of size q(n)2 that takes a
q(n)—bit input (by ignoring the rest of the random tape) corresponding to the random
bits, and by the definition of G, | Prre{o,i}9(n)[Cs)2/(

r) = 1] ~ ^Tze{o,iyasn[CBy(G(z)) =
1]| < l/q(n)2. This implies that the probability that each CB is wrong when using
pseudoramdoness is at most l/nT + l/q(n)2. By the union bound, the probability that
CB, and therefore MB, outputs a wrong element when given q(n) pseudorandom bits
output by G is at most n ■ (l /nT + l/q(n)2) < 1/n + 1/2. This means there is at least
one string in the range of G that succeeds.

Let this string be w. Then, by computing MB(n; MA[n,x)) with randomness G(w),
we produce x. We can give a program for x accordingly, by joining all the pieces. The
generator G might be too big to give explicitly, since it depends on n, so we produce
it on the fly, instead. We give the code of MB explicitly as \MB\, because for n large
enough MB should be considered a constant. Finally, we have to give the random seed
w and the output of the encoder. We leave the latter for the end of the program so
that it does not need to be self-delimited. The seed, however, must be encoded so
that the program can separate it from its surroundings, and we achieve it by using
a standard encoding that doubles the number of bits used. Both G can be produced

5.5. RELATION BETWEEN HjAO AND KT 145

and G(w) be computed in time O (poly (n)). Let p(n) be a polynomial upper bounding
these times. Then,

K\x) < \MA(n,x)\ + 2\w\ + Kp(G) + \MB\+ 0(1)=½

K\x) < \MA(n,x)\ + 21ogn + 0(l)

where t(n) is a polynomial upper bounding the time necessary to produce G, execute
G(w) and run MB, for a maximum of 2p(n) + q(n), and we lumped KP(G) and \MB\
in one constant term.

Therefore, we get A • HC(S; n) > £(#<(£*)) ­ O(logn). □

5.5 Relat ion between Hjao and K*

The objective of this section is to analyse whether a meaningful relationship can be
found between Yao­type pseudoentropy and the average value of Kl(X). To begin, we
give a relaxation of Hjao that can be compared to E(Kl(X)).

Definition 5.5.1 Consider the definition of Yao­like pseudoentropy (Def. 5.2.7). Let
c,d be a pair of computable functions as before, but only d is required to belong to C.
Let T>+ be the corresponding class of codesets.

A random variable X has inefficient computational Yao­type pseudoentropy at least k,
written H^+(X) > k, if Pr[X G D] < 2^k + e for alii < k and all D G V+(í).

This definition includes at least all the functions allowed by the definition of ^^(X).
Thus if a certain property holds for all the functions allowed by Definition 5.5.1, then
it also holds for all the functions allowed by Definition 5.2.7. Hence the following
lemma:

Lemma 5.5.2 For any random variable X, the following holds: Hjao+(X) < ^""(X).

The relation between i?7ao+ and E(Kt(X)) can be shown by a theorem that uses the
same technique of Theorem 5.3.3.

Theorem 5.5.3 Consider the class C referred in Definition 5.5.1 and let C = F P .
Then, for any integer i > 0, ifHjao+(X) > k+i it follows that E(Kt(X)) > (l ­ £) k
for some polynomial t(­).

146 CHAPTER 5. COMPUTATIONAL ENTROPY

Proof: Let c(x) be a function that returns the shortest program for x that runs in
time i(|x|), i.e., \c(x)\ = Kl{x). Let d be the corresponding decoding function d(y),
which simply consists of executing y in the reference universal Turing machine. Define
D = {x E X : \c(x)\ < k} and let c'(x) be a function that takes c(x) and expands the
result to exactly k bits by Lemma 5.3.2. The respective decoder function d'(y) first
recovers c(x) from y and then executes d on the result.

We prove the counter-positive of the theorem statement. Suppose that E(Kt(X)) <
(1 _ £) fc. Then, (1 - i) fc > E . e x P O W *) > E* ex\pK*)|c(z)l > * ■ M * £ £>]
so

Pr[X G D'] = Pr[X 6 D] > I = J ^ . (5.4)

The function d is efficient, because it only has to run a universal Turing machine for
a polynomial number of steps. Then, d' is also efficient, which implies, together with
(5.4), that if£

Yao+(X) < k + i. U

If the inverse implication were true, that is, if a large expected value of Kolmogorov
complexity implied a large value of Hja,0+(X), then this would imply a lower bound
to Hjao(X) and we'd be able to relate E{K\X)) to Hjao{X) . Unfortunately, that is
not the case.

Example 2 Consider a set of binary strings of length at most n > k. Let b be the
length of the shortest program accepted by the reference Turing machine. Let X be
a random distribution over this set with the following associated probability function,
where t(-) is some fixed polynomial:

2b+1 + 1
Pr[tf(aO = b} = — £ - ,

Pr[K*(x) G { 0 , 1 , . . . , b - 1, b + 1 , . . . , k - 1}] = 0,
26+1 + 1

Pr [^ (x) > k] = 1 - —£-,

for some large enough k.

We give a randomized algorithm that outputs samples according to this distribution.
It generates a random number between 0 and 1 and if it is at most (26+1 + l)/2fc it
runs the shortest program accepted by the reference Turing machine for t(n) steps,
outputting whatever this program produces. If not, then the program produces some
string y of length n at random and then computes Kl(y). If this is greater than k, the
program outputs y, otherwise it generates a new string and repeats the process. The

5.5. RELATION BETWEEN HjAO AND KT 147

theorem of incompressibility guarantees that there are strings with complexity at least
k and that the probability of generating one at random increases exponentially as k
gets smaller than n.

Consider the encoding scheme that transforms each string x in its shortest program,
and let £ = b. The corresponding codeset D has only one string, but Pr[x G D] —
(26+1 + l)/2fc > 272fc­x soHjao+{X) < k­1. However, E(K*(X)) >k­(l­ ^ ^) +

b . i^±l\ >k­ H%1+1), which for k > 2b+1 + 1 is greater than k ­ 1.2

This process can be generalized for the following distribution

2b+1 + 1

PrlK'ix) E { 0 , 1 , . . . , b ­ 1, b + 1 , . . . , k ­ 1}] = 0,
26+1 + 1

P r [^ (x) >/? .*] = 1 ­ ­ ^ ^ ­ ,

for appropriate k. Then, H^°+(X) <k­abut E(K\X)) > (5k­ [\ ­ | S ^ V which
for P > 1 grows to be arbitrarily larger than k — a.

The results in the previous sections can be summed up in the following inequalities,
up to the approximations shown in the Theorems:

HJao+(Xx) < Hj»°(Xx) < A • HC(X)

Hj™+(XX) < E{K\XX)) < A • HC{X).

It remains an open question to find the relation between Efá^X)) and Hj'^lX).
As shown later, for the universal distribution m*, E(Kt{X)) is markedly superior to
Hjao(X), but there can be other distributions for which the relation is inverted.

2This estimate is overly conservative. The least k for which the former fraction is over k — 1
can be found with the help of Lambert's W function (see [CGH+96]) to be the first integer above
­w (zln2 'l

\n2+1+ ■ Since — W_i(—x) + ln— W_i(—x) = lnx, and for x > 0 the term lnx is always less
than x/2, we have for values of x in (0,1/e] that 0 < —W­i(­x) < ­ 2 l n x . Then, the fraction above

is upper bounded by ^—±^" < 26 + 4 for 6 > 1, after some manipulation. So, the least k for
which the example works is at most 2b + 4. We note the logarithms here are natural logarithms
instead of using base 2.

148 CHAPTER 5. COMPUTATIONAL ENTROPY

5.6 Relations for Specific Distributions

This section analyses the uniform and the m* distributions. Throughout this section,
Un denotes the uniform distribution over binary strings of length n.

5.6.1 Uniform Distribution

Theorem 5.6.1 Let X be a uniformly distributed random variable over the set {0, l } n .
Then, HjAO{X) = n.

Proof: First we show that Hj30^) > n. In fact, for every pair of functions c,d E C(£)
the set D — {x e X : c(d(x)) — x] has at most 2£ different words. Since all of them
have probability equal to 2~n, we get Pr[X € D] = \D\/2n < 2l l2n. Then by definition,
Hj™(X) > n.

To prove the converse, we have to show that there is some £ < n + 1 and a pair of
functions c, d G C{£) such that for D = {x G X : c(d(x)) = x}, Pr[X E D] > 2lj2n+x.
There are exactly 2n strings in this distribution, all of them with length equal to n.
Then we can code them by the identity function. Therefore, \D\ = 2n and Pr[X e
D] = 1 > 2n /2n + 1 . Then, Hj^iX) < n + 1. D

Next we prove a similar result for Hc. First, we state the following lemma, derived
from the fact that K*(s|n) < n + 0(1), for any 5 G {0, l } n .

Lemma 5.6.2 For any ra,ndom variable S over binary strings of length at most n,
E(K\S\n)) < n + 0 (l) .

Theorem 5.6.3 Let X be a uniformly distributed random variable over {0, l } n . Then,
Ex^Un{K\X\n)) = e(n).

Proof: Lemma 5.6.2 shows Ex^un(Kt(X\n)) < n + 0(l). Now we prove the converse
by giving a lower bound for Ex~un(-K"*(X\n)).

It is known that JF£T*(ÍC|TÍ) < n + 0(1), where n = \x\, so we can write E(Kt(Un)) =
w Z)r=o° * ' /(*) w n e r e /(«) is ^ e number of strings a; with ^ (x l n) = i This sum is
minimum when the complexities if*(a:|n) are minimum, this is, when we exhaust the
programs of short length first. This is done by considering that a string has complexity
I only if there are distinct strings using up each of the programs of length less than

5.6. RELATIONS FOR SPECIFIC DISTRIBUTIONS 149

I. We consider the worst case where the set of programs is not prefix-free and so all
programs of each size can be used. In this scenario, there are 2l programs of size i.
Thus, by Lemma 2.3.1

Ex^Un(K\X\n))>±(n + i;£i-2i\

> i • (2" • {n - 2) + 2) > n - 2.

D

The next corollary follows from Theorems 5.6.3 and 5.4.2.

Corollary 5.6.4 Let X be a uniformly distributed random variable over {0,1}71. If
there are hard junctions in EXP , then Hc(X;n) = 0(n) .

The previous theorems show that for the uniform distribution, all three notions are
asymptotically equivalent.

5.6.2 Universal Distribution ra*

This section analyses the relation between these notions under the universal distribu­
tion m*.

Definition 5.6.5 The universal distribution m* is defined as m'(a;) = 2K ^ (see
[LV97], pg 506).

This distribution is computable in time t{n)2n+1 for n = \x\. In the remainder of this
section, we consider only the restriction to binary strings of length n, m*t(x). Unlike
the case for the uniform distribution, there is a noticeable difference between / / ^ (X)
and Hc(X;n) when X is distributed according to m^.

Theorem. 5.6.6 Let X be a random variable over {0,1}" with Pv[X = x] = m^x)
for some polynomial t(-). Then, for any constant d > 0, Hj,da(X) < 2c'logn + 1.

Proof: Let b = 2d log n + 1. We find some £, and a pair of functions / , g G C(i) such
that for D = {x e X : g(f(x)) = x}, it happens that Pv[X e D] > 2726 + e.

150 CHAPTER 5. COMPUTATIONAL ENTROPY

Consider the following algorithm. When f receives x G {0,1}", it executes some
universal prefix­free Turing machine U with all programs pi of length up to d log n
in parallel for at most t(n) steps. If there is at least some i such that U1^) = x,
then f(x) is the shortest such program. Otherwise, it returns the empty string. This
program runs in time polynomial in n and returns some shortest prefix­free program
for x that runs in time t(n). Therefore, \pi\ = Kl(x). The set D associated with this
function contains only and all strings x of size n with Kl{x) < c'logn. Since all these
strings form a prefix­free code, they can be padded with zeroes so that they all have
length c'logn.

There certainly is at least one string in this set, for example, the string x0 composed
of n zeroes has ^(XQ) < logn + 0(1). Therefore, \D\ > 0. For all x G D, Kl{x) <
c'logn <& m^(x) > l/nc ' . Then Pr[X G D] > \D\ / nc' > 1 / nc'. Let I = c'logn.
Then, Pr[X G D] > l/2€. Since b = 2£ + 1, it follows that 1/2* > 2V26. Therefore,
Hjao(X) <2c'logn + l.

U

It is known that m* (X) dominates all distributions P{X) computable in time t(n),
where t'(n) — nt(n) and tin) is a polynomial, as stated in Theorem 2.9.27. This can
be used to prove the next theorem:

Theorem 5.6.7 If there is a t—time computable distribution X with probability den­

sity function P(x) for some polynomial t(n) such that H J110 {X) < f(n), then Hjao{Y) <
f{n) + Kl (P) + 0(1), where t(­) is a polynomial, f(n) = nt(n) and Y is a random
variable with the same support of X but with Pr[Y = x] = mj,(x).

Proof: By definition, there are functions c : X —> {0, l}e and d : {0, l}e —> X for
some £ < f(n) such that for D = {x G X : d(c(x)) — x}, 2~̂ xer> P(x) > 2^1 + e­

Since P is t—time computable, then P(x) < m* (x) ■ 2Cp, for cP = Kl (P) + 0(1)
as in Theorem 2.9.27. Therefore, Y,x&D

mt'(x) > ^ L D ^ 1) > 2n*+cP ■ T h e n
5

HJ°°(Y) < f(n) + cP = f(n) + K*'(P) + 0(1). D

It is possible to prove a result for Hc opposite to Theorem 5.6.6 that is a consequence
of the following Theorem:

Theorem 5.6.8 For the universal distribution m', £!x~m*l{^(Xln)) = 0(n) .

Proof: By Lemma 5.6.2 we have Ex­m^K^Xln)) <n + 0(1) .

5.6. RELATIONS FOR SPECIFIC DISTRIBUTIONS 151

Consider the minimal prefix­free programs for all strings of length n. It is known
that AT*(a;|n) < n + 0(1). Let 8 be the constant represented by 0(1). We can
write EXn.1ati(K

t(X\n)) = Y^=o ¥ " / (0 w h e r e /(0 i s t h e n u m b e r of strings that have
K^x) = i. Since 2i is the dominant term in the fraction, the minimum sum is achieved
when all the strings have complexity as large as possible. There are 2" strings of length
n, so assume the worst case f(i) = 2n for i = n + S and 0 everywhere else.

The total probability considering this arrangement is ^ < 1, which means that
actually there must be at least one string with complexity lower than n + S to
compensate for the missing probability. This provokes an increase in the sum, so
this arrangement gives a lower bound to Ex^mtri{Kt{X\n)):

Ex^n(K\X\n)) > 2"/2n + á ■ (n + 6) = fl(n).

n

Corollary 5.6.9 Let t(­) be some polynomial and X be a random variable over {0,1}"
with PrLY = a;] = tn^(x). If there are hard functions in EXP, then HC(X; n) = 0(n).

The same idea of the proof of Theorem 5.6.6 can be used to show the separation
between HC(X; n) and metric type pseudoentropy for X distributed according to m^.
We first give the definition presented in Lemma 3.3 of [BSW03] and then list the
corresponding theorem.

Definition 5.6.10 Let X be a random variable over a set S. For every class C which
is closed under complement and for every k < log \S\ ­ 1 and e, H™etnc(X) > k if and
only if for every set D whose characteristic function belongs to C, Pv[X E D] < ^ F + £­

Theorem 5.6.11 For any constant d > 0, and some polynomial t(­), and a random
variable X such that Pv[X = x] = r<(x) , H™etTic(X) < c'logn + 1.

Proof: The proof is similar to the one for Theorem 5.6.6, and it even uses some
constructions from it.

Let C — P and C{&) be the restriction of this class as outlined in the definition of
Yao­type pseudoentropy (Def. 5.2.7). Now, consider the pair of functions c, d G C{í)
and the corresponding codeset D given in that proof.

152 CHAPTER 5. COMPUTATIONAL ENTROPY

We build a predicate A E C such that {x : A(x) = 1} = D. For that, let A(x) evaluate
d(c(x)) and output 1 if and only if the result is x. Since both c and d are efficient and
deterministic, so is A(x). Then, all and only elements in D satisfy A. As was seen in
the proof of Theorem 5.6.6, Pr[X G D] > \D\/nc'. Plugging c'logn for k in Definition
5.6.10, we get that H^etric(X) < c'logn.

□
We give a result for Hc parallel to that of Theorem 5.6.7.

Theorem 5.6.12 Suppose there is a polynomial­time computable distribution X such
that HC(X; n) > g(n). Let t(­) be a polynomial and Y be another random variable with
the same support as X but such that Pr[Y = x] = m^(x). Then Hc(Y;n) > g(n)/2Cp,
for cP = Kl'(P) + 0(1) and t'(n) = nt(n).

Proof: For any (t, k)—encoding scheme M = (MA, MB, MC) for X, we have, by defi­

nition, that Ln(M­X) > g(n) <& S ^ M L ^ M i > g(ny Recall that x = (x1}... ,xx) is
a word distributed according to Xx. Since X is polynomial­time computable, then for
cP = Kl\P) + 0(1), m*(xi) > pn{xi)/2cr & K*(Xi) < log 1/^(¾) + cP. The proof
of this theorem in [LV97] uses the description of P to reconstruct the distribution and
thence the string that is sought.

This reasoning can also be applied to i as a whole, but now the reconstruction of P
need be done only once. Thus, cp is not multiplied by A. Therefore,

Kl\x) < log l/px
n(x) +cP^ u£(x) > P

X
n(x)/2Cp

and so

and the theorem follows. □

The results in this section show that there is a computable distribution that clearly
separates Hc from H J™ and especially H^etric. Since i^etric j g equivalent to HILL­type
pseudoentropy, this establishes a separation between pseudoentropy and the maximum
compressibility of a samplable source. This result is similar to Wee's, which is relative
to an oracle, and depends on the existence of good PRGs. This assumption is needed
only because the coding function may be a probabilistic algorithm. If we allow only
deterministic encodings, the result follows unconditionally.

5.6. RELATIONS FOR SPECIFIC DISTRIBUTIONS 153

It seems reasonable to believe that the average of bounded Kolmogorov Complexity is a
strict lower-bound for the maximum compressibility of a source. Yao's effective entropy
cannot be easily computed. We'd have to consider all possible encoding schemes and
run them over all strings to compare their averages. The problem is that the number
of possible schemes is infinite. However, Kolmogorov Complexity theory gives us a
framework for computing this value, if one can spend a large amount of time: we
can use the standard trick of, for every string in the support of S^, enumerating all
programs of size up to X-n in dovetailing fashion, from the shortest to the longest, and
running each of them only up to a fixed number of steps polynomial on n. As soon
as the shortest program is found for x, keep its size and advance for the next string.
This is a finite computation, since the number of strings, of programs and execution
time aro all finite quantities. Although it is not our aim in this thesis to give support
to some measure or other of computational entropy or maximum compressibility, we
think the above favours the expected value of time-bounded Kolmogorov complexity
as a good candidate for the true measure of maximum compressibility of a random
source.

154 CHAPTERS. COMPUTATIONAL ENTROPY

Chapter 6

Conclusion and Open Problems

This thesis dealt essentially with the study of individual instances of cryptographic
algorithms. This work follows naturally from work began by Sophie Laplante, Luis
Antunes and Liliana Salvador, which culminated in a Master's Thesis and the paper
[ALPS07]. This paper presents several evolutions regarding the previous thesis and
forms the core of Chapter 3 of the present work.

We have begun with the proposal of a notion of unconditional security of an individual
instance and analysed three cryptographic systems that are known to be uncondi­
tionally secure. For each of them, we showed that if sufficiently many instances are
secure, then the whole system is almost unconditionally secure under the uniform
distribution, where this "almost" is measured by a constant that indicates how many
bits the system leaks. This is a generalization of the notion of unconditional security,
where this constant is exactly 0.

There are at least two ways in which this result can be improved. The first, it to
make this parameter relative instead of absolute. To say that a system leaks 10 bits
for ciphertexts that are 100-bit long is not the same as saying that the system leaks
10 bits for ciphertexts that are 106 bits long. More importantly, we can easily see
that for certain unconditionally secure systems there will always be some instances
that are individually insecure, for example, when the ciphertext is exactly equal to
the plaintext. Then, for the uniform distribution, our approach will never prove a
system to be absolutely secure. However, there are many questions that still need
to be answered if we do not restrict ourselves to the uniform distribution. What
happens to the system as a whole under a distribution that gives 0 probability to
those instances that are insecure? In general, what is the average information leaked

155

156 CHAPTER 6. CONCLUSION AND OPEN PROBLEMS

for distributions that are not random enough, can we get better assurances than with
the probabilistic proof of security? Can we determine a minimum randomness that still
allows for a negligible amount of individually insecure instances? Would the traditional
probabilistic proof of security still be valid for such a system? Is it possible to give a
lower bound for the average information leaked by individual instances running over
all computable distributions? Still regarding Chapter 3, there is still some work to
do in order to adapt the analysis of authentication systems given to authentication
systems with secrecy. We believe a parallel analysis is possible, resulting in theorems
that would be formally very similar to the ones given in this thesis. Also, the parallel
highlighted between the impersonation and the substitution attack could be developed
to provide results for a generalized deception attack of any level.

We also showed how commitment systems are composed of cipher and authentication
systems. There is some more work possible in here: first and foremost, to analyse
the case of non optimal commitment systems. It would be interesting to see if
such commitment systems can still be decomposed in different variants of cipher and
authentication systems. The level of security and optimality of the different systems
can be parameterized and it would be interesting to see how these parameters would
be inter-related. Another interesting question is to see if it is possible to combine other
primitives to produce commitment systems, instead of the cipher and authentication
systems used here. For example, using multi-receiver authentication schemes where
one party authenticates simultaneously to more than one verifier.

In Chapter 5, we analysed two notions of computational entropy and tried to establish
their relation with the average value of Kl. Our aim was to reach a theorem similar to
Theorem 2.9.30 for the computational case. We have established one of the directions,
but the other still remains as an open problem. The relation between Kl and Hc

is dependent on a complexity assumption, namely the existence of one-way functions.
The aim of this analysis is to have a characterization of computational systems parallel
to that of unconditionally secure systems. Yao had this idea in [Yao82] when he
proposed to characterize security of a system with his notion of effective entropy, but
he gave no proof. It remains as an open question for the future to give a detailed proof
that security of a computational system can be written in terms effective entropy. After
this step, if the computational parallel of Theorem 2.9.30 held, we should be able to
characterize such systems at the instance level based on time-bounded Kolmogorov
complexity.

This problem is still unsolved, but another approach is possible. If there is a way
to show that for weak keys of a public-key ciphersystem the expected value of the

157

polynomial-time information given by the ciphertext about the plaintext is high, then
it might be possible to show that a system where this information is low, when
measured over a uniform distribution of all plaintexts, ciphertexts and keys, is se­
cure against all adversaries of a certain kind. This would replace a computational
assumption by an assumption regarding a computable value, even though this value
could take a very long time to compute.

The basic idea in the analysis of instance security is to relate the security of the system
to the expected value of the information in the ciphertext about the plaintext. This
notion of mutual information does not easily extend to the polynomial time-bounded
domain because there seems to be no symmetry of information in this setting. If there
were, then there could be no one-way functions. In fact, suppose that / is a one­
way function. By definition, x gives all the necessary information to compute f(x)
in polynomial time. If symmetry existed, then f(x) would have a similar amount of
information about x and since f(x) can be considered of the same size of x without loss
of generality, then x would be computable from f(x) in polynomial time. Nevertheless,
we think that time-bounded information in x about y merits further study to elicit its
properties. In particular, it seems intuitive that the information in y about x that we
can obtain in polynomial time should be at most the information in y about x without
time limits. However, the simple generalization of using time-bounded Kolmogorov
complexity on both summands in the expression of information, although it is the
most natural, does not seem to have this property. Consequently, we feel that further
study should be devoted to this concept.

There is a relation between public-key cryptography, one-way functions and pseudo­
random generators. Public-key is possible only if trapdoor one-way functions ex­
ist, and these are a subset of standard one-way functions. If these exist, then so
do pseudorandom generators and reciprocally. Further work should be devoted to
characterizing one-way functions and pseudo-random generators with time-bounded
Kolmogorov complexity. We would be very happy if these characterizations could
preserve the distinction between weak- and strong-one way functions and the following
equivalence results: that if weak one-way functions exist so do strong one-way functions
(the converse is obvious) and that if one-way functions exist so do pseudo-random
generators and vice-versa.

158 CHAPTER 6. CONCLUSION AND OPEN PROBLEMS

Bibliography

[AB07] Sanjeev Arora and Boaz Barak. Computational complexity:
A modern approach. Draft version available online at
http://www.cs.princeton.edu/theory/complexity/, 2007. last checked
on 08 Oct 2007.

[AH97] Ian Anderson and Iiro Honkala. A short course in combinatorial designs,
1997. last checked on 08 Oct 2007.

[ALPS07] Luís Antunes, Sophie Laplante, Alexandre Pinto, and Liliana Salvador.
Cryptographic security of individual instances. In Proceedings of I CITS
2007, Second International Conference on Information Security, pages
205-220, 2007.

[Ant02] Luís Filipe Coelho Antunes. Useful Information. PhD thesis, Faculdade
de Ciências da Universidade do Porto, 2002.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. In National Computer
Conference Proceedings, volume 48, pages 313-317, 1979.

[Blu82] Manuel Blum. Coin flipping by telephone - a protocol for solving
impossible problems. In COMPCON, pages 133 137, 1982.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM J. Comput., 13(4):850-
864, 1984.

[BMSW02] C. Blundo, B. Masucci, D.R. Stinson, and R. Wei. Constructions and
bounds for unconditionally secure non-interactive commitment schemes.
Designs, Codes and Cryptography, 26(1-3):97-110, 2002.

[Bri84] Ernest F. Brickell. A few results in message authentication. Congressus
Numerantium, 43:141-154, 1984.

159

http://www.cs.princeton.edu/theory/complexity/

160 BIBLIOGRAPHY

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational
analogues of entropy. In RANDOM-APPROX, pages 200-215, 2003.

[CDS99] Colbourn, Dinitz, and Stinson. Applications of combinatorial designs to
communications, cryptography, and networking. In Surveys in Combina­
torics, 1993, Walker (Ed.), London Mathematical Society Lecture Note
Series 187, Cambridge University Press. 1999.

[CGH+96] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and
D. E. Knuth. On the lambert w function. Advances in Computational
Mathematics, 5:329-359, 1996.

[Cha66] Gregory J. Chaitin. On the length of programs for computing finite
binary sequences. J. ACM, 13(4):547-569, 1966.

[Cha75] Gregory J. Chaitin. A theory of program size formally identical to
information theory. J. ACM, 22(3):329-340, 1975.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, 1991.

[Cut80] Nigel Cutland. Computability, an introduction to recursive function
theory. Cambridge University Press, 1980.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography.
IEEE Trans. Info. Theory, IT-22(6):644-654, Nov 1976.

[dS90] Marijke de Soete. Bounds and constructions for authentication-secrecy
codes with splitting. In Advances in Cryptology - CRYPTO '88,
Proceedings, volume 403, pages 311-317. Springer-Verlag, 1990. Lecture
Notes in Computer Science.

[GB01] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography,
available online at http://www.cs.ucsd.edu/users/mihir/papers/gb.pdf,
aug 2001. last checked on 08 Oct 2007.

[Gác,88] P. Gács. Lecture notes on descriptional complexity and randomness,
1988. last checked on 08 Oct 2007.

[GolOl] Oded Goldreich. Foundations of Cryptography, Volume I: Basic Tools.
Cambridge University Press, 1st edition, 2001.

http://www.cs.ucsd.edu/users/mihir/papers/gb.pdf

BIBLIOGRAPHY 161

[GS85] Andrew Goldberg and Michael Sipser. Compression and ranking. In
STOC '85: Proceedings of the seventeenth annual ACM symposium on
Theory of computing, pages 440-448. ACM Press, 1985.

[GV04] Peter Grunwald and Paul Vitanyi. Shannon information and kolmogorov
complexity, 2004.

[HILL99] Johan Hástad, Russel Impagliazzo, Leonid Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput.,
28(4):1364-1396, 1999.

[HLR07] C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. Conditional computational
entropy, or toward separating pseudoentropy from compressibility. In
Eurocrypt 2007, pages 169-186, 2007.

[Kah96] David Kahn. The Codebreakers. Scribner, 1996.

[Kat02] Jonathan Katz. Lecture notes for cmsc456, introduction to
cryptography, university of maryland. available online at
http://www.cs.umd.edu/ jkatz/TEACHING/crypto_F02/lectures.html,
2002. last checked on 08 Oct 2007.

[Kle52] S.C. Kleene. Introduction in metamathematics. Van Nostrand, Amster­
dam, 2nd edition, 1952.

[Kol65] A. N. Kolmogorov. Three approaches to the quantitative definition of
information. Problems of Information Transmission, 1(1):1 7, 1965.

[Lap97] Sophie Laplante. Kolmogorov Techniques in Computational Complexity
Theory. PhD thesis, The University of Chicago, dec 1997.

[LN83] Rudolf Lidl and Harald Niederreiter. FINITE FIELDS. Cambridge
University Press, 1983.

[LR05] Troy Lee and Andrei E. Romashchenko. Resource bounded symmetry of
information revisited. Theor. Comput. Sci., 345(2-3):386-405, 2005.

[LV97] Ming Li and Paul M. B. Vitányi. An introduction to Kolmogorov
complexity and its applications. Springer-Verlag, New York, 2nd edition,
1997.

[Mas86] J. L. Massey. Cryptography - a selective survey. Digital Communications,
pages 3-21, 1986.

http://www.cs.umd.edu/

162 BIBLIOGRAPHY

[MauOO] Ueli Maurer. Authentication theory and hypothesis testing. IEEE
Transactions on Information Theory, 46(4):1350-1356, 2000.

[MV04] D. McGrew and J. Viega. The galois/counter mode of operation (gem),
2004.

[NMQO+03] Anderson C. A. Nascimento, Jõrn Mùller-Quade, Akira Otsuka, Goichiro
Hanaoka, and Hideki Imai. Unconditionally secure homomorphic pre-
distributed bit commitment and secure two-party computations. In ISC,
pages 151-164, 2003.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Syst.
Sci, 49(2):149-167, 1994.

[Pin07] Alexandre Pinto. Comparing notions of computational entropy. In Third
Conference on Computability in Europe, CiE 2007, Siena, Italy, June
2007, Proceedings, volume LNCS 4497 of Lecture Notes in Computer
Science, pages 606-620. Springer, 2007.

[PSMA07] Alexandre Pinto, André Souto, Armando Matos, and Luís Antunes.
Commitment and authentication systems. In Proceedings of ICITS 2007,
Second International Conference on Information Security, pages 3-23,
2007.

[Riv99] Ronald L. Rivest. Unconditionally secure commitment and oblivious
transfer schemes using private channels and a trusted initializer, 1999.
last checked on 08 Oct 2007.

[Sal05] Liliana Salvador. Segurança absoluta em sistemas de cifra de chave
simétrica. Master's thesis, Faculdade de Ciências da Universidade do
Porto, 2005.

[Sch96] Bruce Schneier. Applied Cryptography. Wiley Computer Publishing, 2nd
edition, 1996.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379-423 and 623-656, Jul and Oct 1948.

[Sha49] O E. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal, 28(4):656-715, 1949.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613,
1979.

BIBLIOGRAPHY 163

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of
extractors. Bulletin of the EATCS, 77:67-95, 2002.

[Sim84] G. J. Simmons. Message authentication: a game on hypergraphs.
Congressus Numerantium, 45:161-192, 1984.

[Sim85] G. J. Simmons. Authentication theory/coding theory. In Advances in
Cryptology, Proceedings of CRYPTO '84, Santa Barbara, California,
USA, August 19-22, 1984, Proceedings, volume 196, pages 313-317.
Springer-Verlag, 1985. Lecture Notes in Computer Science.

[Sim88] G. J. Simmons. A natural taxonomy for digital information authentica­
tion schemes. In Advances in Cryptology - CRYPTO '87, A Conference
on the Theory and Applications of Cryptographic Techniques, Santa
Barbara, California, USA, August 16-20, 1987, Proceedings, volume
293, pages 269-288. Springer-Verlag, 1988. Lecture Notes in Computer
Science.

[Sol64] R. J. Solomonoff. A formal theory of inductive inference, part i.
Information and Control, 7(1):1-22, 1964.

[SS63] J.C. Shepherdson and H.E. Sturgis. Computability of recursive functions.
J. ACM, 10:217-255, 1963.

[Sti87] Douglas R. Stinson. Some constructions and bounds for authentication
codes. In Advances in Cryptology - CRYPTO '86, Proceedings, volume
263, pages 418-425. Springer-Verlag, 1987. Lecture Notes in Computer
Science.

[Sti88] Douglas R. Stinson. A construction for authentication / secrecy
codes from certain combinatorial designs. In Advances in Cryptology
- CRYPTO '87, A Conference on the Theory and Applications of
Cryptographic Techniques, Santa Barbara, California, USA, August 16-
20, 1987, Proceedings, volume 293, pages 355-366. Springer-Verlag, 1988.
Lecture Notes in Computer Science.

[Sti92] Douglas R. Stinson. Combinatorial characterization of authentication
codes. In Advances in Cryptology - CRYPTO '91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 11-15, 1991, Proceedings, volume 576, pages 62-72. Springer-
Verlag, 1992. Lecture Notes in Computer Science.

164 BIBLIOGRAPHY

[Sti02] Douglas R. Stinson. Cryptography: Theory and Practice. Chapman &
Hall / CRC, 2nd edition, 2002.

[TreOO] Luca Trevisan. Introduction to modern cryptography, available online
at http://www.cs.berkeley.edu/ luca/notes/cryptonotes99.pdf, jan 2000.
last checked on 08 Oct 2007.

[Tur63] A.M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proc. Lond. Math. Soc, 42, 43:230-265 (42),
544-546 (43), 1963.

[TVZ05] Luca Trevisan, Salil Vadhan, and David Zuckerman. Compression of
samplable sources. In CCC 2004, volume 14, pages 186-227, 2005.

[Wee04] Hoeteck Wee. On pseudoentropy versus compressibility. In IEEE
Conference On Computational Complexity, pages 29-41, 2004.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions
(extended abstract). In FOCS, pages 80-91, 1982.

■

" D0R5S

http://www.cs.berkeley.edu/

