110 research outputs found

    A Primer on Reproducing Kernel Hilbert Spaces

    Full text link
    Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.Comment: Revised version submitted to Foundations and Trends in Signal Processin

    Optics for AI and AI for Optics

    Get PDF
    Artificial intelligence is deeply involved in our daily lives via reinforcing the digital transformation of modern economies and infrastructure. It relies on powerful computing clusters, which face bottlenecks of power consumption for both data transmission and intensive computing. Meanwhile, optics (especially optical communications, which underpin today’s telecommunications) is penetrating short-reach connections down to the chip level, thus meeting with AI technology and creating numerous opportunities. This book is about the marriage of optics and AI and how each part can benefit from the other. Optics facilitates on-chip neural networks based on fast optical computing and energy-efficient interconnects and communications. On the other hand, AI enables efficient tools to address the challenges of today’s optical communication networks, which behave in an increasingly complex manner. The book collects contributions from pioneering researchers from both academy and industry to discuss the challenges and solutions in each of the respective fields

    Machine learning for optical fiber communication systems: An introduction and overview

    Get PDF
    Optical networks generate a vast amount of diagnostic, control and performance monitoring data. When information is extracted from this data, reconfigurable network elements and reconfigurable transceivers allow the network to adapt both to changes in the physical infrastructure but also changing traffic conditions. Machine learning is emerging as a disruptive technology for extracting useful information from this raw data to enable enhanced planning, monitoring and dynamic control. We provide a survey of the recent literature and highlight numerous promising avenues for machine learning applied to optical networks, including explainable machine learning, digital twins and approaches in which we embed our knowledge into the machine learning such as physics-informed machine learning for the physical layer and graph-based machine learning for the networking layer

    Frequency Domain Analysis and Design of Nonlinear Systems with Application in Chemical Engineering

    Get PDF

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Detecting language activations with functional magnetic resonance imaging

    Get PDF
    This thesis investigates a number of factors that affect sensitivity to language activations in functional Magnetic Resonance Imaging (fMRI). In the first part, I investigate the impact of experimental design parameters on the ability to detect language activations. These parameters include stimulus rate, stimulus duration, stimulus amplitude, epoch length and stimulus ordering. Crucially, they may affect sensitivity in multiple ways that include neurophysiological, efficiency-mediated and BOLD saturation effects. I illustrate and discuss these effects by presenting biophysical simulations and fMRI studies of single word and pseudoword reading. In addition, I focus on the differential effects of the above parameters in Positron Emission Tomography and fMRI studies. In the second part, I investigate the impact of the analysis used to estimate effects of interest from the data. I compare event-related and epoch analyses and show that, even in the context of blocked design fMRI, an event-related model may provide greater sensitivity than an epoch model. I then address the notion that experimentally-induced effects may be detected not only as task-dependent changes in regional responses but also as changes in connectivity amongst functionally connected regions. These two complementary approaches are motivated by two fundamental principles of brain organisation: functional specialisation and functional integration. I present two fMRI studies investigating the neural correlates of reading words and pseudowords in terms of functional specialisation and functional integration. Furthermore, in both studies I address the issue of inter-subject variability, which may be a critical determinant of sensitivity. Men
    • …
    corecore