376 research outputs found

    A Constrained Hybrid Cramér-Rao Bound for Parameter Estimation

    Get PDF
    In statistical signal processing, hybrid parameter estimation refers to the case where the parameters vector to estimate contains both non-random and random parameters. Numerous works have shown the versatility of deterministic constrained Cramér-Rao bound for estimation performance analysis and design of a system of measurement. However in many systems both random and non-random parameters may occur simultaneously. In this communication, we propose a constrained hybrid lower bound which take into account of equality constraint on deterministic parameters. The usefulness of the proposed bound is illustrated with an application to radar Doppler estimation

    BornĂ© de CramĂ©r-Rao sous contraintes pour l’estimation simultanĂ©e de paramĂštres alĂ©atoires et non alĂ©atoires

    Get PDF
    In statistical signal processing, hybrid parameter estimation refers to the case where the parameters vector to estimate contains both non-random and random parameters. On the other hand, numerous works have shown the versatility of deterministic constrained Cramér-Rao bound for estimation performance analysis and design of a system of measurement. In this communication, we propose a constrained hybrid lower bound which takes into account equality constraints on deterministic parameters. The proposed bound is then compared to previous bounds of the literature. Finally, the usefulness of the proposed bound is illustrated with an application to radar Doppler estimation

    Performance Bounds for Parameter Estimation under Misspecified Models: Fundamental findings and applications

    Full text link
    Inferring information from a set of acquired data is the main objective of any signal processing (SP) method. In particular, the common problem of estimating the value of a vector of parameters from a set of noisy measurements is at the core of a plethora of scientific and technological advances in the last decades; for example, wireless communications, radar and sonar, biomedicine, image processing, and seismology, just to name a few. Developing an estimation algorithm often begins by assuming a statistical model for the measured data, i.e. a probability density function (pdf) which if correct, fully characterizes the behaviour of the collected data/measurements. Experience with real data, however, often exposes the limitations of any assumed data model since modelling errors at some level are always present. Consequently, the true data model and the model assumed to derive the estimation algorithm could differ. When this happens, the model is said to be mismatched or misspecified. Therefore, understanding the possible performance loss or regret that an estimation algorithm could experience under model misspecification is of crucial importance for any SP practitioner. Further, understanding the limits on the performance of any estimator subject to model misspecification is of practical interest. Motivated by the widespread and practical need to assess the performance of a mismatched estimator, the goal of this paper is to help to bring attention to the main theoretical findings on estimation theory, and in particular on lower bounds under model misspecification, that have been published in the statistical and econometrical literature in the last fifty years. Secondly, some applications are discussed to illustrate the broad range of areas and problems to which this framework extends, and consequently the numerous opportunities available for SP researchers.Comment: To appear in the IEEE Signal Processing Magazin

    Optimized Quantification of Spin Relaxation Times in the Hybrid State

    Full text link
    Purpose: The analysis of optimized spin ensemble trajectories for relaxometry in the hybrid state. Methods: First, we constructed visual representations to elucidate the differential equation that governs spin dynamics in hybrid state. Subsequently, numerical optimizations were performed to find spin ensemble trajectories that minimize the Cram\'er-Rao bound for T1T_1-encoding, T2T_2-encoding, and their weighted sum, respectively, followed by a comparison of the Cram\'er-Rao bounds obtained with our optimized spin-trajectories, as well as Look-Locker and multi-spin-echo methods. Finally, we experimentally tested our optimized spin trajectories with in vivo scans of the human brain. Results: After a nonrecurring inversion segment on the southern hemisphere of the Bloch sphere, all optimized spin trajectories pursue repetitive loops on the northern half of the sphere in which the beginning of the first and the end of the last loop deviate from the others. The numerical results obtained in this work align well with intuitive insights gleaned directly from the governing equation. Our results suggest that hybrid-state sequences outperform traditional methods. Moreover, hybrid-state sequences that balance T1T_1- and T2T_2-encoding still result in near optimal signal-to-noise efficiency. Thus, the second parameter can be encoded at virtually no extra cost. Conclusion: We provide insights regarding the optimal encoding processes of spin relaxation times in order to guide the design of robust and efficient pulse sequences. We find that joint acquisitions of T1T_1 and T2T_2 in the hybrid state are substantially more efficient than sequential encoding techniques.Comment: 10 pages, 5 figure

    A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family

    No full text
    International audienceMinimal bounds on the mean square error (MSE) are generally used in order to predict the best achievable performance of an estimator for a given observation model. In this paper, we are interested in the Bayesian bound of the Weiss–Weinstein family. Among this family, we have Bayesian CramĂ©r-Rao bound, the Bobrovsky–MayerWolf–ZakaĂŻ bound, the Bayesian Bhattacharyya bound, the Bobrovsky–ZakaĂŻ bound, the Reuven–Messer bound, and the Weiss–Weinstein bound. We present a unification of all these minimal bounds based on a rewriting of the minimum mean square error estimator (MMSEE) and on a constrained optimization problem. With this approach, we obtain a useful theoretical framework to derive new Bayesian bounds. For that purpose, we propose two bounds. First, we propose a generalization of the Bayesian Bhattacharyya bound extending the works of Bobrovsky, Mayer–Wolf, and ZakaĂŻ. Second, we propose a bound based on the Bayesian Bhattacharyya bound and on the Reuven–Messer bound, representing a generalization of these bounds. The proposed bound is the Bayesian extension of the deterministic Abel bound and is found to be tighter than the Bayesian Bhattacharyya bound, the Reuven–Messer bound, the Bobrovsky–ZakaĂŻ bound, and the Bayesian CramĂ©r–Rao bound. We propose some closed-form expressions of these bounds for a general Gaussian observation model with parameterized mean. In order to illustrate our results, we present simulation results in the context of a spectral analysis problem

    Cram\'er-Rao bound-informed training of neural networks for quantitative MRI

    Full text link
    Neural networks are increasingly used to estimate parameters in quantitative MRI, in particular in magnetic resonance fingerprinting. Their advantages over the gold standard non-linear least square fitting are their superior speed and their immunity to the non-convexity of many fitting problems. We find, however, that in heterogeneous parameter spaces, i.e. in spaces in which the variance of the estimated parameters varies considerably, good performance is hard to achieve and requires arduous tweaking of the loss function, hyper parameters, and the distribution of the training data in parameter space. Here, we address these issues with a theoretically well-founded loss function: the Cram\'er-Rao bound (CRB) provides a theoretical lower bound for the variance of an unbiased estimator and we propose to normalize the squared error with respective CRB. With this normalization, we balance the contributions of hard-to-estimate and not-so-hard-to-estimate parameters and areas in parameter space, and avoid a dominance of the former in the overall training loss. Further, the CRB-based loss function equals one for a maximally-efficient unbiased estimator, which we consider the ideal estimator. Hence, the proposed CRB-based loss function provides an absolute evaluation metric. We compare a network trained with the CRB-based loss with a network trained with the commonly used means squared error loss and demonstrate the advantages of the former in numerical, phantom, and in vivo experiments.Comment: Xiaoxia Zhang, Quentin Duchemin, and Kangning Liu contributed equally to this wor

    Multi-Axis Identifiability Using Single-Surface Parameter Estimation Maneuvers on the X-48B Blended Wing Body

    Get PDF
    The problem of parameter estimation on hybrid-wing-body type aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aero- dynamic control effectors that act in coplanar motion. This fact adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of system inputs must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, asymmetric, single-surface maneuvers are used to excite multiple axes of aircraft motion simultaneously. Time history reconstructions of the moment coefficients computed by the solved regression models are then compared to each other in order to assess relative model accuracy. The reduced flight-test time required for inner surface parameter estimation using multi-axis methods was found to come at the cost of slightly reduced accuracy and statistical confidence for linear regression methods. Since the multi-axis maneuvers captured parameter estimates similar to both longitudinal and lateral-directional maneuvers combined, the number of test points required for the inner, aileron-like surfaces could in theory have been reduced by 50%. While trends were similar, however, individual parameters as estimated by a multi-axis model were typically different by an average absolute difference of roughly 15-20%, with decreased statistical significance, than those estimated by a single-axis model. The multi-axis model exhibited an increase in overall fit error of roughly 1-5% for the linear regression estimates with respect to the single-axis model, when applied to flight data designed for each, respectively

    Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

    Get PDF
    Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity
    • 

    corecore